CINXE.COM

{"title":"Nanostructured Pt\/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell","authors":"Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman","volume":99,"journal":"International Journal of Energy and Power Engineering","pagesStart":296,"pagesEnd":303,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10000706","abstract":"<p>Microbial fuel cells (MFCs) represent a promising<br \/>\r\ntechnology for simultaneous bioelectricity generation and wastewater<br \/>\r\ntreatment. Catalysts are significant portions of the cost of microbial<br \/>\r\nfuel cell cathodes. Many materials have been tested as aqueous<br \/>\r\ncathodes, but air-cathodes are needed to avoid energy demands for<br \/>\r\nwater aeration. The sluggish oxygen reduction reaction (ORR) rate at<br \/>\r\nair cathode necessitates efficient electrocatalyst such as carbon<br \/>\r\nsupported platinum catalyst (Pt\/C) which is very costly. Manganese<br \/>\r\noxide (MnO2) was a representative metal oxide which has been<br \/>\r\nstudied as a promising alternative electrocatalyst for ORR and has<br \/>\r\nbeen tested in air-cathode MFCs. However the single MnO2 has poor<br \/>\r\nelectric conductivity and low stability. In the present work, the MnO2<br \/>\r\ncatalyst has been modified by doping Pt nanoparticle. The goal of the<br \/>\r\nwork was to improve the performance of the MFC with minimum Pt<br \/>\r\nloading. MnO2 and Pt nanoparticles were prepared by hydrothermal<br \/>\r\nand sol gel methods, respectively. Wet impregnation method was<br \/>\r\nused to synthesize Pt\/MnO2 catalyst. The catalysts were further used<br \/>\r\nas cathode catalysts in air-cathode cubic MFCs, in which anaerobic<br \/>\r\nsludge was inoculated as biocatalysts and palm oil mill effluent<br \/>\r\n(POME) was used as the substrate in the anode chamber. The asprepared<br \/>\r\nPt\/MnO2 was characterized comprehensively through field<br \/>\r\nemission scanning electron microscope (FESEM), X-Ray diffraction<br \/>\r\n(XRD), X-ray photoelectron spectroscopy (XPS), and cyclic<br \/>\r\nvoltammetry (CV) where its surface morphology, crystallinity,<br \/>\r\noxidation state and electrochemical activity were examined,<br \/>\r\nrespectively. XPS revealed Mn (IV) oxidation state and Pt (0)<br \/>\r\nnanoparticle metal, indicating the presence of MnO2 and Pt.<br \/>\r\nMorphology of Pt\/MnO2 observed from FESEM shows that the<br \/>\r\ndoping of Pt did not cause change in needle-like shape of MnO2<br \/>\r\nwhich provides large contacting surface area. The electrochemical<br \/>\r\nactive area of the Pt\/MnO2 catalysts has been increased from 276 to<br \/>\r\n617 m2\/g with the increase in Pt loading from 0.2 to 0.8 wt%. The<br \/>\r\nCV results in O2 saturated neutral Na2SO4 solution showed that<br \/>\r\nMnO2 and Pt\/MnO2 catalysts could catalyze ORR with different<br \/>\r\ncatalytic activities. MFC with Pt\/MnO2 (0.4 wt% Pt) as air cathode<br \/>\r\ncatalyst generates a maximum power density of 165 mW\/m3, which<br \/>\r\nis higher than that of MFC with MnO2 catalyst (95 mW\/m3). The<br \/>\r\nopen circuit voltage (OCV) of the MFC operated with MnO2 cathode<br \/>\r\ngradually decreased during 14 days of operation, whereas the MFC<br \/>\r\nwith Pt\/MnO2 cathode remained almost constant throughout the<br \/>\r\noperation suggesting the higher stability of the Pt\/MnO2 catalyst.<br \/>\r\nTherefore, Pt\/MnO2 with 0.4 wt% Pt successfully demonstrated as an<br \/>\r\nefficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced<br \/>\r\nperformance.<\/p>\r\n","references":"[1] B. E. Logan, Microbial fuel cells, John Wiley & Sons, 2008.\r\n[2] B. E. Logan, B. Hamelers, R. Rozendal, U. Schr\u00f6der, J. Keller, S.\r\nFreguia, P. Aelterman, W. Verstraete, K. Rabaey, \u201cMicrobial fuel cells:\r\nmethodology and technology,\u201d Environmental science & technology,\r\nvol. 40, no. 17, 2006, pp. 5181-5192.\r\n[3] D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, \u201cA review of the\r\nsubstrates used in microbial fuel cells (MFCs) for sustainable energy\r\nproduction,\u201d Bioresource Technology, vol. 101, no. 6, 2010, pp. 1533-\r\n1543.\r\n[4] S. Oh, B. E. Logan, \u201cHydrogen and electricity production from a food\r\nprocessing wastewater using fermentation and microbial fuel cell\r\ntechnologies,\u201d Water Research, vol. 39, no. 19, 2005, pp. 4673-4682.\r\n[5] M. Lu, S. Kharkwal, H. Y. Ng, S. F. Y. Li, \u201cCarbon nanotube supported\r\nMnO2 catalysts for oxygen reduction reaction and their applications in\r\nmicrobial fuel cells,\u201d Biosensors and Bioelectronics, vol. 26, no. 12,\r\n2011, pp. 4728-4732.\r\n[6] X. Wang, Y. Feng, N. Ren, H. Wang, H. Lee, N. Li, Q. Zhao,\r\n\u201cAccelerated start-up of two-chambered microbial fuel cells: effect of\r\nanodic positive poised potential,\u201d Electrochimica Acta, vol. 54, no. 3,\r\n2009, pp. 1109-1114.\r\n[7] Q. Wen, Y. Wu, D. Cao, L. Zhao, Q. Sun, \u201cElectricity generation and\r\nmodeling of microbial fuel cell from continuous beer brewery\r\nwastewater,\u201d Bioresource Technology, vol. 100, no. 18, 2009, pp. 4171-\r\n4175.\r\n[8] T. H. Pham, K. Rabaey, P. Aelterman, P. Clauwaert, L. De\r\nSchamphelaire, N. Boon, W. Verstraete, \u201cMicrobial fuel cells in relation\r\nto conventional anaerobic digestion technology,\u201d Engineering in Life\r\nSciences, vol. 6, no. 3, 2006, pp. 285-292.\r\n[9] D. Pant, A. Adholeya, \u201cBiological approaches for treatment of distillery\r\nwastewater: A review,\u201d Bioresource Technology, vol. 98, no. 12, 2007,\r\npp. 2321-2334.\r\n[10] E. Baranitharan, M. R. Khan, D. M. R. Prasad, J. B. Salihon,\r\n\u201cBioelectricity Generation from Palm Oil Mill Effluent in Microbial\r\nFuel Cell Using Polacrylonitrile Carbon Felt as Electrode,\u201d Water, Air,\r\n& Soil Pollution, vol. 224, no. 5, 2013, pp. 1-11.\r\n[11] R. Bashyam, P. Zelenay, \u201cA class of non-precious metal composite\r\ncatalysts for fuel cells,\u201d Nature, vol. 443, no. 7107, 2006, pp. 63-66.\r\n[12] E. HaoYu, S. Cheng, K. Scott, B. Logan, \u201cMicrobial fuel cell\r\nperformance with non-Pt cathode catalysts,\u201d Journal of power sources,\r\nvol. 171, no. 2, 2007, pp. 275-281.\r\n[13] K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, \u201cPolymer-assisted synthesis of\r\nmanganese dioxide\/carbon nanotube nanocomposite with excellent\r\nelectrocatalytic activity toward reduction of oxygen,\u201d Journal of\r\nPhysical Chemistry C, vol. 111, no. 5, 2007, pp. 1882-1887.\r\n[14] F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, \u201cMnO2-Based\r\nNanostructures as Catalysts for Electrochemical Oxygen Reduction in\r\nAlkaline Media,\u201d Chemistry of Materials, vol. 22, no. 3, 2009, pp. 898-\r\n905.\r\n[15] X. Yu, J. He, D. Wang, Y. Hu, H. Tian, Z. He, \u201cFacile controlled\r\nsynthesis of Pt\/MnO2 nanostructured catalysts and their catalytic\r\nperformance for oxidative decomposition of formaldehyde,\u201d Journal of\r\nPhysical Chemistry C, vol. 116, no. 1, 2011, pp. 851-860.\r\n[16] Y. Chen, C. Liu, F. Li, H.-M. Cheng, \u201cPreparation of single-crystal \u03b1-\r\nMnO2 nanorods and nanoneedles from aqueous solution,\u201d Journal of\r\nAlloys and Compounds, vol. 397, no. 1, 2005, pp. 282-285.\r\n[17] C.-S. Lin, M. R. Khan, S. D. Lin, \u201cThe preparation of Pt nanoparticles\r\nby methanol and citrate,\u201d Journal of Colloid and Interface Science, vol.\r\n299, no. 2, 2006, pp. 678-685.\r\n[18] J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, F. Honggang,\r\n\u201cThe preparation and characterization of nanoparticle TiO2\/Ti films and\r\ntheir photocatalytic activity,\u201d Journal of Physics and Chemistry of\r\nSolids, vol. 64, no. 4, 2003, pp. 615-623.\r\n[19] H. R. Ong, M. R. Khan, M. N. K. Chowdhury, A. Yousuf, C. K. Cheng,\r\n\u201cSynthesis and characterization of CuO\/C catalyst for the esterification\r\nof free fatty acid in rubber seed oil,\u201d Fuel, vol. 120, no. 2014, pp. 195-\r\n201.\r\n[20] Z. Awaludin, M. Suzuki, J. Masud, T. Okajima, T. Ohsaka, \u201cEnhanced\r\nelectrocatalysis of oxygen reduction on Pt\/TaO x\/GC,\u201d Journal of\r\nPhysical Chemistry C, vol. 115, no. 51, 2011, pp. 25557-25567.\r\n[21] D. A. Pawlak, M. Ito, M. Oku, K. Shimamura, T. Fukuda,\r\n\u201cInterpretation of XPS O (1s) in mixed oxides proved on mixed\r\nperovskite crystals,\u201d Journal of Physical Chemistry B, vol. 106, no. 2,\r\n2002, pp. 504-507.\r\n[22] C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, \u201cMnO2\/CNT\r\nsupported Pt and PtRu nanocatalysts for direct methanol fuel cells,\u201d\r\nLangmuir, vol. 25, no. 13, 2009, pp. 7711-7717.\r\n[23] H. Xia, M. Lai, L. Lu, \u201cNanoflaky MnO2\/carbon nanotube\r\nnanocomposites as anode materials for lithium-ion batteries,\u201d Journal of\r\nMaterials Chemistry, vol. 20, no. 33, 2010, pp. 6896-6902.\r\n[24] W.-M. Chen, L. Qie, Q.-G. Shao, L.-X. Yuan, W.-X. Zhang, Y.-H.\r\nHuang, \u201cControllable Synthesis of Hollow Bipyramid \u03b2-MnO2 and Its\r\nHigh Electrochemical Performance for Lithium Storage,\u201d ACS applied\r\nmaterials & interfaces, vol. 4, no. 6, 2012, pp. 3047-3053.\r\n[25] P. Bera, K. R. Priolkar, A. Gayen, P. R. Sarode, M. S. Hegde, S. Emura,\r\nR. Kumashiro, V. Jayaram, G. N. Subbanna, \u201cIonic dispersion of Pt over\r\nCeO2 by the combustion method: Structural investigation by XRD,\r\nTEM, XPS, and EXAFS,\u201d Chemistry of Materials, vol. 15, no. 10, 2003,\r\npp. 2049-2060.\r\n[26] R. Siburian, J. Nakamura, \u201cFormation Process of Pt Subnano-Clusters\r\non Graphene Nanosheets,\u201d Journal of Physical Chemistry C, vol. 116,\r\nno. 43, 2012, pp. 22947-22953.\r\n[27] R. V. Hull, L. Li, Y. Xing, C. C. Chusuei, \u201cPt nanoparticle binding on\r\nfunctionalized multiwalled carbon nanotubes,\u201d Chemistry of Materials,\r\nvol. 18, no. 7, 2006, pp. 1780-1788. [28] E. Antolini, \u201cFormation, microstructural characteristics and stability of\r\ncarbon supported platinum catalysts for low temperature fuel cells,\u201d\r\nJournal of materials science, vol. 38, no. 14, 2003, pp. 2995-3005.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 99, 2015"}