CINXE.COM
Numeri euleriani - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Numeri euleriani - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"280d9d7f-072f-4e9c-98d5-369b10d1f3f1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Numeri_euleriani","wgTitle":"Numeri euleriani","wgCurRevisionId":135034220,"wgRevisionId":135034220,"wgArticleId":6164469,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Successioni di interi"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Numeri_euleriani","wgRelevantArticleId":6164469,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0, "wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1373849","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user" :"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Numeri euleriani - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Numeri_euleriani"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Numeri_euleriani&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Numeri_euleriani"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Numeri_euleriani rootpage-Numeri_euleriani skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Numeri+euleriani" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Numeri+euleriani" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Numeri+euleriani" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Numeri+euleriani" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Storia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Storia"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Storia</span> </div> </a> <ul id="toc-Storia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Proprietà</span> </div> </a> <ul id="toc-Proprietà-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formula_chiusa" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formula_chiusa"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Formula chiusa</span> </div> </a> <ul id="toc-Formula_chiusa-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà_della_somma" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà_della_somma"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Proprietà della somma</span> </div> </a> <ul id="toc-Proprietà_della_somma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Identità" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Identità"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Identità</span> </div> </a> <ul id="toc-Identità-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numeri_euleriani_di_seconda_specie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numeri_euleriani_di_seconda_specie"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Numeri euleriani di seconda specie</span> </div> </a> <ul id="toc-Numeri_euleriani_di_seconda_specie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Numeri euleriani</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 9 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-9" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">9 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Euler-Zahlen" title="Euler-Zahlen - tedesco" lang="de" hreflang="de" data-title="Euler-Zahlen" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Eulerian_number" title="Eulerian number - inglese" lang="en" hreflang="en" data-title="Eulerian number" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_eul%C3%A9rien" title="Nombre eulérien - francese" lang="fr" hreflang="fr" data-title="Nombre eulérien" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%EC%88%98_(%EC%A1%B0%ED%95%A9%EB%A1%A0)" title="오일러 수 (조합론) - coreano" lang="ko" hreflang="ko" data-title="오일러 수 (조합론)" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_Eulera" title="Liczby Eulera - polacco" lang="pl" hreflang="pl" data-title="Liczby Eulera" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_eulerian" title="Număr eulerian - rumeno" lang="ro" hreflang="ro" data-title="Număr eulerian" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_I_%D1%80%D0%BE%D0%B4%D0%B0" title="Числа Эйлера I рода - russo" lang="ru" hreflang="ru" data-title="Числа Эйлера I рода" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Eulerskt_tal" title="Eulerskt tal - svedese" lang="sv" hreflang="sv" data-title="Eulerskt tal" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_I_%D1%80%D0%BE%D0%B4%D1%83" title="Числа Ейлера I роду - ucraino" lang="uk" hreflang="uk" data-title="Числа Ейлера I роду" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1373849#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Numeri_euleriani" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Numeri_euleriani" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Numeri_euleriani"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Numeri_euleriani"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Numeri_euleriani" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Numeri_euleriani" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&oldid=135034220" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Numeri_euleriani&id=135034220&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FNumeri_euleriani"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FNumeri_euleriani"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Numeri+euleriani"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Numeri_euleriani&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Numeri_euleriani&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1373849" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><p>In <a href="/wiki/Combinatoria" title="Combinatoria">combinatoria</a>, il <b>numero euleriano</b> <i>A</i>(<i>n</i>, <i>m</i>) è il numero di <a href="/wiki/Permutazioni" class="mw-redirect" title="Permutazioni">permutazioni</a> dei numeri fra 1 e <i>n</i> nelle quali esattamente <i>m</i> elementi sono maggiori di quelli precedenti. Tali numeri sono anche i coefficienti dei <b>polinomi di Eulero</b>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=\sum _{m=0}^{n}A(n,m)\ t^{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=\sum _{m=0}^{n}A(n,m)\ t^{m}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2482ca8ff29ff094cf42f6ea951b4b569abaabce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.403ex; height:6.843ex;" alt="{\displaystyle A_{n}(t)=\sum _{m=0}^{n}A(n,m)\ t^{m}.}"></span></dd></dl> <p>I polinomi di Eulero sono definiti dalla funzione generatrice esponenziale: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-\mathrm {e} ^{(t-1)\,x}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-\mathrm {e} ^{(t-1)\,x}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de3cf5f80fbf7e750a2e03ab68546a4fb16d7eea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.951ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-\mathrm {e} ^{(t-1)\,x}}}.}"></span></dd></dl> <p>Essi possono essere calcolati attraverso la seguente formula ricorsiva: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{0}(t)=1,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{0}(t)=1,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cde59eeccd33d008206a71413c322bdc5c2bd19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.741ex; height:2.843ex;" alt="{\displaystyle A_{0}(t)=1,\,}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=t\,(1-t)\,A_{n-1}'(t)+A_{n-1}(t)\,(1+(n-1)\,t),\quad n\geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=t\,(1-t)\,A_{n-1}'(t)+A_{n-1}(t)\,(1+(n-1)\,t),\quad n\geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/664d4663fc4f78f42329df76e38c798459771b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:59.529ex; height:3.176ex;" alt="{\displaystyle A_{n}(t)=t\,(1-t)\,A_{n-1}'(t)+A_{n-1}(t)\,(1+(n-1)\,t),\quad n\geq 1.}"></span></dd></dl> <p>Un modo equivalente per dare questa definizione è quello di definire i polinomi di Eulero induttivamente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{0}(t)=1,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{0}(t)=1,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cde59eeccd33d008206a71413c322bdc5c2bd19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.741ex; height:2.843ex;" alt="{\displaystyle A_{0}(t)=1,\,}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}\,A_{k}(t)\,(t-1)^{n-1-k},\quad n\geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mspace width="thinmathspace" /> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}\,A_{k}(t)\,(t-1)^{n-1-k},\quad n\geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3992216b9d4a3ba24388a16de5f67ae24665a9f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:45.287ex; height:7.509ex;" alt="{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}\,A_{k}(t)\,(t-1)^{n-1-k},\quad n\geq 1.}"></span></dd></dl> <p>Le notazioni per questi numeri sono <i>A</i>(<i>n</i>, <i>m</i>), <i>E</i>(<i>n</i>, <i>m</i>) e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left\langle {n \atop m}\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left\langle {n \atop m}\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a8fef16b6f90ee4b95edd0230c459daee11d516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.281ex; height:2.509ex;" alt="{\displaystyle \scriptstyle \left\langle {n \atop m}\right\rangle }"></span>. </p><p>Essi non vanno confusi con i <a href="/wiki/Numero_di_Eulero_(teoria_dei_numeri)" class="mw-redirect" title="Numero di Eulero (teoria dei numeri)">numeri di Eulero</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Storia">Storia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=1" title="Modifica la sezione Storia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=1" title="Edit section's source code: Storia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:EulerianPolynomialsByEuler1755.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/220px-EulerianPolynomialsByEuler1755.png" decoding="async" width="220" height="161" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/330px-EulerianPolynomialsByEuler1755.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/EulerianPolynomialsByEuler1755.png/440px-EulerianPolynomialsByEuler1755.png 2x" data-file-width="909" data-file-height="666" /></a><figcaption>Polinomi di Eulero</figcaption></figure> <p>Nel 1755 <a href="/wiki/Eulero" title="Eulero">Eulero</a> si occupò, nel libro <i>Institutiones calculi differentialis</i>, dei polinomi <i>α</i><sub>1</sub>(<i>x</i>) = 1, <i>α</i><sub>2</sub>(<i>x</i>) = <i>x</i> + 1, <i>α</i><sub>3</sub>(<i>x</i>) = <i>x</i><sup>2</sup> + 4<i>x</i> + 1, ecc. Tali polinomi sono una variante di quelli che oggi sono chiamati polinomi di Eulero <i>A</i><i><sub>n</sub></i>(<i>x</i>). </p> <div class="mw-heading mw-heading2"><h2 id="Proprietà"><span id="Propriet.C3.A0"></span>Proprietà</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=2" title="Modifica la sezione Proprietà" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=2" title="Edit section's source code: Proprietà"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Per ogni valore <i>n</i> > 0, l'indice <i>m</i> in <i>A</i>(<i>n</i>, <i>m</i>) può assumere valori compresi tra 0 e <i>n</i> − 1. Per <i>n </i>dato, esiste una sola permutazione con nessun valore maggiore di quello che lo precede; è la permutazione (<i>n</i>, <i>n</i> − 1, <i>n</i> − 2, ..., 1). Inoltre ne esiste una sola con <i>n</i> − 1 valori maggiori del precedente; è la permutazione (1, 2, 3, ..., <i>n</i>). Perciò, <i>A</i>(<i>n</i>, 0) e <i>A</i>(<i>n</i>, <i>n</i> − 1) valgono 1 per ogni valore di <i>n</i>. </p><p>L'inversione di una permutazione con <i>m</i> numeri maggiori dei rispettivi numeri precedenti<i> </i>genera un'altra permutazione in cui tali valori sono in quantità <i>n</i> − <i>m</i> − 1. Dunque <i>A</i>(<i>n</i>, <i>m</i>) = <i>A</i>(<i>n</i>, <i>n</i> − <i>m</i> − 1). </p><p>I valori di <i>A</i>(<i>n</i>, <i>m</i>) possono essere calcolati a mano per valori piccoli di <i>n</i> e <i>m</i>. Ad esempio, per <i>n</i> ≤ 3, si ha: </p> <dl><dd><table class="wikitable" style="margin-bottom: 10px;"> <tbody><tr> <th><i>n</i> </th> <th><i>m</i> </th> <th>Permutazioni </th> <th><i>A</i>(<i>n</i>, <i>m</i>) </th></tr> <tr> <td>1 </td> <td>0 </td> <td>(1) </td> <td><i>A</i>(1,0) = 1 </td></tr> <tr> <td rowspan="2">2 </td> <td>0 </td> <td>(2, 1) </td> <td><i>A</i>(2,0) = 1 </td></tr> <tr> <td>1 </td> <td>(1, <b>2</b>) </td> <td><i>A</i>(2,1) = 1 </td></tr> <tr> <td rowspan="3">3 </td> <td>0 </td> <td>(3, 2, 1) </td> <td><i>A</i>(3,0) = 1 </td></tr> <tr> <td>1 </td> <td>(1, <b>3</b>, 2) (2, 1, <b>3</b>) (2, <b>3</b>, 1) (3, 1, <b>2</b>) </td> <td><i>A</i>(3,1) = 4 </td></tr> <tr> <td>2 </td> <td>(1, <b>2</b>, <b>3</b>) </td> <td><i>A</i>(3,2) = 1 </td></tr></tbody></table></dd></dl> <p>Per valori più grandi di <i>n</i>, <i>A</i>(<i>n</i>, <i>m</i>) si può calcolare usando la ricorsione </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(n,m)=(n-m)A(n-1,m-1)+(m+1)A(n-1,m).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(n,m)=(n-m)A(n-1,m-1)+(m+1)A(n-1,m).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccdd4fe49eee8af9641280cd4cbd5342381f8a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.596ex; height:2.843ex;" alt="{\displaystyle A(n,m)=(n-m)A(n-1,m-1)+(m+1)A(n-1,m).}"></span></dd></dl> <p>Da cui, ad esempio: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(4,1)=(4-1)A(3,0)+(1+1)A(3,1)=3\times 1+2\times 4=11.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>×<!-- × --></mo> <mn>4</mn> <mo>=</mo> <mn>11.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(4,1)=(4-1)A(3,0)+(1+1)A(3,1)=3\times 1+2\times 4=11.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/228458c2f59f5c1dc8ff853074a21b9984e65da1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.962ex; height:2.843ex;" alt="{\displaystyle A(4,1)=(4-1)A(3,0)+(1+1)A(3,1)=3\times 1+2\times 4=11.}"></span></dd></dl> <p>I valori di <i>A</i>(<i>n</i>, <i>m</i>) (<span class="nowrap">sequenza <a href="//oeis.org/A008292" class="extiw" title="oeis:A008292">A008292</a></span><span> dell'</span><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a><span>)</span> per 0 ≤ <i>n</i> ≤ 9 sono: </p> <dl><dd><table class="wikitable" style="margin-bottom: 10px;"> <tbody><tr> <th><i>n</i> \ <i>m</i> </th> <th width="50">0 </th> <th width="50">1 </th> <th width="50">2 </th> <th width="50">3 </th> <th width="50">4 </th> <th width="50">5 </th> <th width="50">6 </th> <th width="50">7 </th> <th width="50">8 </th></tr> <tr> <th>1 </th> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>2 </th> <td>1 </td> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>3 </th> <td>1 </td> <td>4 </td> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>4 </th> <td>1 </td> <td>11 </td> <td>11 </td> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>5 </th> <td>1 </td> <td>26 </td> <td>66 </td> <td>26 </td> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>6 </th> <td>1 </td> <td>57 </td> <td>302 </td> <td>302 </td> <td>57 </td> <td>1 </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>7 </th> <td>1 </td> <td>120 </td> <td>1191 </td> <td>2416 </td> <td>1191 </td> <td>120 </td> <td>1 </td> <td> </td> <td> </td></tr> <tr> <th>8 </th> <td>1 </td> <td>247 </td> <td>4293 </td> <td>15619 </td> <td>15619 </td> <td>4293 </td> <td>247 </td> <td>1 </td> <td> </td></tr> <tr> <th>9 </th> <td>1 </td> <td>502 </td> <td>14608 </td> <td>88234 </td> <td>156190 </td> <td>88234 </td> <td>14608 </td> <td>502 </td> <td>1 </td></tr></tbody></table></dd></dl> <p>Questa disposizione triangolare si chiama <b>triangolo di Eulero</b> e condivide alcune caratteristiche con il <a href="/wiki/Triangolo_di_Tartaglia" title="Triangolo di Tartaglia">triangolo di Tartaglia</a>. La somma dei numeri sulla riga <i>n-esima</i> è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae971720be3cc9b8d82f4cdac89cb89877514a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:2.176ex;" alt="{\displaystyle n!}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Formula_chiusa">Formula chiusa</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=3" title="Modifica la sezione Formula chiusa" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=3" title="Edit section's source code: Formula chiusa"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una <a href="/wiki/Forma_chiusa" class="mw-disambig" title="Forma chiusa">forma chiusa</a> per <i>A</i>(<i>n</i>, <i>m</i>) è la seguente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(n,m)=\sum _{k=0}^{m+1}(-1)^{k}{\binom {n+1}{k}}(m+1-k)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(n,m)=\sum _{k=0}^{m+1}(-1)^{k}{\binom {n+1}{k}}(m+1-k)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fc3fe587d72cbc8006949bf3edad0cfad3d420c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.12ex; height:7.509ex;" alt="{\displaystyle A(n,m)=\sum _{k=0}^{m+1}(-1)^{k}{\binom {n+1}{k}}(m+1-k)^{n}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Proprietà_della_somma"><span id="Propriet.C3.A0_della_somma"></span>Proprietà della somma</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=4" title="Modifica la sezione Proprietà della somma" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=4" title="Edit section's source code: Proprietà della somma"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>È evidente dalla definizione di combinatoria che la somma dei numeri di Eulero per un dato valore di <i>n</i> è il numero totale di permutazioni dei numeri tra 1 e <i>n</i>, ovvero </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{m=0}^{n-1}A(n,m)=n!{\text{ per }}n\geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> per </mtext> </mrow> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{m=0}^{n-1}A(n,m)=n!{\text{ per }}n\geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af6b0a33515bbac0a9f1a57b27684a1c622442ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.792ex; height:7.343ex;" alt="{\displaystyle \sum _{m=0}^{n-1}A(n,m)=n!{\text{ per }}n\geq 1.}"></span></dd></dl> <p>La <a href="/wiki/Serie_alternata" title="Serie alternata">serie alternata</a> dei numeri di Eulero per <i>n</i> dato è strettamente collegata ai <a href="/wiki/Numeri_di_Bernoulli" title="Numeri di Bernoulli">numeri di Bernoulli</a> <i>B</i><sub><i>n</i>+1</sub> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}A(n,m)={\frac {2^{n+1}(2^{n+1}-1)B_{n+1}}{n+1}}{\text{ per }}n\geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> per </mtext> </mrow> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}A(n,m)={\frac {2^{n+1}(2^{n+1}-1)B_{n+1}}{n+1}}{\text{ per }}n\geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/399b0b8b1362c60a0ca6c65a4f72a7b7aff661ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:52.513ex; height:7.343ex;" alt="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}A(n,m)={\frac {2^{n+1}(2^{n+1}-1)B_{n+1}}{n+1}}{\text{ per }}n\geq 1.}"></span></dd></dl> <p>Altre sommatorie interessanti per i numeri di Eulero sono: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n-1}{m}}}=0{\text{ per }}n\geq 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> per </mtext> </mrow> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n-1}{m}}}=0{\text{ per }}n\geq 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0203918048fdfa0bcbdb883d458536086102ae42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.817ex; height:7.509ex;" alt="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n-1}{m}}}=0{\text{ per }}n\geq 2,}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n}{m}}}=(n+1)B_{n}{\text{ per }}n\geq 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mtext> per </mtext> </mrow> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n}{m}}}=(n+1)B_{n}{\text{ per }}n\geq 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b038b12a8d05ee782e51775de44e92356e86aeaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.844ex; height:7.509ex;" alt="{\displaystyle \sum _{m=0}^{n-1}(-1)^{m}{\frac {A(n,m)}{\binom {n}{m}}}=(n+1)B_{n}{\text{ per }}n\geq 2,}"></span></dd></dl> <p>dove <i>B</i><sub><i>n</i></sub> è l'<i>n</i>-esimo numero di Bernoulli. </p> <div class="mw-heading mw-heading2"><h2 id="Identità"><span id="Identit.C3.A0"></span>Identità</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=5" title="Modifica la sezione Identità" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=5" title="Edit section's source code: Identità"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>I numeri di Eulero compaiono nella <a href="/wiki/Funzione_generatrice" title="Funzione generatrice">funzione generatrice</a> delle sequenze di potenze <i>n</i>-esime </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{\infty }k^{n}x^{k}={\frac {\sum _{m=0}^{n-1}A(n,m)x^{m+1}}{(1-x)^{n+1}}}{\text{ per }}n\geq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> per </mtext> </mrow> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{\infty }k^{n}x^{k}={\frac {\sum _{m=0}^{n-1}A(n,m)x^{m+1}}{(1-x)^{n+1}}}{\text{ per }}n\geq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f2586b32ac2e018d24a46bdf955efeed9a2b75a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.968ex; height:7.509ex;" alt="{\displaystyle \sum _{k=0}^{\infty }k^{n}x^{k}={\frac {\sum _{m=0}^{n-1}A(n,m)x^{m+1}}{(1-x)^{n+1}}}{\text{ per }}n\geq 0.}"></span></dd></dl> <p>Questo implica che 0<sup>0</sup> = 0 e <i>A</i>(0,0) = 1 (poiché esiste una permutazione di 0 elementi, e nessuno di essi può essere maggiore di un altro). </p><p><b>L'identità di Worpitzky</b> permette di esprimere <i>x</i><i><sup>n</sup></i> come <a href="/wiki/Combinazione_lineare" title="Combinazione lineare">combinazione lineare</a> di numeri di Eulero con i <a href="/wiki/Coefficiente_binomiale" title="Coefficiente binomiale">coefficienti binomiali</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {x+m}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>x</mi> <mo>+</mo> <mi>m</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {x+m}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/461ce6f7dc10f96150e5aae82618eec003224191" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.877ex; height:7.343ex;" alt="{\displaystyle x^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {x+m}{n}}.}"></span></dd></dl> <p>Da questa identità segue che </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{N}k^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {N+1+m}{n+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>A</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{N}k^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {N+1+m}{n+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b86d4d06eebabee16f18418d1cda4a911f65f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.237ex; height:7.343ex;" alt="{\displaystyle \sum _{k=1}^{N}k^{n}=\sum _{m=0}^{n-1}A(n,m){\binom {N+1+m}{n+1}}.}"></span></dd></dl> <p>Un'altra curiosa identità è </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {e}{1-ex}}=\sum _{n=0}^{\infty }{\frac {A_{n}(x)}{n!(1-x)^{n+1}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>e</mi> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>e</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {e}{1-ex}}=\sum _{n=0}^{\infty }{\frac {A_{n}(x)}{n!(1-x)^{n+1}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a661f45bca7320fd47bbe4acd5b6c10614512bc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.078ex; height:6.843ex;" alt="{\displaystyle {\frac {e}{1-ex}}=\sum _{n=0}^{\infty }{\frac {A_{n}(x)}{n!(1-x)^{n+1}}}.}"></span></dd></dl> <p>Dove il <a href="/wiki/Numeratore" title="Numeratore">numeratore</a> delle frazioni di destra è un <a href="/wiki/Polinomio" title="Polinomio">polinomio</a> di Eulero. </p> <div class="mw-heading mw-heading2"><h2 id="Numeri_euleriani_di_seconda_specie">Numeri euleriani di seconda specie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=6" title="Modifica la sezione Numeri euleriani di seconda specie" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=6" title="Edit section's source code: Numeri euleriani di seconda specie"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Le permutazioni del <a href="/wiki/Multiinsieme" title="Multiinsieme">multiinsieme</a> {1, 1, 2, 2, ···, <i>n</i>, <i>n</i>} con la proprietà che, per ogni <i>k</i>, tutti i numeri compresi tra le due occorrenze di <i>k</i> nella permutazione sono maggiori di <i>k,</i> possono essere contate attraverso il <a href="/wiki/Semifattoriale" class="mw-redirect" title="Semifattoriale">semifattoriale</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2n-1)!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2n-1)!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff129b00743f4df75457151ab524ae31fab2503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.663ex; height:2.843ex;" alt="{\displaystyle (2n-1)!!}"></span>. I numeri euleriani di seconda specie, indicati con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/809d9dfdf7e06bd8ddc4abea49af74edbb627998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.284ex; height:2.509ex;" alt="{\displaystyle \scriptstyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle }"></span>, servono a contare il numero di permutazioni con esattamente <i>m</i> elementi che sono più grandi dell'elemento che li precede. Ad esempio, se <i>n</i> = 3 ci sono 15 permutazioni di questo tipo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 332211,\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>332211</mn> <mo>,</mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 332211,\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1f0cd7602922136959a1f2e159f7c288f36936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.267ex; height:2.509ex;" alt="{\displaystyle 332211,\;}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 221133,\;221331,\;223311,\;233211,\;113322,\;133221,\;331122,\;331221,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>221133</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>221331</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>223311</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>233211</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>113322</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>133221</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>331122</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>331221</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 221133,\;221331,\;223311,\;233211,\;113322,\;133221,\;331122,\;331221,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bce859f7355df44ad234df5dac831bed3a6d6d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:68.198ex; height:2.509ex;" alt="{\displaystyle 221133,\;221331,\;223311,\;233211,\;113322,\;133221,\;331122,\;331221,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 112233,\;122133,\;112332,\;123321,\;133122,\;122331.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>112233</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>122133</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>112332</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>123321</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>133122</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>122331.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 112233,\;122133,\;112332,\;123321,\;133122,\;122331.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dc4e229d59fc3dfd4e33f4a8f66a9208f30f19d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:50.891ex; height:2.509ex;" alt="{\displaystyle 112233,\;122133,\;112332,\;123321,\;133122,\;122331.}"></span></dd></dl> <p>I numeri euleriani di seconda specie soddisfano la <a href="/wiki/Relazione_di_ricorrenza" title="Relazione di ricorrenza">relazione di ricorrenza</a>, che discende dalla definizione: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle =(2n-m-1)\left\langle \!\!\left\langle {n-1 \atop m-1}\right\rangle \!\!\right\rangle +(m+1)\left\langle \!\!\left\langle {n-1 \atop m}\right\rangle \!\!\right\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle =(2n-m-1)\left\langle \!\!\left\langle {n-1 \atop m-1}\right\rangle \!\!\right\rangle +(m+1)\left\langle \!\!\left\langle {n-1 \atop m}\right\rangle \!\!\right\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4dcdba606dc59a5fd768a8ac8d7269150e8dc62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.984ex; height:6.176ex;" alt="{\displaystyle \left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle =(2n-m-1)\left\langle \!\!\left\langle {n-1 \atop m-1}\right\rangle \!\!\right\rangle +(m+1)\left\langle \!\!\left\langle {n-1 \atop m}\right\rangle \!\!\right\rangle ,}"></span></dd></dl> <p>con la condizione iniziale che <i>n</i> = 0, espressa attraverso le <a href="/wiki/Parentesi_di_Iverson" title="Parentesi di Iverson">parentesi di Iverson</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \!\!\left\langle {0 \atop m}\right\rangle \!\!\right\rangle =[m=0].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mn>0</mn> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>m</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \!\!\left\langle {0 \atop m}\right\rangle \!\!\right\rangle =[m=0].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17d4a15e0d4c20dc4e3dc8ae86c279fe6383e6b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.362ex; height:6.176ex;" alt="{\displaystyle \left\langle \!\!\left\langle {0 \atop m}\right\rangle \!\!\right\rangle =[m=0].}"></span></dd></dl> <p>Analogamente, i polinomi euleriani di seconda specie, qui indicati con <i>P</i><i><sub>n</sub></i> (non esiste una notazione standard) sono </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}(x):=\sum _{m=0}^{n}\left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle x^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>⟨</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>⟩</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}(x):=\sum _{m=0}^{n}\left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle x^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2de01f72980c037157679beb62cf8c42e29f1ee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.648ex; height:6.843ex;" alt="{\displaystyle P_{n}(x):=\sum _{m=0}^{n}\left\langle \!\!\left\langle {n \atop m}\right\rangle \!\!\right\rangle x^{m}}"></span></dd></dl> <p>e per essi vale la seguente relazione di ricorrenza: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ec815e20b566d723d4d8b0e6fe38fb01c3d73a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.759ex; height:2.843ex;" alt="{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}"></span></dd></dl> <p>con condizione iniziale </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}(x)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}(x)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c829c274abab10d6e73d282e800f8b20d04ebf5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.593ex; height:2.843ex;" alt="{\displaystyle P_{0}(x)=1.}"></span></dd></dl> <p>Quest'ultima ricorrenza può essere scritta in modo più compatto attraverso un <a href="/wiki/Fattore_di_integrazione" title="Fattore di integrazione">fattore di integrazione</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f594a526e10c2a9c357333470a2d8ccaaf1cc84d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.165ex; height:3.676ex;" alt="{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}"></span></dd></dl> <p>tale che la funzione razionale </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b218385d7f20220ec0221e60ae63af08d16490" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.743ex; height:3.176ex;" alt="{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}"></span></dd></dl> <p>soddisfa la seguente relazione di ricorrenza: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5342756bd2d18407104e155cf7577aaf904fbbed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.218ex; height:6.343ex;" alt="{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1,}"></span></dd></dl> <p>da cui si ottengono i polinomi di Eulero nella forma <i>P</i><sub><i>n</i></sub>(<i>x</i>) = (1−<i>x</i>)<sup>2<i>n</i></sup> <i>u</i><sub><i>n</i></sub>(<i>x</i>), e i numeri euleriani di seconda specie come coefficienti. </p><p>Questi sono i primi valori per i numeri euleriani di seconda specie (<span class="nowrap">sequenza <a href="//oeis.org/A008517" class="extiw" title="oeis:A008517">A008517</a></span><span> dell'</span><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>): </p> <dl><dd><table class="wikitable"> <tbody><tr> <th><i>n</i> \ <i>m</i> </th> <th width="50">0 </th> <th width="50">1 </th> <th width="50">2 </th> <th width="50">3 </th> <th width="50">4 </th> <th width="50">5 </th> <th width="50">6 </th> <th width="50">7 </th> <th width="50">8 </th></tr> <tr> <th>1 </th> <td>1 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>2 </th> <td>1 </td> <td>2 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>3 </th> <td>1 </td> <td>8 </td> <td>6 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>4 </th> <td>1 </td> <td>22 </td> <td>58 </td> <td>24 </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>5 </th> <td>1 </td> <td>52 </td> <td>328 </td> <td>444 </td> <td>120 </td> <td> </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>6 </th> <td>1 </td> <td>114 </td> <td>1452 </td> <td>4400 </td> <td>3708 </td> <td>720 </td> <td> </td> <td> </td> <td> </td></tr> <tr> <th>7 </th> <td>1 </td> <td>240 </td> <td>5610 </td> <td>32120 </td> <td>58140 </td> <td>33984 </td> <td>5040 </td> <td> </td> <td> </td></tr> <tr> <th>8 </th> <td>1 </td> <td>494 </td> <td>19950 </td> <td>195800 </td> <td>644020 </td> <td>785304 </td> <td>341136 </td> <td>40320 </td> <td> </td></tr> <tr> <th>9 </th> <td>1 </td> <td>1004 </td> <td>67260 </td> <td>1062500 </td> <td>5765500 </td> <td>12440064 </td> <td>11026296 </td> <td>3733920 </td> <td>362880 </td></tr></tbody></table></dd></dl> <p>In cui, di conseguenza, la somma della riga <i>n</i>-esima (che corrisponde anche al valore di <i>P</i><i><sub>n</sub></i>(1)), è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2n-1)!!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2n-1)!!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ff129b00743f4df75457151ab524ae31fab2503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.663ex; height:2.843ex;" alt="{\displaystyle (2n-1)!!}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=7" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=7" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="latino">LA</abbr></span>) Leonardo Eulero, <span style="font-style:italic;">Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum</span> [<span style="font-style:italic;">Fondamenti del calcolo differenziale, con applicazioni in analisi finita e serie</span>], Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis, 1755.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Graham, Knuth e Patashnik, <span style="font-style:italic;"><a href="/wiki/Concrete_Mathematics" title="Concrete Mathematics">Concrete Mathematics</a>: A Foundation for Computer Science</span>, 2ª ed., Addison-Wesley, 1994, pp. <a rel="nofollow" class="external text" href="https://archive.org/details/concretemathemat00grah_505/page/n280">267</a>-272.</cite></li> <li><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?GDZPPN002610515"><span style="font-style:italic;">Eulerian numbers with fractional order parameters</span></a>, in <span style="font-style:italic;">Aequationes Mathematicae</span>, vol. 46, 1993, pp. 119–142, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2Fbf01834003">10.1007/bf01834003</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) T. K. Petersen, <a rel="nofollow" class="external text" href="https://www.springer.com/us/book/9781493930906"><span style="font-style:italic;">Eulerian Numbers</span></a>, Birkhaüser, 2015.</cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=8" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=8" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Numeri_di_Eulero" title="Numeri di Eulero">Numeri di Eulero</a></li> <li><a href="/wiki/Coefficiente_binomiale" title="Coefficiente binomiale">Coefficiente binomiale</a></li> <li><a href="/wiki/Fattoriale" title="Fattoriale">Fattoriale</a></li> <li><a href="/wiki/Numeri_di_Bernoulli" title="Numeri di Bernoulli">Numeri di Bernoulli</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Numeri_euleriani&veaction=edit&section=9" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Numeri_euleriani&action=edit&section=9" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://go.helms-net.de/math/binomial_new/01_12_Eulermatrix.pdf"><span style="font-style:italic;">Euler-matrix</span></a> (<span style="font-weight: bolder; font-size:80%"><abbr title="documento in formato PDF">PDF</abbr></span>), su <span style="font-style:italic;">go.helms-net.de</span>. <small>URL consultato il 7 gennaio 2017</small>.</cite></li></ul> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di Matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐59856bd7d8‐md5w5 Cached time: 20241119175804 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.133 seconds Real time usage: 0.246 seconds Preprocessor visited node count: 1527/1000000 Post‐expand include size: 5456/2097152 bytes Template argument size: 183/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 2042/5000000 bytes Lua time usage: 0.048/10.000 seconds Lua memory usage: 2266662/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 96.087 1 -total 52.95% 50.876 3 Template:Cita_libro 35.10% 33.723 1 Template:Portale 17.14% 16.469 1 Template:Icona_argomento 4.53% 4.353 1 Template:Cita_pubblicazione 3.63% 3.487 1 Template:Cita_web 2.65% 2.547 1 Template:' --> <!-- Saved in parser cache with key itwiki:pcache:6164469:|#|:idhash:canonical and timestamp 20241119175804 and revision id 135034220. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Numeri_euleriani&oldid=135034220">https://it.wikipedia.org/w/index.php?title=Numeri_euleriani&oldid=135034220</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categoria</a>: <ul><li><a href="/wiki/Categoria:Successioni_di_interi" title="Categoria:Successioni di interi">Successioni di interi</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 19 ago 2023 alle 18:42.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Numeri_euleriani&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b8d669998-bkwc9","wgBackendResponseTime":121,"wgPageParseReport":{"limitreport":{"cputime":"0.133","walltime":"0.246","ppvisitednodes":{"value":1527,"limit":1000000},"postexpandincludesize":{"value":5456,"limit":2097152},"templateargumentsize":{"value":183,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2042,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 96.087 1 -total"," 52.95% 50.876 3 Template:Cita_libro"," 35.10% 33.723 1 Template:Portale"," 17.14% 16.469 1 Template:Icona_argomento"," 4.53% 4.353 1 Template:Cita_pubblicazione"," 3.63% 3.487 1 Template:Cita_web"," 2.65% 2.547 1 Template:'"]},"scribunto":{"limitreport-timeusage":{"value":"0.048","limit":"10.000"},"limitreport-memusage":{"value":2266662,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-59856bd7d8-md5w5","timestamp":"20241119175804","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Numeri euleriani","url":"https:\/\/it.wikipedia.org\/wiki\/Numeri_euleriani","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1373849","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1373849","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2016-11-22T20:22:30Z","dateModified":"2023-08-19T17:42:46Z"}</script> </body> </html>