CINXE.COM

Search results for: ABTS

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ABTS</title> <meta name="description" content="Search results for: ABTS"> <meta name="keywords" content="ABTS"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ABTS" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ABTS"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 103</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ABTS</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> In vitro Antioxidant Activity of Derris scandens Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattawit%20Thiapairat">Nattawit Thiapairat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple diseases have been linked to excessive levels of free radicals, which cause tissue or cell damage as a result of oxidative stress. Many plants are sources of high antioxidant activity. Derris scandens has a high amount of phenolic and flavonoid contents which demonstrated good biological activities. This study focused on the antioxidant activity of polyphenols extracted from D. scandens. This study performs total flavonoids content and various antioxidant assays, which were 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The total flavonoid content of D. scandens extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The antioxidant activity of D. scandens extract was also determined by DPPH and ABTS assays. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. The half-maximal inhibitory concentration (IC50) values for D. scandens extract from DPPH and ABTS assays were 41.79 μg/mL ± 0.783 and 29.42 μg/mL ± 0.890, respectively, in the DPPH assay. To conclude, D. scandens extract consists of a high amount of total phenolic content, which exhibits a significant antioxidant activity. However, further investigation regarding antioxidant activity such as SOD, ROS, and RNS scavenging assays and in vivo experiments should be performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Derris%20scandens" title=" Derris scandens"> Derris scandens</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assays" title=" DPPH assays"> DPPH assays</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20flavonoid%20content" title=" total flavonoid content"> total flavonoid content</a> </p> <a href="https://publications.waset.org/abstracts/141175/in-vitro-antioxidant-activity-of-derris-scandens-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Selected Ethnomedicinal Plants of Northern Surigao Del Sur: Their Antioxidant Activities in Terms of Total Phenolics, ABTS Radical Cation Decolorization Power, and Ferric Reducing Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gemma%20A.%20Gruyal">Gemma A. Gruyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants can contain a wide variety of substances with antioxidative properties which are associated to important health benefits. These positive health effects are of great importance at a time when the environment is laden with many toxic substances. Five selected herbal plants namely, Mimosa pudica, Phyllanthus niruri, Ceiba pentandra, Eleusine polydactyla and Trema amboinensis, were chosen for the experiment to investigate their total phenolics content and antioxidant activities using ABTS radical cation decolorization power, and ferric reducing antioxidant power. The total phenolic content of each herbal plants ranges from 0.84 to 42.59 mg gallic acid equivalent/g. The antioxidant activity in the ABTS radical cation decolorization power varies from 0.005 to 0.362 mg trolox equivalent/g and the FRAP ranges from 0.30 to 28.42 mg gallic acid equivalent/g. Among the five medicinal plants, Mimosa pudica has been an excellent performer in terms of the 3 parameters measured; it is followed by Phyllanthus niruri. The five herbal plants do not have equivalent antioxidant power. The relative high values for M. pudica and P. niruri supports the medicinal value of both plants. The total phenolics, ABTS and FRAP correlate strongly with one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS" title="ABTS">ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAP" title=" FRAP"> FRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Leaf%20extracts" title=" Leaf extracts"> Leaf extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/28034/selected-ethnomedicinal-plants-of-northern-surigao-del-sur-their-antioxidant-activities-in-terms-of-total-phenolics-abts-radical-cation-decolorization-power-and-ferric-reducing-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Antioxidant Activity Of Gracilaria Fisheri Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paam%20Bidaya">Paam Bidaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The red seaweed Gracilaria fisheri, widely distributed along Thailand's southern coastlines, has been discovered to be edible. Sulfated polysaccharides from G. fisheri were extracted in low-temperature (25 °C) water. Seaweed polysaccharides (SPs) have been shown to have various advantageous biological effects. This study aims to investigate total phenolic content and antioxidant capacity of G. fisheri extract. The total phenolic content of G. fisheri extract was determined using Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE). The antioxidant activity of G. fisheri extract was performed via 2, 2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, DPPH and ABTS assays showed that G. fisheri extract showed antioxidant activities as a concentration-dependent manner. The IC50 values of G. fisheri extract were 902.19 μg/mL ± 0.785 and 727.98 μg/mL ± 0.822 for DPPH and ABTS, respectively. Vitamin C was used as a positive control in DPPH assay, while Trolox was used as a positive control in ABTS assay. To conclude, G. fisheri extract consists of a high amount of total phenolic content, which exhibit a significant antioxidant activity. However, further investigation regarding antioxidant activity should be performed in order to identify the mechanism of Gracilaria fisheri action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfated%20polysaccharides" title=" sulfated polysaccharides"> sulfated polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/140926/antioxidant-activity-of-gracilaria-fisheri-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Statistical Design of Central Point for Evaluate the Combination of PH and Cinnamon Essential Oil on the Antioxidant Activity Using the ABTS Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Minor-P%C3%A9rez">H. Minor-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mota-Silva"> A. M. Mota-Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ortiz-Barrios"> S. Ortiz-Barrios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substances of vegetable origin with antioxidant capacity have a high potential for application on the conservation of some foods, can prevent or reduce for example oxidation of lipids. However a food is a complex system whose wide variety of components wich can reduce or eliminate this antioxidant capacity. The antioxidant activity can be determined with the ABTS technique. The radical ABTS+ is generated from the acid 2, 2´ - Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This radical is a composite color bluish-green, stable and with a spectrum of absorption into the UV-visible. The addition of antioxidants causes discoloration, value that can be reported as a percentage of inhibition of the cation radical ABTS+. The objective of this study was evaluated the effect of the combination of the pH and the essential oil of cinnamon (EOC) on inhibition of the radical ABTS+, using statistical design of central point (Design Expert) to obtain mathematical models that describe this phenomenon. Were evaluated 17 treatments with combinations of pH 5, 6 and 7 (citrate-phosphate buffer) and the concentration of essential oil of cinnamon (C): 0 µg/mL, 100 µg/mL and 200 µg/mL. The samples were analyzed using the ABTS technique. The reagent was dissolved in methanol 80% to standardized the absorbance to 0.7 +/- 0.1 at 754 nm. Then samples were mixed with reagent standardized ABTS and after 1 min and 7 min absorbance was read for each treatment at 754 nm. Was used a curve pattern with vitamin C and reported the values as inhibition (%) of radical ABTS+. The statistical analysis shows the experimental results were adjusted to a quadratic model, to the times of 1 min and 7 min. This model describes the influence of the factors investigated independently: pH and cinnamon essential oil (µg/mL) and the effect of the interaction between pH*C, as well as the square of the pH2 and C2. The model obtained was Y = 10.33684 - 3.98118*pH + 1.17031*C + 0.62745*pH2 - 3.26675*10-3*C2 - 0.013112*pH*C, where Y is the response variable. The coefficient of determination was 0.9949 for 1 min. The equation was obtained at 7 min and = - 10.89710 + 1.52341*pH + 1.32892*C + 0.47953*pH2 - 3.56605*10- *C2 - 0.034687*pH*C. The coefficient of determination was 0.9970. This means that only 1% of the total variation is not explained by the developed models. At 100 µg/mL of EOC was obtained an inhibition percentage of 80%, 84% and 97% for the pH values of 5,6 and 7 respectively, while a value of 200 µg/mL the inhibition (%) was very similar for the treatments. In these values of pH was obtained an inhibition close 97%. In conclusion the pH does not have a significant effect on the antioxidant capacity, while the concentration of EOC was decisive for the antioxidant capacity. The authors acknowledge the funding provided by the CONACYT for the project 131998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS%20technique" title=" ABTS technique"> ABTS technique</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil%20of%20cinnamon" title=" essential oil of cinnamon"> essential oil of cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title=" mathematical models"> mathematical models</a> </p> <a href="https://publications.waset.org/abstracts/29195/statistical-design-of-central-point-for-evaluate-the-combination-of-ph-and-cinnamon-essential-oil-on-the-antioxidant-activity-using-the-abts-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> In Vitro Study of Antioxidant Capacity of Chrysanthemum Indicum Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puchita%20Chokcharoenying">Puchita Chokcharoenying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Antioxidants are substances found in medicinal plants to help prevent heart disease, stroke, and some cancers. This study focused on evaluating the flavonoids content of Chrysanthemum Indicum and determine their antioxidant capacity by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. indicumextract was determined and expressed as quercetin equivalents (QE)/g measured by an aluminiumchloride colorimetric method. The results showed that the IC50 of C. indicum extract were 83.57μg/mL ± 0.875 and52.57μg/mL ± 0.632for DPPH and ABTS, respectively. C. indicumextract exhibited antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In summary, C. indicum extract is rich in flavonoids, which have potent antioxidant properties. Thus, C. indicum extract is a good source of antioxidants and can be developed for medicinal purposes. Nevertheless, more research on the antioxidant activity of C. indicum extract and in vivo antioxidant studies are still needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=chrysanthemum%20indicum" title=" chrysanthemum indicum"> chrysanthemum indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20flavonoid%20content" title=" total flavonoid content"> total flavonoid content</a> </p> <a href="https://publications.waset.org/abstracts/140860/in-vitro-study-of-antioxidant-capacity-of-chrysanthemum-indicum-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> In vitro Antioxidant Activity of Caesalpinia sappan Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monthon%20Tangjitmungman">Monthon Tangjitmungman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous diseases have been linked to oxidative stress, in which a disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Due to the presence of phenolic compounds in Caesalpinia sappan has been discovered to have antioxidant activity. It has several health benefits, the most important of which is preventing cardiovascular and cancer diseases. This study aimed to determine the phenolic content and antioxidant activity of C. sappan extract using a variety of antioxidant assays. The extract of C. sappan was made using a mixture of solvents (ethyl alcohol: water in ratio 8:2). The total phenolic content of C. sappan extract was determined and expressed as gallic acid equivalents using the Folin-Cioucalteu method (GAE). The antioxidant activity of C. sappan extract was assessed using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ABTS radical scavenging capacity assay. An association was found between antioxidant activity and total phenol content. The antioxidant activity of C. sappan extract was also determined by DPPH and ABTS assays. The IC50 values for C. sappan extract from DPPH and ABTS assays were 54.48 μg/mL ± 0.545 and 25.46 μg/mL ± 0.790, respectively, in the DPPH assay. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. sappan extract contains a high level of total phenolics and exhibits significant antioxidant activity. Nevertheless, more research should be done on the antioxidant activity, such as SOD and ROS scavenging assays and in vivo experiments, to determine whether the compound has antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Caesalpinia%20sappan" title=" Caesalpinia sappan"> Caesalpinia sappan</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assays" title=" DPPH assays"> DPPH assays</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/140865/in-vitro-antioxidant-activity-of-caesalpinia-sappan-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Evaluation Of In Vitro Antioxidant Potential of Camellia Sinensis Leaves Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jirathan%20Pongchababnapa">Jirathan Pongchababnapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Antioxidants are substances found in medicinal plants which may have a protective role to play in certain conditions such as heart disease, stroke and some cancers. By relying on these benefits, we have traced out the presence of antioxidant in Camellia sinensis leaves extract. This study aims to evaluate flavonoids content in C. sinensisextract and investigate antioxidant activities by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. Sinensis extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The results showed that the IC₅₀ of C. Sinensis leaves extract were 40.90 μg/mL ± 0.755 and32.96 μg/mL ± 0.679 for DPPH and ABTS, respectively. C. Sinensis extract at increasing concentration showed antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. Sinensis extract consisted of a high amount of flavonoids content which possesses potent antioxidant activity. However, further investigation on the identification of pure compound of this plant and molecular antioxidant assays are still required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=camellia%20sinensis" title=" camellia sinensis"> camellia sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20flavonoid%20content" title=" total flavonoid content"> total flavonoid content</a> </p> <a href="https://publications.waset.org/abstracts/140929/evaluation-of-in-vitro-antioxidant-potential-of-camellia-sinensis-leaves-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Evaluation of Moroccan Microalgae Spirulina platensis as a Potential Source of Natural Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ould%20Bellahcen">T. Ould Bellahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amiri"> A. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Touam"> I. Touam</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hmimid"> F. Hmimid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Amrani"> A. El Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cherki"> M. Cherki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antioxidant activity of three extracts (water, lipidic and ethanolic) prepared from the microalgae Spirulina platensis isolated from Moroccan lake, using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis ethylbenzthiazoline-6-sulfonic acid (ABTS) radical assay, was studied and compared. The obtained results revealed that the IC₅₀ found using DPPH were lower than that of ABTS for all extracts from these planktonic blue-green algae. The high levels of phenolic and flavonoid content were found in the ethanolic extract 0,33 ± 0,01 mg GAE/g dw and 0,21 ± 0,01 mg quercetin/g dw respectively. In addition, using DPPH, the highest activity with IC₅₀ = 0,449 ± 0,083 mg/ml, was found for the ethanolic extract, followed by that of lipidic extract (IC₅₀ = 0,491 ± 0,059 mg/ml). The lowest activity was for the aqueous extract (IC₅₀ = 4,148 ± 0,132 mg/ml). For ABTS, the highest activity was observed for the lipidic extract with IC₅₀ = 0,740 ± 0,012 mg/ml, while, the aqueous extract recorded the lowest activity (IC₅₀ = 6,914 ± 0, 0067 mg/ml). A moderate activity was showed for the ethanolic extract (IC₅₀ = 5,852 ± 0, 0171 mg/ml). It can be concluded from this first study that Spirulina platensis extracts show an interesting antioxidant and antiradicals properties suggesting that this alga could be used as a potential source of antioxidants. A qualitative and quantitative analysis of polyphenol and flavonoids in the extracts using HPLC is in progress so as to study the correlation between the antioxidant activity and chemical composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spirulina%20platensis" title="Spirulina platensis">Spirulina platensis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS" title=" ABTS"> ABTS</a> </p> <a href="https://publications.waset.org/abstracts/95749/evaluation-of-moroccan-microalgae-spirulina-platensis-as-a-potential-source-of-natural-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Biological Activity of Hibiscus sabdariffa Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanasit%20Chaocharoenphat">Chanasit Chaocharoenphat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hibiscus sabdariffa is a herbal plant that is commonly used for home remedies in Thailand. This study aims to determine the antioxidant activity of polyphenols, as oxidative stress plays a vital role in the development of cancer, and H. sabdariffa was used in this study. The total flavonoids content was determined using the aluminium chloride colourimetric method and expressed as quercetin equivalents (QE)/g and the antioxidant capacity of the flavonoids using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The IC50 values of H. sabdariffa extract were 167.14 μg/mL ± 0.843 and 77.59 μg/mL ± 0.798, respectively. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. To summarise, H. sabdariffa extract contains a high concentration of total flavonoids and exhibits potent antioxidant activity. However, additional antioxidant activity assays such as superoxide dismutase (SOD), reactive oxygen species (ROS), and reactive nitrogen species (RNS) scavenging assays and in vitro antioxidant experiments should be carried out to investigate the molecular mechanism of the compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gracilaria%20fisheri" title=" Gracilaria fisheri"> Gracilaria fisheri</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assays" title=" DPPH assays"> DPPH assays</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20flavonoid%20content" title=" total flavonoid content"> total flavonoid content</a> </p> <a href="https://publications.waset.org/abstracts/140790/biological-activity-of-hibiscus-sabdariffa-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyapa%20Suksuwan">Benyapa Suksuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS%20scavenging" title=" ABTS scavenging"> ABTS scavenging</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20scavenging%20assay" title=" DPPH scavenging assay"> DPPH scavenging assay</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenol%20contents%20assay" title=" total phenol contents assay"> total phenol contents assay</a>, <a href="https://publications.waset.org/abstracts/search?q=Phyllanthus%20Emblica%20L" title=" Phyllanthus Emblica L"> Phyllanthus Emblica L</a> </p> <a href="https://publications.waset.org/abstracts/140823/in-vitro-antioxidant-and-free-radical-scavenging-activity-of-phyllanthus-emblica-l-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Ianova">Juliana Ianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyudmila%20Kabaivanova"> Lyudmila Kabaivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanya%20Toshkova-%20Yotova"> Tanya Toshkova- Yotova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20weight" title=" dry weight"> dry weight</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=CUPRAC" title=" CUPRAC"> CUPRAC</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS" title=" ABTS"> ABTS</a> </p> <a href="https://publications.waset.org/abstracts/152063/estimation-of-the-antioxidant-potential-of-microalgae-with-abts-and-cuprac-assays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Evaluation of Total Phenolic Content and Antioxidant Activity in Amaranth Seeds Grown in Latvia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alla%20Mariseva">Alla Mariseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Beitane"> Ilze Beitane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily intake of products rich in antioxidants that scavenge free radicals in cell membranes is an effective way to combat oxidative stress. Last year there was noticed higher interest towards the identification and utilization of plants rich in antioxidant compounds as they may behave as preventive medicine. Amaranth seeds due to polyphenols, anthocyanins, flavonoids, and tocopherols are characterized by high antioxidant activity. The study aimed to evaluate the total phenolic content and radical scavenging activity of amaranth seeds cultivated in 2020 in two farms in Latvia. One sample of amaranth seeds came from an organic farm, the other – from a conventional farm. The total phenol content of amaranth seed extracts was measured with the Folin-Ciocalte spectrophotometric method. The total phenols were expressed as gallic acid equivalents (GAE) per 100 g dry weight (DW) of the samples. The antioxidant activity of amaranth seed extracts was calculated based on scavenging activities of the stable 2.2-diphenyl-1-picrylhydrazyl (DPPH˙) radical, the radical scavenging capacity (ABTS) was demonstrated as Trolox mM equivalents (TE) per 100 g-1 dry weight. Three parallel measurements were performed on all samples. There were significant differences between organic and conventional amaranth seeds in terms of total phenolic content and antioxidant activity. Organic amaranth seeds showed higher total phenolic content compared to conventional amaranth seeds, 65.4±6.0 mg GAE 100 g⁻¹ DW and 43.4±7.8 mg GAE 100 g⁻¹ DW respectively. Organic amaranth seeds were also characterized by higher DPPH radical scavenging activity (7.9±0.4 mM TE 100 g⁻¹ of dry matter) and ABTS radical scavenging capacity (13.2±1.5 mM TE 100 g⁻¹ of dry matter). The results obtained on total phenolic content and antioxidant activity of amaranth seeds grown in Latvia confirmed that the samples have a high biological value; therefore, it would be necessary to promote their consumption by including them in various food products, including vegan products, increasing their nutritional value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS" title="ABTS">ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=amaranth%20seeds" title=" amaranth seeds"> amaranth seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/137559/evaluation-of-total-phenolic-content-and-antioxidant-activity-in-amaranth-seeds-grown-in-latvia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> The Effect of Addition of White Mulberry Fruits on the Antioxidant Activity of the New Developed Bioactive Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobus-Cisowska%20Joanna">Kobus-Cisowska Joanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaczyk%20Ewa"> Flaczyk Ewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gramza-Michalowska%20Anna"> Gramza-Michalowska Anna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kmiecik%20Dominik"> Kmiecik Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Przeor%20Monika"> Przeor Monika</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcinkowska%20Agata"> Marcinkowska Agata</a>, <a href="https://publications.waset.org/abstracts/search?q=Korczak%20J%C3%B3zef">Korczak Józef </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cereal products, including mainly bread is a staple food known from the beginning of history throughout the world. It is now believed that there is no replacement of the basic food. Bread, due to the high content of starch is the energy source for the proper functioning of our body. It also contains proteins, fats, vitamins, especially of the B group and vitamin E, a number of minerals, and fiber. The aim of the study was to evaluate the antioxidant activity of new developed bread premixes with mulberry fruits for people with anemia, diabetes, obesity and cardiovascular disease. From the finished product-bread, aqueous and methanol extracts was prepared, which in next step were analyzed to assess the activity of the radical DPPH test, ABTS, chelating activity, the ability to reduce metals. Extracts were prepared from bread were acquired with premixes directly after production and stored for three months. The resulting trial breads effect by different mechanisms of antioxidant. They showed the ability to scavenge radicals ABTS and DPPH and chelating activity. Methanol extracts showed significantly greater antioxidant activity in comparison with aqueous extracts, and the largest effect was estimated for sample of bread for anemia, diabetes and cardiovascular disease. The greatest ability to scavenging ABTS radicals showed breads for anemia, diabetes and cardiovascular disease, while smaller for anemia and control sample. It was shown that the methanol extracts of the breads samples showed no ability to chelate iron (II). These properties are observed only in the aqueous extracts. The greatest ability attempt had anemia while the lowest control sample. Financial supported by the UE Project no POIG 01.01.02-00-061/09. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morus%20alba" title="morus alba">morus alba</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols "> polyphenols </a> </p> <a href="https://publications.waset.org/abstracts/11797/the-effect-of-addition-of-white-mulberry-fruits-on-the-antioxidant-activity-of-the-new-developed-bioactive-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Effect of Initial pH and Fermentation Duration on Total Phenolic Content and Antioxidant Activity of Carob Kibble Fermented with Saccharomyces cerevisiae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haelee%20Fenton"> Haelee Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Tra%20Nguyen"> Thi Huong Tra Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a submerged fermentation of carob kibble with Saccharomyces cerevisiae (S. cerevisiae) was performed. The total phenolic content and antioxidant activity in fermented carob kibble were determined by Folin–Ciocalteu method and scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study showed that S. cerevisiae improved total phenolic content by 45 % and 50 % in acetone and water extracts respectively. Similarly, the antioxidant capacity of water extracts increased by 25 % and 41%, while acetone extracts indicated by 70% and 80% in DPPH and ABTS respectively. It is also found that initial pH 7.0 was more effective in improvement of total phenolic content and antioxidant activity. The efficiency of treatment was recorded at 15 h. This report suggested that submerged fermentation with S. cerevisiae is a potential and cost effective manner to further increase bioactive compounds in carob kibble, which are in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54669/effect-of-initial-ph-and-fermentation-duration-on-total-phenolic-content-and-antioxidant-activity-of-carob-kibble-fermented-with-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Stability of Total Phenolic Concentration and Antioxidant Capacity of Extracts from Pomegranate Co-Products Subjected to In vitro Digestion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20Fawole">Olaniyi Fawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Umezuruike%20Opara"> Umezuruike Opara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS˙+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50% ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABST˙+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50% ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS and FRAP assays, with correlation coefficients (r2) ranging between 0.930 – 0.990 whereas, the correlation between polyphenols (TPC and TFC) and radical cation scavenging activity (in ABTS) were moderately positive in duodenal digests. Findings from this study also showed that the concentration of pomegranate polyphenols and antioxidant thereof during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=by-product" title="by-product">by-product</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20addition" title=" value addition"> value addition</a> </p> <a href="https://publications.waset.org/abstracts/53803/stability-of-total-phenolic-concentration-and-antioxidant-capacity-of-extracts-from-pomegranate-co-products-subjected-to-in-vitro-digestion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Modise">Joe Modise</a>, <a href="https://publications.waset.org/abstracts/search?q=Bamidel%20Joseph%20Okoli"> Bamidel Joseph Okoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nas%20Molefe"> Nas Molefe</a>, <a href="https://publications.waset.org/abstracts/search?q=Imelda%20Ledwaba"> Imelda Ledwaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acacia%20decurrens" title="Acacia decurrens">Acacia decurrens</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=ABTS" title=" ABTS"> ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperaccumulation" title=" hyperaccumulation"> hyperaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Menstruum" title=" Menstruum"> Menstruum</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-OES" title=" ICP-OES"> ICP-OES</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%2Fvisible" title=" UV/visible"> UV/visible</a> </p> <a href="https://publications.waset.org/abstracts/69369/profiling-antibacterial-and-antioxidant-activity-of-acacia-decurrens-willd-an-invasive-south-africa-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Effect of Heat Treatment on Nutrients, Bioactive Contents and Biological Activities of Red Beet (Beta Vulgaris L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amessis-Ouchemoukh%20Nadia">Amessis-Ouchemoukh Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhi%20Rim"> Salhi Rim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouchemoukh%20Salim"> Ouchemoukh Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayad%20Rabha"> Ayad Rabha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadou%20Dyhia"> Sadou Dyhia</a>, <a href="https://publications.waset.org/abstracts/search?q=Guenaoui%20Nawel"> Guenaoui Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamouche%20Sara"> Hamouche Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Madani%20Khodir"> Madani Khodir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cooking method is a key factor influencing the quality of vegetables. In this study, the effect of the most common cooking methods on the nutritional composition, phenolic content, pigment content and antioxidant activities (evaluated by DPPH, ABTS, CUPRAC, FRAP, reducing power and phosphomolybdene method) of fresh, steamed, and boiled red beet was investigated. The fresh samples showed the highest nutritional and bioactive composition compared to the cooked ones. The boiling method didn’t lead to a significant reduction (p< 0.05) in the content of phenolics, flavonoids, flavanols and DPPH, ABTS, FRAP, CUPRAC, phosphomolybdeneum and reducing power capacities. This effect was less pronounced when steam cooking was used, and the losses of bioactive compounds were lower. As a result, steam cooking resulted in greater retention of bioactive compounds and antioxidant activity compared to boiling. Overall, this study suggests that steam cooking is a better method in terms of retention of pigments and bioactive compounds and antioxidant activity of beetroot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20vulgaris" title="beta vulgaris">beta vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20methods" title=" cooking methods"> cooking methods</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/185014/effect-of-heat-treatment-on-nutrients-bioactive-contents-and-biological-activities-of-red-beet-beta-vulgaris-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Chemical and Biological Examination of De-Oiled Indian Propolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshada%20Vaidya-Kannur">Harshada Vaidya-Kannur</a>, <a href="https://publications.waset.org/abstracts/search?q=Dattatraya%20Naik"> Dattatraya Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20activity" title="anti-inflammatory activity">anti-inflammatory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-oxidant%20activity" title=" anti-oxidant activity"> anti-oxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20chromatography" title=" column chromatography"> column chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=de-oiled%20propolis" title=" de-oiled propolis"> de-oiled propolis</a> </p> <a href="https://publications.waset.org/abstracts/8467/chemical-and-biological-examination-of-de-oiled-indian-propolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Isolation and Screening of Laccase Producing Basidiomycetes via Submerged Fermentations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mun%20Yee%20Chan">Mun Yee Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin%20Ming%20Goh"> Sin Ming Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Gaik%20Ai%20Ong"> Lisa Gaik Ai Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approximately 10,000 different types of dyes and pigments are being used in various industrial applications yearly, which include the textile and printing industries. However, these dyes are difficult to degrade naturally once they enter the aquatic system. Their high persistency in natural environment poses a potential health hazard to all form of life. Hence, there is a need for alternative dye removal strategy in the environment via bioremediation. In this study, fungi laccase is investigated via commercial agar dyes plates and submerged fermentation to explore the application of fungi laccase in textile dye wastewater treatment. Two locally isolated basidiomycetes were screened for laccase activity using media added with commercial dyes such as 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), guaiacol and Remazol Brillant Blue R (RBBR). Isolate TBB3 (1.70&plusmn;0.06) and EL2 (1.78&plusmn;0.08) gave the highest results for ABTS plates with the appearance of greenish halo on around the isolates. Submerged fermentation performed on Isolate TBB3 with the productivity 3.9067 U/ml/day, whereas the laccase activity for Isolate EL2 was much lower (0.2097 U/ml/day). As isolate TBB3 showed higher laccase production, it was subjected to molecular characterization by DNA isolation, PCR amplification and sequencing of ITS region of nuclear ribosomal DNA. After being compared with other sequences in National Center for Biotechnology Information (NCBI database), isolate TBB3 is probably from species Trametes hirsutei. Further research work can be performed on this isolate by upscale the production of laccase in order to meet the demands of the requirement for higher enzyme titer for the bioremediation of textile dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a> </p> <a href="https://publications.waset.org/abstracts/41736/isolation-and-screening-of-laccase-producing-basidiomycetes-via-submerged-fermentations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Beyegue">Eric Beyegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Azantza"> Boris Azantza</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Laure%20Ngondi"> Judith Laure Ngondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20E.%20Oben"> Julius E. Oben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coula%20edulis" title="Coula edulis">Coula edulis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenging%20activity" title=" scavenging activity"> scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=invertase" title=" invertase"> invertase</a> </p> <a href="https://publications.waset.org/abstracts/65106/free-radical-scavenging-antioxidant-activity-phenolic-alkaloids-contents-and-inhibited-properties-against-a-amylase-and-invertase-enzymes-of-stem-bark-extracts-coula-edulis-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Belkacem">Nassim Belkacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Azzam"> Amina Azzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Haouchine"> Dalila Haouchine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Bennacer"> Kahina Bennacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Soufit"> Samira Soufit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosmarinus%20officinalis%20L." title="Rosmarinus officinalis L.">Rosmarinus officinalis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=maceration" title=" maceration"> maceration</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/22071/antioxidant-activity-of-the-methanolic-extract-and-antimicrobial-activity-of-the-essential-oil-of-rosmarinus-officinalis-l-grown-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Evaluation of the Capabilities of Saccharomyces cerevisiae and Lactobacillus plantarum in Improvement of Total Phenolic Content and Antioxidant Activity in Carob Kibble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carob kibble has recently received attention due to the presence of high level of polyphenol antioxidants. The capacity of microorganisms to improve antioxidant activities and total phenolics in carob kibble was investigated in the study. Two types of microorganisms including lactic acid bacteria Lactobacillus plantarum (L. plantarum) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used in single and in their combination as starters. The total phenolic content was determined by the Folin–Ciocalteu method. Antioxidant activities were assessed scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study found that S. cerevisiae alone considerably improved 55% total phenolics content at 15 h, while L. plantarum caused in a loss of 20% through the process. Antioxidant capacity of the yeast-fermented samples significantly increased by 43 % and 10 % in ABTS and DPPH assays, respectively. However, reduction of 13 % and 32 % inhibition were recorded in the carob treated with L. plantarum. In the combination of S. cerevisiae and L. plantarum (1:1), both total phenolic content and antioxidant activity of carob kibble were a similar trend as these of S. cerevisiae single, but a lower improvement. The antioxidant power of the extracts was linearly correlated to their total phenolic contents (R=0.75). The results suggested that S. cerevisiae alone was the better for enhancement of both total phenolic content and antioxidant activity in carob kibble using submerged fermentation. The efficiency of fermentation reached the highest at 15h. Thus submerged fermentation with S. cerevisiae offers a tool with simple and cost effective to further increase the bioactive potential of carob kibble, which is in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54352/evaluation-of-the-capabilities-of-saccharomyces-cerevisiae-and-lactobacillus-plantarum-in-improvement-of-total-phenolic-content-and-antioxidant-activity-in-carob-kibble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Oikonomou">I. Oikonomou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Lappa"> I. Lappa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Daferera"> D. Daferera</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kanakis"> C. Kanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kiokakis"> L. Kiokakis</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skordilis"> K. Skordilis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Avramouli"> A. Avramouli</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kalli"> E. Kalli</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pappas"> C. Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Tarantilis"> P. A. Tarantilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Skotti"> E. Skotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2&#39;-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and &Delta;&Kappa; indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20methyl%20esters" title=" fatty acid methyl esters"> fatty acid methyl esters</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20seed%20oil" title=" grape seed oil"> grape seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/96975/quality-evaluation-of-grape-seed-oils-of-the-ionian-islands-based-on-gc-ms-and-other-spectroscopic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Abdullah%20Alatawi">Fuad Abdullah Alatawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ficus%20microcarpa" title="ficus microcarpa">ficus microcarpa</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/151783/ficus-microcarpa-fruit-derived-iron-oxide-nanomaterials-and-its-anti-bacterial-antioxidant-and-anticancer-efficacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Hypotensive, Free Radical Scavenging and Anti-Lipid Peroxidation Activities of Crataegus azarolus L. Leaves Extracts Growing in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Bouaziz">Amel Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Seddik%20Khennouf"> Seddik Khennouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mussa%20Abu%20Zarga"> Mussa Abu Zarga</a>, <a href="https://publications.waset.org/abstracts/search?q=Shtayway%20Abdalla"> Shtayway Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Saliha%20Djidel"> Saliha Djidel</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Bentahar"> Assia Bentahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saliha%20Dahamna"> Saliha Dahamna</a>, <a href="https://publications.waset.org/abstracts/search?q=Smain%20Amira"> Smain Amira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to evaluate the hypotensive and the in vitro antioxidant activities of Crataegus azarolus L. (Rosaceae), a plant widely used as natural remedy for hypertension in folk medicine. The antioxidant potential of methanolic extract (ME)and its three fractions of Chloroform (CHE), ethyl acetate (EAE)and water (AqE) have been investigated using several assays, including the DPPH scavenging, ABTS scavenging, hydroxyl radical scavenging. Inhibition of lipid peroxidation was performed by the β-carotene bleaching assay, ferric thiocyanate method and thiobarburic acid method. Total phenolic and total flavonoid contents of the extracts were estimated using Folin-Chiocalteu reagent and AlCl3, respectively. EAE extract showed the highest polyphenolic and flavonoids contents (396,04±1.20 mg GAE/g of dry extract and 32,73 ± 0.03mg QE/g of dry extract) respectively. Similarly, this extract possessed the highest scavenging activity for DPPH radical (IC 50 = 0,006±0,0001mg /ml), ABTS radical (IC50=0.0035±0,0007 mg/ml) and hydroxyl radical(IC 50=0,283± 0.01 mg/ml). In addition, the EAE exhibited the highest antioxidant activity in the inhibition of linoleic acid/ß-carotene coupled oxidation (89,21%), lipid peroxidation in the ferric thiocyanate(FTC) method (90.13%), and thio-barbituric acid (TBA) method (74.23%). Intravenous administration of Me and EAE decreased mean arterial blood pressure, systolic and diastolic blood pressure in anesthetized rats dose-dependently, at the dose range of 0.4 to 12 mg/kg. The mean arterial blood pressure dropped by 27.58 and 39.37% for ME and EAE, respectively. In conclusion, The present study supported the significant potential to use C. azarolus by-products as a source of natural antioxidants and provides scientific justification for its traditional uses as cardio-protective and anti-hypertensive remedy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Crataegus%20azarolus" title="Crataegus azarolus">Crataegus azarolus</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidation" title=" peroxidation"> peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/10557/hypotensive-free-radical-scavenging-and-anti-lipid-peroxidation-activities-of-crataegus-azarolus-l-leaves-extracts-growing-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Determination of Phenolic Contents and Antioxidant Activities of Chenopodium quinoa Willd. Seed Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20%C3%96zt%C3%BCrk">Nilgün Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Sabahtin%20Ali"> Hakan Sabahtin Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BClya%20Tuba%20K%C4%B1yan"> Hülya Tuba Kıyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genus Chenopodium belongs to Amaranthaceae, is represented by approximately 250 species in the world and 15 species and three subspecies in Turkey. Chenopodium species are traditionally used to treat chest and abdominal pain, shortness of breath, cough and neurological disorders. Chenopodium quinoa Willd. (Quinoa) is native to Andes region of South America (especially Peru and Bolivia) and cultivated in many countries include also Turkey in the world nowadays. The seeds of quinoa are rich in protein, and the phytochemical composition consists of antioxidant substances such as polyphenolic compounds, flavonoids, vitamins, and minerals; anticancer and neuroprotective compounds such as tocotrienols; anti-inflammatory compounds such as carotenoids and anthocyanins and also saponins and starch. Food products of quinoa such as quinoa cereal bar, pasta and cornflakes are used in the diet made during many disorders like obesity, cardiovascular disorder, hypertension and Celiac disease. Also quinoa seems to have antimicrobial, anti-inflammatory and cholesterol-lowering properties because of its bioactive compounds. In this present study, the aqueous ethanolic extracts of the seeds of three different coloured genotypes of quinoa were investigated for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferrous ion-chelating effect, ferric-reducing antioxidant power, ABTS radical cation decolorization assays and total phenolic contents using Folin-Ciocalteu assay. Among the three genotypes of quinoa; the aqueous ethanolic extract of the red genotype had the highest total phenolic content (83.54 ± 2.12 mg gallic acid/100 g extract) whereas the extract of the white genotype had the lowest total phenolic content (70.66 ± 0.25 mg gallic acid/100 g). According to the antioxidant activity results; the extracts showed moderate reducing power effect whereas weak ABTS radical cation decolorization and ferrous ion-chelating effect and also too weak DPPH radical scavenging activity when compared to the positive standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amaranthaceae" title="amaranthaceae">amaranthaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenopodium%20quinoa%20willd." title=" Chenopodium quinoa willd."> Chenopodium quinoa willd.</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/81657/determination-of-phenolic-contents-and-antioxidant-activities-of-chenopodium-quinoa-willd-seed-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Caffeic Acid in Cosmetic Formulations: An Innovative Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20M.%20Spagnol">Caroline M. Spagnol</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20L.%20B.%20Isaac"> Vera L. B. Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20A.%20Corr%C3%AAa"> Marcos A. Corrêa</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9rida%20R.%20N.%20Salgado"> Hérida R. N. Salgado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds are abundant in the Brazilian plant kingdom and they are part of a large and complex group of organic substances. Cinnamic acids are part of this group of organic compounds, and caffeic acid (CA) is one of its representatives. Antioxidants are compounds which act as free radical scavengers and, in other cases, such as metal chelators, both in the initiation stage and the propagation of oxidative process. The tyrosinase, polyphenol oxidase, is an enzyme that acts at various stages of melanin biosynthesis within the melanocytes and is considered a key molecule in this process. Some phenolic compounds exhibit inhibitory effects on melanogenesis by inhibiting the tyrosinase enzymatic activity and therefore has been the subject of studies. However, few studies have reported the effectiveness of these products and their safety. Objectives: To assess the inhibitory activity of tyrosinase, the antioxidant activity of CA and its cytotoxic potential. The method to evaluate the inhibitory activity of tyrosinase aims to assess the reduction transformation of L-dopa into dopaquinone reactions catalyzed by the enzyme. For evaluating the antioxidant activity was used the analytical methodology of DPPH radical inhibition. The cytotoxicity evaluation was carried out using the MTT method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), a colorimetric assay which determines the amount of insoluble violet crystals formed by the reduction of MTT in the mitochondria of living cells. Based on the results obtained during the study, CA has low activity as a depigmenting agent. However, it is a more potent antioxidant than ascorbic acid (AA), since a lower amount of CA is sufficient to inhibit 50% of DPPH radical. The results are promising since CA concentration that promoted 50% toxicity in HepG2 cells (IC50=781.8 μg/mL) is approximately 330 to 400 times greater than the concentration required to inhibit 50% of DPPH (IC50 DPPH= 2.39 μg/mL) and ABTS (IC50 ABTS= 1.96 μg/mL) radicals scavenging activity, respectively. The maximum concentration of caffeic acid tested (1140 mg /mL) did not reach 50% of cell death in HaCat cells. Thus, it was concluded that the caffeic acid does not cause toxicity in HepG2 and HaCat cells in the concentrations required to promote antioxidant activity in vitro, and it can be applied in topical products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid" title="caffeic acid">caffeic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmetic" title=" cosmetic"> cosmetic</a> </p> <a href="https://publications.waset.org/abstracts/39118/caffeic-acid-in-cosmetic-formulations-an-innovative-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Antioxidant and Anti-Lipid Peroxidation Activities of Some Thai Medicinal Plants Traditionally Used for the Treatment of Benign Prostatic Hyperplasia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wararut%20Buncharoen">Wararut Buncharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanokporn%20Saenphet"> Kanokporn Saenphet</a>, <a href="https://publications.waset.org/abstracts/search?q=Supap%20Saenphet"> Supap Saenphet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benign prostatic hyperplasia (BPH) is a reproductive problem, affecting elderly men worldwide. Several factors particularly free radical reaction and oxidative damage have been contributed to be key factors leading to the development of BPH. A number of medicinal plants with high antioxidant properties are extensively constituted in Thai herbal pharmacopoeia for treating BPH. These plants may prevent or delay the progression of BPH through an antioxidant mechanism. Thus, this study was to prove the antioxidant and anti-lipid peroxidation potential of medicinal plants traditionally used for the treatment of BPH such as Artabotrys harmandii Finet & Gagnep. Miq., Uvaria rufa Blume, Anomianthus dulcis (Dunal) J. Sinclair and Caesalpinia sappan Linn. Antioxidant parameters including free radical (2, 2-azino-bis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS•+), 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) and superoxide) scavenging, ferric reducing power and anti-lipid peroxidation activity were determined in different crude extracts from the stem of these four plants. Total phenolic and ascorbic contents were also investigated. The highest total phenolic content was shown in ethyl acetate crude extract of A. dulcis (510 ± 26.927 µg GAE/g extract) while the highest ascorbic content was found in ethanolic extract of U. rufa (234.727 ± 30.356 µg AAE/g extract). The strongest scavenging activity of ABTS•+ and DPPH• was found in ethyl acetate extract of C. sappan with the IC50 values of 0.469 and 0.255 mg/ml, respectively. The petroleum ether extracts of C. sappan and U. rufa at concentration of 1 mg/ml exhibited high scavenging activity toward superoxide radicals with the inhibition of 37.264 ± 8.672 and 34.434 ± 6.377 %, respectively. Ethyl acetate crude extract of C. sappan displayed the greatest reducing power. The IC50 value of water extract of A. dulcis was 1.326 mg/ml which indicated the strongest activity in the inhibition of lipid-peroxidation among all plant extracts whereas the IC50 value of the standard, butyl hydroxyl toluene was 1.472 µg/ml. Regarding all the obtained results, it can be concluded that the stem of A. dulcis, U. rufa and C. sappan are the potential natural antioxidants and could have an importance as therapeutic agents in the preventing free radicals and oxidative damage related diseases including BPH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-lipid%20peroxidation" title="anti-lipid peroxidation">anti-lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=benign%20prostatic%20hyperplasia" title=" benign prostatic hyperplasia"> benign prostatic hyperplasia</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20medicinal%20plants" title=" Thai medicinal plants"> Thai medicinal plants</a> </p> <a href="https://publications.waset.org/abstracts/16992/antioxidant-and-anti-lipid-peroxidation-activities-of-some-thai-medicinal-plants-traditionally-used-for-the-treatment-of-benign-prostatic-hyperplasia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Comparative Analysis of the Antioxidant Capacities of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Im%20Chung">Soo Im Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Marie%20Pangan%20Lo"> Lara Marie Pangan Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Cheng%20Zhang"> Yao Cheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Jin%20Nam"> Su Jin Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyue%20Jin"> Xingyue Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Young%20Kang"> Mi Young Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice (Oryza sativa L.) is one of the most widely consumed grains. Due to the growing number of demand as a potential functional food and nutraceutical source and the increasing awareness of people towards healthy diet and good quality of living, more researches dwell upon the development of new rice cultivars for population consumption. However, studies on the antioxidant capacities of newly developed rice were limited as well as the effects of germination in these rice cultivars. Therefore, this study aimed to focus on analysis of the antioxidant potential of pre-germinated and germinated pigmented rice cultivars in South Korea such as purple cultivar Superjami (SJ) and red cultivar Super hongmi (SH) in comparison with the non-pigmented Normal Brown (NB) Rice. The powdered rice grain samples were extracted with 80% methanol and their antioxidant activities were determined. The Results showed that pre-germinated pigmented rice cultivars have higher Fe2+ Chelating Ability (Fe2+), Reducing Power (RP), 2,2´-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) radical scavenging and Superoxide Dismutase activity than the control NB rice. Moreover, it is revealed that germination process induced a significant increased in the antioxidant activities of all the rice samples regardless of their strains. Purple rice SJ showed greater Fe2+ (88.82 + 0.53%), RP (0.82 + 0.01) , ABTS (143.63 + 2.38 mg VCEAC/100 g) and SOD (59.31 + 0.48%) activities than the red grain SH and the control NB having the lowest antioxidant potential among the three (3) rice samples examined. The Effective concentration at 50% (EC50) of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and Hydroxyradical (-OH) Scavenging activity for the rice samples were also obtained. SJ showed lower EC50 in terms of its DPPH (3.81 + 0.15 mg/mL) and –OH (5.19 + 0.08 mg/mL) radical scavenging activities than the red grain SH and control NB rice indicating that at lower concentrations, it can readily exhibit antioxidant effects against reactive oxygen species (ROS). These results clearly suggest the higher antioxidant potential of pigmented rice varieties as compared with the widely consumed NB rice. Also, it is revealed in the study that even at lower concentrations, pigmented rice varieties can exhibit their antioxidant activities. Germination process further enhanced the antioxidant capacities of the rice samples regardless of their types. With these results at hand, these new rice varieties can be further developed as a good source of bio functional elements that can help alleviate the growing number of cases of metabolic disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20rice" title=" germinated rice"> germinated rice</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmented%20rice" title=" pigmented rice"> pigmented rice</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20hongmi" title=" super hongmi"> super hongmi</a>, <a href="https://publications.waset.org/abstracts/search?q=superjami" title=" superjami"> superjami</a> </p> <a href="https://publications.waset.org/abstracts/31157/comparative-analysis-of-the-antioxidant-capacities-of-pre-germinated-and-germinated-pigmented-rice-oryza-sativa-l-cv-superjami-and-superhongmi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziani%20Borhane%20Eddine%20Cherif">Ziani Borhane Eddine Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazzi%20Mohamed"> Hazzi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20Fazia"> Mouhouche Fazia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=no-volatils%20extracts" title=" no-volatils extracts"> no-volatils extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20molecules" title=" bioactive molecules"> bioactive molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20activity" title=" antibiotic activity"> antibiotic activity</a> </p> <a href="https://publications.waset.org/abstracts/11363/phytochemical-composition-and-biological-activities-of-the-vegetal-extracts-of-six-aromatic-and-medicinal-plants-of-algerian-flora-and-their-uses-in-food-and-pharmaceutical-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ABTS&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ABTS&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ABTS&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ABTS&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10