CINXE.COM

Search results for: nMPRA processor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nMPRA processor</title> <meta name="description" content="Search results for: nMPRA processor"> <meta name="keywords" content="nMPRA processor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nMPRA processor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nMPRA processor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 120</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nMPRA processor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionel%20Zagan">Ionel Zagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Gheorghita%20Gaitan"> Vasile Gheorghita Gaitan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nMPRA%20architecture" title="nMPRA architecture">nMPRA architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20processor" title=" pipeline processor"> pipeline processor</a>, <a href="https://publications.waset.org/abstracts/search?q=preemptive%20scheduling" title=" preemptive scheduling"> preemptive scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20system" title=" real-time system"> real-time system</a> </p> <a href="https://publications.waset.org/abstracts/57899/improving-the-performances-of-the-nmpra-architecture-by-implementing-specific-functions-in-hardware" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionel%20Zagan">Ionel Zagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Gheorghita%20Gaitan"> Vasile Gheorghita Gaitan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardware%20scheduler" title="hardware scheduler">hardware scheduler</a>, <a href="https://publications.waset.org/abstracts/search?q=nMPRA%20processor" title=" nMPRA processor"> nMPRA processor</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20systems" title=" real-time systems"> real-time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20methods" title=" scheduling methods"> scheduling methods</a> </p> <a href="https://publications.waset.org/abstracts/58047/cpu-architecture-based-on-static-hardware-scheduler-engine-and-multiple-pipeline-registers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Implementation of a Baseline RISC for the Realization of a Dynamically Reconfigurable Processor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hajer%20Najjar">Hajer Najjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Riad%20Bourguiba"> Riad Bourguiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaouhar%20Mouine"> Jaouhar Mouine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced instruction set computer (RISC) processors are widely used because of their multiple advantages. In fact, they are based on a simple instruction set so that they increase the speed of the processor and reduce its energy consumption. In this paper, we will present a basic RISC architecture processor that will be developed later to converge to a new architecture with runtime reconfiguration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processor" title="processor">processor</a>, <a href="https://publications.waset.org/abstracts/search?q=RISC" title=" RISC"> RISC</a>, <a href="https://publications.waset.org/abstracts/search?q=DLX" title=" DLX"> DLX</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=runtime%20reconfiguration" title=" runtime reconfiguration"> runtime reconfiguration</a> </p> <a href="https://publications.waset.org/abstracts/16176/implementation-of-a-baseline-risc-for-the-realization-of-a-dynamically-reconfigurable-processor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Area-Efficient FPGA Implementation of an FFT Processor by Reusing Butterfly Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atin%20Mukherjee">Atin Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitabha%20Sinha"> Amitabha Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Debesh%20Choudhury"> Debesh Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast Fourier transform (FFT) of large-number of samples requires larger hardware resources of field programmable gate arrays and it asks for more area as well as power. In this paper, an area efficient architecture of FFT processor is proposed, that reuses the butterfly units more than once. The FFT processor is emulated and the results are validated on Virtex-6 FPGA. The proposed architecture outperforms the conventional architecture of a N-point FFT processor in terms of area which is reduced by a factor of log_N(2) with the negligible increase of processing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FFT" title="FFT">FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20optimization" title=" resource optimization"> resource optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=butterfly%20units" title=" butterfly units"> butterfly units</a> </p> <a href="https://publications.waset.org/abstracts/17094/area-efficient-fpga-implementation-of-an-fft-processor-by-reusing-butterfly-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Rostami-Sani">Sajjad Rostami-Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinataj"> Mojtaba Valinataj</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir-Hossein%20Khojir-Angasi"> Amir-Hossein Khojir-Angasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache&rsquo;s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache&rsquo;s performance and energy consumption has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20policy" title=" replacement policy"> replacement policy</a>, <a href="https://publications.waset.org/abstracts/search?q=instruction%20set%20architecture" title=" instruction set architecture"> instruction set architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore%20processor" title=" multicore processor"> multicore processor</a> </p> <a href="https://publications.waset.org/abstracts/122029/evaluating-the-impact-of-replacement-policies-on-the-cache-performance-and-energy-consumption-in-different-multicore-embedded-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> The Fluid Limit of the Critical Processor Sharing Tandem Queue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Ezzidani">Amal Ezzidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Ben%20Tahar"> Abdelghani Ben Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanini"> Mohamed Hanini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20limit" title="fluid limit">fluid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20model" title=" fluid model"> fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=measure%20valued%20process" title=" measure valued process"> measure valued process</a>, <a href="https://publications.waset.org/abstracts/search?q=processor%20sharing" title=" processor sharing"> processor sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20queue" title=" tandem queue"> tandem queue</a> </p> <a href="https://publications.waset.org/abstracts/130452/the-fluid-limit-of-the-critical-processor-sharing-tandem-queue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> A Survey of Baseband Architecture for Software Defined Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Fodha">M. A. Fodha</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benfradj"> H. Benfradj</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghazel"> A. Ghazel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a survey of recent works that proposes a baseband processor architecture for software defined radio. A classification of different approaches is proposed. The performance of each architecture is also discussed in order to clarify the suitable approaches that meet software-defined radio constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-core%20architectures" title="multi-core architectures">multi-core architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20architectures" title=" reconfigurable architectures"> reconfigurable architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20radio" title=" software defined radio"> software defined radio</a>, <a href="https://publications.waset.org/abstracts/search?q=baseband%20processor" title=" baseband processor"> baseband processor</a> </p> <a href="https://publications.waset.org/abstracts/18695/a-survey-of-baseband-architecture-for-software-defined-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Kai">Hong Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Jun%20Jie"> Zhong Jun Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Lin%20Qi"> Chen Lin Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Chen%20Guang"> Wang Chen Guang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-aware" title="load-aware">load-aware</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithm" title=" scheduling algorithm"> scheduling algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20queue" title=" perceptual queue"> perceptual queue</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20multi-core" title=" heterogeneous multi-core"> heterogeneous multi-core</a> </p> <a href="https://publications.waset.org/abstracts/162110/scheduling-algorithm-based-on-load-aware-queue-partitioning-in-heterogeneous-multi-core-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toshitaka%20Higashino">Toshitaka Higashino</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Wakamiya"> Naoki Wakamiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan&#39;s own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20activity" title="brain activity">brain activity</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20processing%20model" title=" information processing model"> information processing model</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20human%20processor" title=" model human processor"> model human processor</a> </p> <a href="https://publications.waset.org/abstracts/132139/verification-and-proposal-of-information-processing-model-using-eeg-based-brain-activity-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> The Effectiveness and Accuracy of the Schulte Holt IOL Toric Calculator Processor in Comparison to Manually Input Data into the Barrett Toric IOL Calculator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabrielle%20Holt">Gabrielle Holt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is looking to prove the efficacy of the Schulte Holt IOL Toric Calculator Processor (Schulte Holt ITCP). It has been completed using manually inputted data into the Barrett Toric Calculator and comparing the number of minutes taken to complete the Toric calculations, the number of errors identified during completion, and distractions during completion. It will then compare that data to the number of minutes taken for the Schulte Holt ITCP to complete also, using the Barrett method, as well as the number of errors identified in the Schulte Holt ITCP. The data clearly demonstrate a momentous advantage to the Schulte Holt ITCP and notably reduces time spent doing Toric Calculations, as well as reducing the number of errors. With the ever-growing number of cataract surgeries taking place around the world and the waitlists increasing -the Schulte Holt IOL Toric Calculator Processor may well demonstrate a way forward to increase the availability of ophthalmologists and ophthalmic staff while maintaining patient safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toric" title="Toric">Toric</a>, <a href="https://publications.waset.org/abstracts/search?q=toric%20lenses" title=" toric lenses"> toric lenses</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmology" title=" ophthalmology"> ophthalmology</a>, <a href="https://publications.waset.org/abstracts/search?q=cataract%20surgery" title=" cataract surgery"> cataract surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=toric%20calculations" title=" toric calculations"> toric calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=Barrett" title=" Barrett"> Barrett</a> </p> <a href="https://publications.waset.org/abstracts/166963/the-effectiveness-and-accuracy-of-the-schulte-holt-iol-toric-calculator-processor-in-comparison-to-manually-input-data-into-the-barrett-toric-iol-calculator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> A Multi Cordic Architecture on FPGA Platform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Madian">Ahmed Madian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muaz%20Aljarhi"> Muaz Aljarhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi" title="multi">multi</a>, <a href="https://publications.waset.org/abstracts/search?q=CORDIC" title=" CORDIC"> CORDIC</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=processor" title=" processor"> processor</a> </p> <a href="https://publications.waset.org/abstracts/2193/a-multi-cordic-architecture-on-fpga-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Three-Stage Mining Metals Supply Chain Coordination and Product Quality Improvement with Revenue Sharing Contract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Homaei">Hamed Homaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraj%20Mahdavi"> Iraj Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tajdin"> Ali Tajdin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main concerns of miners is to increase the quality level of their products because the mining metals price depends on their quality level; however, increasing the quality level of these products has different costs at different levels of the supply chain. These costs usually increase after extractor level. This paper studies the coordination issue of a decentralized three-level supply chain with one supplier (extractor), one mineral processor and one manufacturer in which the increasing product quality level cost at the processor level is higher than the supplier and at the level of the manufacturer is more than the processor. We identify the optimal product quality level for each supply chain member by designing a revenue sharing contract. Finally, numerical examples show that the designed contract not only increases the final product quality level but also provides a win-win condition for all supply chain members and increases the whole supply chain profit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-stage%20supply%20chain" title="three-stage supply chain">three-stage supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20quality%20improvement" title=" product quality improvement"> product quality improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20coordination" title=" channel coordination"> channel coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=revenue%20sharing" title=" revenue sharing"> revenue sharing</a> </p> <a href="https://publications.waset.org/abstracts/77005/three-stage-mining-metals-supply-chain-coordination-and-product-quality-improvement-with-revenue-sharing-contract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hwan%20Su%20Jung">Hwan Su Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahn%20Jun%20Gil"> Ahn Jun Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deadline" title="deadline">deadline</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20voltage%20frequency%20scaling" title=" dynamic voltage frequency scaling"> dynamic voltage frequency scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20state%20transition" title=" power state transition"> power state transition</a> </p> <a href="https://publications.waset.org/abstracts/41356/a-case-study-of-limited-dynamic-voltage-frequency-scaling-in-low-power-processors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshiaki%20Shikata">Yoshiaki Shikata</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobutane%20Hanayama"> Nobutane Hanayama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processor%20sharing" title="processor sharing">processor sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-server" title=" multi-server"> multi-server</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20capacity" title=" various capacity"> various capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=N-priority%20classes" title=" N-priority classes"> N-priority classes</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20strategy" title=" routing strategy"> routing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20probability" title=" loss probability"> loss probability</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20sojourn%20time" title=" mean sojourn time"> mean sojourn time</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20waiting%20time" title=" mean waiting time"> mean waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/45569/performance-evaluation-of-a-prioritized-limited-multi-server-processor-sharing-system-that-includes-servers-with-various-capacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshiaki%20Shikata">Yoshiaki Shikata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prioritized%20processor%20sharing" title="prioritized processor sharing">prioritized processor sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20ratio" title=" priority ratio"> priority ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=permissible%20sojourn%20time" title=" permissible sojourn time"> permissible sojourn time</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20probability" title=" loss probability"> loss probability</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20sojourn%20time" title=" mean sojourn time"> mean sojourn time</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/82460/prioritized-processor-sharing-with-a-maximum-permissible-sojourn-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> The Ideal Memory Substitute for Computer Memory Hierarchy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20A.%20Olaniyi">Kayode A. Olaniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olabanji%20F.%20Omotoye"> Olabanji F. Omotoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20A.%20Ogunleye"> Adeola A. Ogunleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cache" title="cache">cache</a>, <a href="https://publications.waset.org/abstracts/search?q=memory-hierarchy" title=" memory-hierarchy"> memory-hierarchy</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=registers" title=" registers"> registers</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/103396/the-ideal-memory-substitute-for-computer-memory-hierarchy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung-Jung%20Lee">Kyung-Jung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sik%20Ahn"> Hyun-Sik Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper suggests a design methodology for the hardware and software of the Electronic Control Unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such that it incorporates a high performance 32-bit CPU and a separate Peripheral Control-Processor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the Hardware-in-the-Loop Simulation (HILS) for Electric Power Steering (EPS) systems which consists of the EPS mechanism, the designed ECU, and monitoring tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20control%20unit" title="electronic control unit">electronic control unit</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20steering" title=" electric power steering"> electric power steering</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20safety" title=" functional safety"> functional safety</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware-in-the-loop%20simulation" title=" hardware-in-the-loop simulation"> hardware-in-the-loop simulation</a> </p> <a href="https://publications.waset.org/abstracts/8013/on-the-design-of-electronic-control-unitsfor-the-safety-critical-vehicle-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Microfluidization for Processing of Carbonized Chicken Feather Fiber (CCFF) Modified Epoxy Suspensions and the Thermal Properties of the Resulting Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Tuna">A. Tuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Okumu%C5%9F"> Y. Okumuş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Seyhan"> A. T. Seyhan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%87elebi"> H. Çelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microfluidization was considered a promising approach to breaking up of carbonized chicken feather fibers (CCFFs) flocs to synthesizing epoxy suspensions containing (1 wt. %) CCFFs. For comparison, CCFF was also treated using sonication. The energy consumed to break up CCFFs in the ethanol was the same for both processes. CCFFs were found to be dispersed in ethanol in a significantly shorter time with the high shear processor. The CCFFs treated by both sonication and microfluidization were dispersed in epoxy by sonication. SEM examination revealed that CCFFs were broken up into smaller pieces using the high shear processor while being not agglomerated. Further, DSC, TMA, and DMA were systematically used to measure thermal properties of the resulting composites. A significant improvement was observed in the composites including CCFFs treated with microfluidization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonized%20chicken%20feather%20fiber%20%28CCFF%29" title="carbonized chicken feather fiber (CCFF)">carbonized chicken feather fiber (CCFF)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulated%20differential%20scanning%20calorimetry%20%28MDSC%29" title=" modulated differential scanning calorimetry (MDSC)"> modulated differential scanning calorimetry (MDSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulated%20thermomechanical%20analysis%20%28MTMA%29" title=" modulated thermomechanical analysis (MTMA)"> modulated thermomechanical analysis (MTMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties "> thermal properties </a> </p> <a href="https://publications.waset.org/abstracts/9677/microfluidization-for-processing-of-carbonized-chicken-feather-fiber-ccff-modified-epoxy-suspensions-and-the-thermal-properties-of-the-resulting-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ben%20Rhouma">Asma Ben Rhouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hamouda"> Mahmoud Hamouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delta%20inverter" title="delta inverter">delta inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=SPWM" title=" SPWM"> SPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=DSP%20implementation" title=" DSP implementation"> DSP implementation</a> </p> <a href="https://publications.waset.org/abstracts/131128/digital-signal-processor-implementation-of-a-novel-sinusoidal-pulse-width-modulation-algorithm-algorithm-for-a-reduced-delta-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Frequent Itemset Mining Using Rough-Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Qamar">Usman Qamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Younus%20Javed"> Younus Javed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough-sets" title="rough-sets">rough-sets</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=outliers" title=" outliers"> outliers</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20itemset%20mining" title=" frequent itemset mining"> frequent itemset mining</a> </p> <a href="https://publications.waset.org/abstracts/14372/frequent-itemset-mining-using-rough-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Saadati">Sina Saadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title="task scheduling">task scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSOC" title=" MOSOC"> MOSOC</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture%20of%20computers" title=" architecture of computers"> architecture of computers</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/162971/an-intelligent-thermal-aware-task-scheduler-in-multiprocessor-system-on-a-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Mobile Wireless Investigation Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Karastoyanov">Dimitar Karastoyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Todor%20Penchev"> Todor Penchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the research of a kind of autonomous mobile robots, intended for work and adaptive perception in unknown and unstructured environment. The objective are robots, dedicated for multi-sensory environment perception and exploration, like measurements and samples taking, discovering and putting a mark on the objects as well as environment interactions–transportation, carrying in and out of equipment and objects. At that ground classification of the different types mobile robots in accordance with the way of locomotion (wheel- or chain-driven, walking, etc.), used drive mechanisms, kind of sensors, end effectors, area of application, etc. is made. Modular system for the mechanical construction of the mobile robots is proposed. Special PLC on the base of AtMega128 processor for robot control is developed. Electronic modules for the wireless communication on the base of Jennic processor as well as the specific software are developed. The methods, means and algorithms for adaptive environment behaviour and tasks realization are examined. The methods of group control of mobile robots and for suspicious objects detecting and handling are discussed too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title="mobile robots">mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20investigations" title=" environment investigations"> environment investigations</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20control" title=" group control"> group control</a>, <a href="https://publications.waset.org/abstracts/search?q=suspicious%20objects" title=" suspicious objects"> suspicious objects</a> </p> <a href="https://publications.waset.org/abstracts/3644/mobile-wireless-investigation-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Development of Soft-Core System for Heart Rate and Oxygen Saturation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caje%20F.%20Pinto">Caje F. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jivan%20S.%20Parab"> Jivan S. Parab</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourish%20M.%20Naik"> Gourish M. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today&#39;s world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED&rsquo;s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=NIOS%20II" title=" NIOS II"> NIOS II</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title=" oxygen saturation"> oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-core" title=" soft-core"> soft-core</a>, <a href="https://publications.waset.org/abstracts/search?q=SOPC" title=" SOPC"> SOPC</a> </p> <a href="https://publications.waset.org/abstracts/82788/development-of-soft-core-system-for-heart-rate-and-oxygen-saturation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Health Risk Assessment of Exposing to Benzene in Office Building around a Chemical Industry Based on Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Bayatian">Majid Bayatian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Ashouri"> Mohammadreza Ashouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Releasing hazardous chemicals is one of the major problems for office buildings in the chemical industry and, therefore, environmental risks are inherent to these environments. The adverse health effects of the airborne concentration of benzene have been a matter of significant concern, especially in oil refineries. The chronic and acute adverse health effects caused by benzene exposure have attracted wide attention. Acute exposure to benzene through inhalation could cause headaches, dizziness, drowsiness, and irritation of the skin. Chronic exposures have reported causing aplastic anemia and leukemia at the occupational settings. Association between chronic occupational exposure to benzene and the development of aplastic anemia and leukemia were documented by several epidemiological studies. Numerous research works have investigated benzene emissions and determined benzene concentration at different locations of the refinery plant and stated considerable health risks. The high cost of industrial control measures requires justification through lifetime health risk assessment of exposed workers and the public. In the present study, a Computational Fluid Dynamics (CFD) model has been proposed to assess the exposure risk of office building around a refinery due to its release of benzene. For simulation, GAMBIT, FLUENT, and CFD Post software were used as pre-processor, processor, and post-processor, and the model was validated based on comparison with experimental results of benzene concentration and wind speed. Model validation results showed that the model is highly validated, and this model can be used for health risk assessment. The simulation and risk assessment results showed that benzene could be dispersion to an office building nearby, and the exposure risk has been unacceptable. According to the results of this study, a validated CFD model, could be very useful for decision-makers for control measures and possibly support them for emergency planning of probable accidents. Also, this model can be used to assess exposure to various types of accidents as well as other pollutants such as toluene, xylene, and ethylbenzene in different atmospheric conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title="health risk assessment">health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20building" title=" office building"> office building</a>, <a href="https://publications.waset.org/abstracts/search?q=Benzene" title=" Benzene"> Benzene</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/127890/health-risk-assessment-of-exposing-to-benzene-in-office-building-around-a-chemical-industry-based-on-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiji%20Hu">Shiji Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li"> Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zhou"> Wanting Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=DaoHong%20Yang"> DaoHong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elliptic%20curve%20cryptosystems" title="Elliptic curve cryptosystems">Elliptic curve cryptosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=SM2" title=" SM2"> SM2</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20multiplication" title=" modular multiplication"> modular multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20multiplication." title=" point multiplication."> point multiplication.</a> </p> <a href="https://publications.waset.org/abstracts/164598/a-design-of-elliptic-curve-cryptography-processor-based-on-sm2-over-gfp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thomet">S. Thomet</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De-Paoli"> S. De-Paoli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ghaffari"> F. Ghaffari</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Daveau"> J. M. Daveau</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Roche"> P. Roche</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Romain"> O. Romain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20injection" title="fault injection">fault injection</a>, <a href="https://publications.waset.org/abstracts/search?q=SoC%20fail%20reason" title=" SoC fail reason"> SoC fail reason</a>, <a href="https://publications.waset.org/abstracts/search?q=SoC%20soft%20error%20rate" title=" SoC soft error rate"> SoC soft error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20application" title=" terrestrial application"> terrestrial application</a> </p> <a href="https://publications.waset.org/abstracts/128987/identification-of-failures-occurring-on-a-system-on-chip-exposed-to-a-neutron-beam-for-safety-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> A Mixed Integer Linear Programming Model for Container Collection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Van%20Engeland">J. Van Engeland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lavigne"> C. Lavigne</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Jaeger"> S. De Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20collection" title="container collection">container collection</a>, <a href="https://publications.waset.org/abstracts/search?q=crew%20scheduling" title=" crew scheduling"> crew scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/97057/a-mixed-integer-linear-programming-model-for-container-collection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Advanced Mouse Cursor Control and Speech Recognition Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasad%20Kalagura">Prasad Kalagura</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Veeresh%20kumar"> B. Veeresh kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20ARM7%20processor" title="embedded ARM7 processor">embedded ARM7 processor</a>, <a href="https://publications.waset.org/abstracts/search?q=mouse%20pointer%20control" title=" mouse pointer control"> mouse pointer control</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20recognition" title=" voice recognition "> voice recognition </a> </p> <a href="https://publications.waset.org/abstracts/31757/advanced-mouse-cursor-control-and-speech-recognition-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Medicinal Plants Supply Chain Innovations for Producer Surplus: Relationship Integration to Benefit the Rural Agrientrepreneurs in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akm%20Shahidullah">Akm Shahidullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper assessed the medicinal plants production and related entrepreneurial and management aspects with a focus to understand the present medicinal plants-based supply chain of Bangladesh. It delineated the overall supply chain and the extent of benefit that the plant-producingagrientrepreneursderive out of the existing system of the chain. The key objective was to put forward innovative supply chain strategiesthatcan leverage the benefit of the rural farmer-entrepreneur of medicinal plants. A field-based investigation was carried out in the Natore district of northwest Bangladesh, where a total of 225 farmers and households from eight villages were engaged in the production of medicinal plant species. The research had a survey with the agrientrepreneurs of two of those villages and focus group discussions at a union level to gather information about the price, buyers, seasonality, and overall supply infrastructure and trading mechanisms of the plant products. The research also gathered explanations on the overall supply chain system of the plants and plant-based processed products through key informant interviews with the local and regional selling agents, stockists, wholesalers, and secondary processors. The findings revealed that, in the existing supply chain system, the primary and wholesale secondary markets were mostly dominated by middlemen who cause market distortions and inflated prices due to a lack of coordination between the primary producers and secondary processors. The discoordination and inefficiencies in the supply chain system could be offset by the producer-processor relationship integration that could result in a multitude of benefits to both the parties in terms of price, quality, lead time, and overall control of the supply chain. Therefore, to ensure the growth of medicinal plants production, the industry users, secondary processors, and policy stakeholders should ensure that the primary producers get the fair share of the benefit; the producer-processor relationship integration in the supply chain offers to ensure that fairness with maximum producer surplus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal-plants" title="medicinal-plants">medicinal-plants</a>, <a href="https://publications.waset.org/abstracts/search?q=agrientrepreneur" title=" agrientrepreneur"> agrientrepreneur</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship%20integration" title=" relationship integration"> relationship integration</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/157713/medicinal-plants-supply-chain-innovations-for-producer-surplus-relationship-integration-to-benefit-the-rural-agrientrepreneurs-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Adaptive Routing in NoC-Based Heterogeneous MPSoCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Benhaoua">M. K. Benhaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20H.%20Benyamina"> A. E. H. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Djeradi"> T. Djeradi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Boulet"> P. Boulet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose adaptive routing that considers the routing of communications in order to optimize the overall performance. The routing technique uses a newly proposed Algorithm to route communications between the tasks. The routing we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed routing approach provides significant performance improvements when compared to those using static routing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-processor%20systems-on-chip%20%28mpsocs%29" title="multi-processor systems-on-chip (mpsocs)">multi-processor systems-on-chip (mpsocs)</a>, <a href="https://publications.waset.org/abstracts/search?q=network-on-chip%20%28noc%29" title=" network-on-chip (noc)"> network-on-chip (noc)</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20architectures" title=" heterogeneous architectures"> heterogeneous architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20routin" title=" adaptive routin"> adaptive routin</a> </p> <a href="https://publications.waset.org/abstracts/31233/adaptive-routing-in-noc-based-heterogeneous-mpsocs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nMPRA%20processor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nMPRA%20processor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nMPRA%20processor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nMPRA%20processor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10