CINXE.COM

Search results for: horizontal bracing system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: horizontal bracing system</title> <meta name="description" content="Search results for: horizontal bracing system"> <meta name="keywords" content="horizontal bracing system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="horizontal bracing system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="horizontal bracing system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18166</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: horizontal bracing system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18166</span> Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Al-Qaryouti">Yousef Al-Qaryouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Besan%20Alagawani"> Besan Alagawani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system" title="horizontal bracing system">horizontal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20frames" title=" steel moment frames"> steel moment frames</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20load%20resisting%20system" title=" wind load resisting system"> wind load resisting system</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a> </p> <a href="https://publications.waset.org/abstracts/52051/effect-of-adding-horizontal-steel-bracing-system-to-ordinary-moment-steel-frames-subjected-to-wind-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18165</span> Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Omar">Mohamed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shapes%20memory%20alloy" title=" shapes memory alloy"> shapes memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20bracing" title=" mega bracing"> mega bracing</a> </p> <a href="https://publications.waset.org/abstracts/4180/seismic-response-of-braced-steel-frames-with-shape-memory-alloy-and-mega-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18164</span> Earthquake Resistant Sustainable Steel Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arup%20Saha%20Chaudhuri">Arup Saha Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title="steel building">steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20and%20sustainable" title=" green and sustainable"> green and sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant" title=" earthquake resistant"> earthquake resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=EBF%20system" title=" EBF system"> EBF system</a> </p> <a href="https://publications.waset.org/abstracts/78519/earthquake-resistant-sustainable-steel-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18163</span> Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Dizangian">Babak Dizangian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ghasemi"> Mohammad Reza Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Ghalandari"> Akram Ghalandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame&rsquo;s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers&rsquo; laboratory test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20wire%20rope%20bracing" title=" delayed wire rope bracing"> delayed wire rope bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20moment%20frame" title=" ductile moment frame"> ductile moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20curve" title=" hysteresis curve"> hysteresis curve</a> </p> <a href="https://publications.waset.org/abstracts/69615/enhancing-seismic-performance-of-ductile-moment-frames-with-delayed-wire-rope-bracing-using-middle-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18162</span> The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Baradaran">Mohammad Reza Baradaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Hamzezarghani"> Farhad Hamzezarghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Rastegari%20Ghiri"> Mehdi Rastegari Ghiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Mirsanjari"> Zahra Mirsanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link" title="vertical shear-link">vertical shear-link</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20analysis" title=" cyclic analysis"> cyclic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20beam" title=" honeycomb beam"> honeycomb beam</a> </p> <a href="https://publications.waset.org/abstracts/30924/the-effect-of-vertical-shear-link-in-improving-the-seismic-performance-of-structures-with-eccentrically-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18161</span> X-Bracing Configuration and Seismic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rahjoo">Saeed Rahjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20H.%20Mamaqani"> Babak H. Mamaqani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20configuration" title="bracing configuration">bracing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrically%20braced%20frame%20%28CBF%29" title=" concentrically braced frame (CBF)"> concentrically braced frame (CBF)</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20over%20analyses" title=" push over analyses"> push over analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title=" response reduction factor"> response reduction factor</a> </p> <a href="https://publications.waset.org/abstracts/5888/x-bracing-configuration-and-seismic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18160</span> Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruoyang%20Tang">Ruoyang Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Nie"> Jianguo Nie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20member" title="bracing member">bracing member</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20stage" title=" construction stage"> construction stage</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title=" lateral-torsional buckling"> lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20girder%20system" title=" steel girder system"> steel girder system</a> </p> <a href="https://publications.waset.org/abstracts/124929/lateral-torsional-buckling-of-steel-girder-systems-braced-by-solid-web-crossbeams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18159</span> Earthquake Retrofitting of Concrete Structures Using Steel Bracing with the Results of Linear and Nonlinear Static Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sadie">Ehsan Sadie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of steel braces in concrete structures has been considered by researchers in recent decades due to its easy implementation, economics and the ability to create skylights in braced openings compared to shear wall openings as well as strengthening weak concrete structures to earthquakes. The purpose of this article is to improve and strengthen concrete structures with steel bracing. In addition, cases such as different numbers of steel braces in different openings of concrete structures and interaction between concrete frames and metal braces have been studied. In this paper, by performing static nonlinear analysis and examining ductility, the relative displacement of floors, examining the performance of samples, and determining the coefficient of behavior of composite frames (concrete frames with metal bracing), the behavior of reinforced concrete frames is compared with frame without bracing. The results of analyzes and studies show that the addition of metal bracing increases the strength and stiffness of the frame and reduces the ductility and lateral displacement of the structure. In general, the behavior of the structure against earthquakes will be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior%20coefficient" title="behavior coefficient">behavior coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=bracing" title=" bracing"> bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=convergent%20bracing" title=" convergent bracing"> convergent bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20curve" title=" pushover curve"> pushover curve</a> </p> <a href="https://publications.waset.org/abstracts/145613/earthquake-retrofitting-of-concrete-structures-using-steel-bracing-with-the-results-of-linear-and-nonlinear-static-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18158</span> Comparison of the Effect of Semi-Rigid Ankle Bracing Performance among Ankle Injured Versus Non-Injured Adolescent Female Hockey Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Ellapen">T. J. Ellapen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Acampora"> N. Acampora</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dawson"> S. Dawson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arling"> J. Arling</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Van%20Niekerk"> C. Van Niekerk</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Van%20Heerden"> H. J. Van Heerden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To determine the comparative proprioceptive performance of injured versus non-injured adolescent female hockey players when wearing an ankle brace. Methods: Data were collected from 100 high school players who belonged to the Highway Secondary School KZN Hockey league via voluntary parental informed consent and player assent. Players completed an injury questionnaire probing the prevalence and nature of hockey injuries (March-August 2013). Subsequently players completed a Biodex proprioceptive test with and without an ankle brace. Probability was set at p≤ 0.05. Results: Twenty-two players sustained ankle injuries within the six months (p<0.001). Injured players performed similarly without bracing Right Anterior Posterior Index (RAPI): 2.8±0.9; Right Medial Lateral Index (RMLI): 1.9±0.7; Left Anterior Posterior Index (LAPI) LAPI: 2.7; Left Medial Lateral Index (LMLI): 1.7±0.6) as compared to bracing (RAPI: 2.7±1.4; RMLI: 1.8±0.6; LAPI: 2.6±1.0; LMLI: 1.5±0.6) (p>0.05). However, bracing (RAPI: 2.2±0.8; RMLI: 1.5±0.5; LAPI: 2.4±0.9; MLI: 1.5±0.5) improved the ankle stability of the non-injured group as compared to their unbraced performance (RAPI: 2.5±1.0; RMLI: 1.8±0.8; LAPI: 2.8±1.1; LMLI: 1.8±0.6) (p<0.05). Conclusion: Ankle bracing did not enhance the stability of injured ankles. However ankle bracing has an ergogenic effect enhancing the stability of healthy ankles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hockey" title="hockey">hockey</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioception" title=" proprioception"> proprioception</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle" title=" ankle"> ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=bracing" title=" bracing"> bracing</a> </p> <a href="https://publications.waset.org/abstracts/7291/comparison-of-the-effect-of-semi-rigid-ankle-bracing-performance-among-ankle-injured-versus-non-injured-adolescent-female-hockey-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18157</span> Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Vosoughifar">H. R. Vosoughifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Zeinab.%20Hosseininejad"> Seyedeh Zeinab. Hosseininejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Shabazi"> Nahid Shabazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohialdin%20Hosseininejad"> Seyed Mohialdin Hosseininejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20bracing%20system" title="optimal bracing system">optimal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20structure" title=" high-rise structure"> high-rise structure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20stress" title=" seismic stress"> seismic stress</a> </p> <a href="https://publications.waset.org/abstracts/45332/evaluating-the-seismic-stress-distribution-in-the-high-rise-structures-connections-with-optimal-bracing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18156</span> Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diyar%20Yousif%20Ali">Diyar Yousif Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title="reinforced concrete structures">reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20shear" title=" base shear"> base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bracing" title=" steel bracing"> steel bracing</a> </p> <a href="https://publications.waset.org/abstracts/160291/bracing-applications-for-improving-the-earthquake-performance-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18155</span> Effect of Wind Braces to Earthquake Resistance of Steel Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gokdemir">H. Gokdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20bracings" title="wind bracings">wind bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20lateral%20loads" title=" vertical and lateral loads"> vertical and lateral loads</a> </p> <a href="https://publications.waset.org/abstracts/23581/effect-of-wind-braces-to-earthquake-resistance-of-steel-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18154</span> A Theoretical Study of Multi-Leaf Spring in Seismic Response Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ezati%20Kooshki">M. Ezati Kooshki </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pourmohamad"> H. Pourmohamad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20system" title="bracing system">bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20spring" title=" leaf spring"> leaf spring</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/33648/a-theoretical-study-of-multi-leaf-spring-in-seismic-response-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18153</span> Seismic Assessment of RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badla%20Oualid">Badla Oualid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A great number of existing buildings are designed without seismic design criteria and detailing rules for dissipative structural behavior. Thus, it is of critical importance that the structures that need seismic retrofitting are correctly identified, and an optimal retrofitting is conducted in a cost effective fashion. Among the retrofitting techniques available, steel braces can be considered as one of the most efficient solution among seismic performance upgrading methods of RC structures. This paper investigates the seismic behavior of RC buildings strengthened with different types of steel braces, X-braced, inverted V braced, ZX braced, and Zipper braced. Static non linear pushover analysis has been conducted to estimate the capacity of three story and six story buildings with different brace-frame systems and different cross sections for the braces. It is found that adding braces enhances the global capacity of the buildings compared to the case with no bracing and that the X and Zipper bracing systems performed better depending on the type and size of the cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bracing" title=" steel bracing"> steel bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a> </p> <a href="https://publications.waset.org/abstracts/21615/seismic-assessment-of-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18152</span> Design and Analysis of Deep Excavations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barham%20J.%20Nareeman">Barham J. Nareeman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20I.%20Mohammed"> Ilham I. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20excavation" title="deep excavation">deep excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stressed%20tie%20back%20anchors" title=" pre-stressed tie back anchors"> pre-stressed tie back anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=contiguous%20pile%20wall" title=" contiguous pile wall"> contiguous pile wall</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS" title=" PLAXIS"> PLAXIS</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20deflection" title=" horizontal deflection"> horizontal deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20settlement" title=" ground settlement"> ground settlement</a> </p> <a href="https://publications.waset.org/abstracts/53000/design-and-analysis-of-deep-excavations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18151</span> DSF Elements in High-Rise Timber Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Premrov">Miroslav Premrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrej%20%C5%A0trukelj"> Andrej Štrukelj</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Kozem%20%C5%A0ilih"> Erika Kozem Šilih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass" title="glass">glass</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title=" high-rise buildings"> high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a> </p> <a href="https://publications.waset.org/abstracts/185196/dsf-elements-in-high-rise-timber-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18150</span> Design and Validation of an Aerodynamic Model of the Cessna Citation X Horizontal Stabilizer Using both OpenVSP and Digital Datcom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Segui">Marine Segui</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Mantilla"> Matthieu Mantilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is the part of a major project at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) aiming to improve a Cessna Citation X aircraft cruise performance with an application of the morphing wing technology on its horizontal tail. However, the horizontal stabilizer of the Cessna Citation X turns around its span axis with an angle between -8 and 2 degrees. Within this range, the horizontal stabilizer generates certainly some unwanted drag. To cancel this drag, the LARCASE proposes to trim the aircraft with a horizontal stabilizer equipped by a morphing wing technology. This technology aims to optimize aerodynamic performances by changing the conventional horizontal tail shape during the flight. As a consequence, this technology will be able to generate enough lift on the horizontal tail to balance the aircraft without an unwanted drag generation. To conduct this project, an accurate aerodynamic model of the horizontal tail is firstly required. This aerodynamic model will finally allow precise comparison between a conventional horizontal tail and a morphed horizontal tail results. This paper presents how this aerodynamic model was designed. In this way, it shows how the 2D geometry of the horizontal tail was collected and how the unknown airfoil&rsquo;s shape of the horizontal tail has been recovered. Finally, the complete horizontal tail airfoil shape was found and a comparison between aerodynamic polar of the real horizontal tail and the horizontal tail found in this paper shows a maximum difference of 0.04 on the lift or the drag coefficient which is very good. Aerodynamic polar data of the aircraft horizontal tail are obtained from the CAE Inc. level D research aircraft flight simulator of the Cessna Citation X. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Cessna" title=" Cessna"> Cessna</a>, <a href="https://publications.waset.org/abstracts/search?q=citation" title=" citation"> citation</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Datcom" title=" Datcom"> Datcom</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenVSP" title=" OpenVSP"> OpenVSP</a> </p> <a href="https://publications.waset.org/abstracts/84863/design-and-validation-of-an-aerodynamic-model-of-the-cessna-citation-x-horizontal-stabilizer-using-both-openvsp-and-digital-datcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18149</span> Design Analysis of Tilting System for Spacecraft Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Naresh">P. Naresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Iqbal"> Amir Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite transportation is inevitable step during the course of integration testing and launch. Large satellites are transported in horizontal mode due to constraints on commercially available cargo bay dimensions & on road obstacles. To facilitate transportation of bigger size spacecraft in horizontal mode a tilting system is released. This tilting system consists of tilt table, columns, hinge pin, angular contact bearings, slewing bearing and linear actuators. The tilting system is very compact and easy to use however it is also serves the purpose of a fixture so it is of immense interest to know the stress and fundamental frequency of the system in transportation configuration. This paper discusses design aspects and finite element analysis of tilting system-cum-fixture using Hypermesh/Nastran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tilt%20table" title="tilt table">tilt table</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=slewing%20bearing" title=" slewing bearing"> slewing bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/24266/design-analysis-of-tilting-system-for-spacecraft-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18148</span> Investigation of Riders&#039; Path on Horizontal Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lemonakis%20Panagiotis">Lemonakis Panagiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliou%20Nikos"> Eliou Nikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Karakasidis%20Theodoros"> Karakasidis Theodoros</a>, <a href="https://publications.waset.org/abstracts/search?q=Botzoris%20George"> Botzoris George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory" title="trajectory">trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=path" title=" path"> path</a>, <a href="https://publications.waset.org/abstracts/search?q=riders" title=" riders"> riders</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20curves" title=" horizontal curves"> horizontal curves</a> </p> <a href="https://publications.waset.org/abstracts/5089/investigation-of-riders-path-on-horizontal-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18147</span> Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Kim%20Schimpf">Joshua Kim Schimpf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyun%20Doo%20Kim"> Kyun Doo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaseok%20Heo"> Jaseok Heo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet" title="droplet">droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal" title=" horizontal"> horizontal</a> </p> <a href="https://publications.waset.org/abstracts/66543/droplet-entrainment-and-deposition-in-horizontal-stratified-two-phase-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18146</span> Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Hui">Li Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh%20Hindi"> Riyadh Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20deck%20construction" title="bridge deck construction">bridge deck construction</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20girder%20rotation" title=" exterior girder rotation"> exterior girder rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/176482/optimizing-bridge-deck-construction-a-deep-neural-network-approach-for-limiting-exterior-grider-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18145</span> Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joel%20M.%20De%20La%20Rosa%20R.">Joel M. De La Rosa R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20shaft" title="vertical shaft">vertical shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20method" title=" flotation method"> flotation method</a>, <a href="https://publications.waset.org/abstracts/search?q=very%20soft%20clays" title=" very soft clays"> very soft clays</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20supervision" title=" construction supervision"> construction supervision</a> </p> <a href="https://publications.waset.org/abstracts/137807/permissible-horizontal-displacements-during-the-construction-of-vertical-shafts-in-soft-soils-at-the-valley-of-mexico-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18144</span> Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chui-Hsin%20Chen">Chui-Hsin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ting%20Chen"> Yu-Ting Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=special%20concentrically%20braced%20frames" title="special concentrically braced frames">special concentrically braced frames</a>, <a href="https://publications.waset.org/abstracts/search?q=HSS" title=" HSS"> HSS</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20reinforcement" title=" infill reinforcement"> infill reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEQ" title=" PEEQ"> PEEQ</a> </p> <a href="https://publications.waset.org/abstracts/157991/finite-element-analysis-of-hollow-structural-shape-hss-steel-brace-with-infill-reinforcement-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18143</span> Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20R.%20Menon">Anjana R. Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Bhasi"> Anjana Bhasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20strain" title=" plane strain"> plane strain</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20horizontal%20drain" title=" prefabricated horizontal drain"> prefabricated horizontal drain</a> </p> <a href="https://publications.waset.org/abstracts/67741/numerical-analysis-of-prefabricated-horizontal-drain-induced-consolidation-using-abaqus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18142</span> Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20M.%20A.%20Elbashbeshy">Elsayed M. A. Elbashbeshy</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Emam"> T. G. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El-Azab"> M. S. El-Azab</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Abdelgaber"> K. M. Abdelgaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title="laminar flow">laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20horizontal%20cylinder" title=" stretching horizontal cylinder"> stretching horizontal cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%2Finjection" title=" suction/injection"> suction/injection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/15200/effect-of-thermal-radiation-on-flow-heat-and-mass-transfer-of-a-nanofluid-over-a-stretching-horizontal-cylinder-embedded-in-a-porous-medium-with-suctioninjection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18141</span> Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Senouci">Fares Senouci</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Imine"> Bachir Imine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/68885/optimization-of-the-aerodynamic-performances-of-an-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18140</span> Horizontal Circular Curve Computations Using a Developed Calculator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Hassabo">Adil Hassabo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a horizontal circular curve computations calculator is developed in Microsoft Windows. The developed calculator can be used for determining the necessary information required for setting out horizontal curves. Three methods are applied in the developed program namely: incremental chord method, total chord method, and the coordinates method. Computations of horizontal curves by the developed calculator is faster, easier, accurate, and less subject to errors comparable to the traditional method of calculations. Finally, the results obtained by the traditional method and by the developed calculator are presented for checking the behavior of the developed calculator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculator" title="calculator">calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=circular" title=" circular"> circular</a>, <a href="https://publications.waset.org/abstracts/search?q=computations" title=" computations"> computations</a>, <a href="https://publications.waset.org/abstracts/search?q=curve" title=" curve"> curve</a> </p> <a href="https://publications.waset.org/abstracts/91621/horizontal-circular-curve-computations-using-a-developed-calculator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18139</span> Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Dalakishvili">Giorgi Dalakishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Goderdzi%20G.%20Didebulidze"> Goderdzi G. Didebulidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Todua"> Maya Todua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-homogeneous" title="in-homogeneous">in-homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=sporadic%20E" title=" sporadic E"> sporadic E</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosphere" title=" thermosphere"> thermosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/128943/analytical-and-numerical-study-of-formation-of-sporadic-e-layer-with-taking-into-account-horizontal-and-vertical-in-homogeneity-of-the-horizontal-wind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18138</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18137</span> Acausal and Causal Model Construction with FEM Approach Using Modelica </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty">Oke Oktavianty</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadayuki%20Kyoutani"> Tadayuki Kyoutani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Junji%20Kaneko"> Junji Kaneko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20causal%20model" title=" a causal model"> a causal model</a>, <a href="https://publications.waset.org/abstracts/search?q=modelica" title=" modelica"> modelica</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20sorting" title=" horizontal and vertical sorting"> horizontal and vertical sorting</a> </p> <a href="https://publications.waset.org/abstracts/42616/acausal-and-causal-model-construction-with-fem-approach-using-modelica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=605">605</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=606">606</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10