CINXE.COM

Search results for: neural stem cells

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neural stem cells</title> <meta name="description" content="Search results for: neural stem cells"> <meta name="keywords" content="neural stem cells"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neural stem cells" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neural stem cells"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5424</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neural stem cells</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5424</span> A Review of Feature Selection Methods Implemented in Neural Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Petrovska">Natasha Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Pavlovic"> Mirjana Pavlovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Larrondo-Petrie"> Maria M. Larrondo-Petrie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20similarity" title=" feature similarity"> feature similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells" title=" neural stem cells"> neural stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection%20methods" title=" feature selection methods"> feature selection methods</a> </p> <a href="https://publications.waset.org/abstracts/163549/a-review-of-feature-selection-methods-implemented-in-neural-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5423</span> Preparation of POMA Nanofibers by Electrospinning and Its Applications in Tissue Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu-Chen%20Yeh%E2%80%9A%20Jui-Ming%20Yeh">Lu-Chen Yeh‚ Jui-Ming Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, we produced neat electrospun poly(o-methoxyaniline) (POMA) fibers and utilized it for applying the growth of neural stem cells. The transparency and morphology of as-prepared POMA fibers were characterized by UV-visible spectroscopy and scanning electron microscopy, respectively. It was found to have no adverse effects on the long-term proliferation of the neural stem cells (NSCs), retained the ability to self-renew, and exhibit multi-potentiality. Results of immunofluorescence staining studies confirmed that POMA electrospun fibers could provide a great environment for NSCs and enhance its differentiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospun" title="electrospun">electrospun</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cell" title=" neural stem cell"> neural stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a> </p> <a href="https://publications.waset.org/abstracts/1486/preparation-of-poma-nanofibers-by-electrospinning-and-its-applications-in-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5422</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5421</span> Umbilical Cord-Derived Cells in Corneal Epithelial Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Mahmud%20Reza">Hasan Mahmud Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive studies of the human umbilical cord, both basic and translational, over the last three decades have unveiled a plethora of information. The cord lining harbors at least two phenotypically different multipotent stem cells: mesenchymal stem cells (MSCs) and cord lining epithelial stem cells (CLECs). These cells exhibit a mixed genetic profiling of both embryonic and adult stem cells, hence display a broader stem features than cells from other sources. We have observed that umbilical cord-derived cells are immunologically privileged and non-tumorigenic by animal study. These cells are ethically acceptable, thus provides a significant advantage over other stem cells. The high proliferative capacity, viability, differentiation potential, and superior harvest of these cells have made them better candidates in comparison to contemporary adult stem cells. Following 30 replication cycles, these cells have been observed to retain their stemness, with their phenotype and karyotype intact. Transplantation of bioengineered CLEC sheets in limbal stem cell-deficient rabbit eyes resulted in regeneration of clear cornea with phenotypic expression of the normal cornea-specific epithelial cytokeratin markers. The striking features of low immunogenicity protecting self along with co-transplanted allografts from rejection largely define the transplantation potential of umbilical cord-derived stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20lining%20epithelial%20stem%20cells" title="cord lining epithelial stem cells">cord lining epithelial stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title=" umbilical cord"> umbilical cord</a> </p> <a href="https://publications.waset.org/abstracts/117218/umbilical-cord-derived-cells-in-corneal-epithelial-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5420</span> In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urvi%20Panwar">Urvi Panwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20Mishra"> Kanchan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjaksha%20Ghosh"> Kanjaksha Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=ShankerLal%20Kothari"> ShankerLal Kothari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow" title="bone marrow">bone marrow</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy"> cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=explant%20culture%20method" title=" explant culture method"> explant culture method</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometer" title=" flow cytometer"> flow cytometer</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20umbilical%20cord" title=" human umbilical cord"> human umbilical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegenerative%20diseases" title=" neurodegenerative diseases"> neurodegenerative diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotective" title=" neuroprotective"> neuroprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/87395/in-vitro-regeneration-of-neural-cells-using-human-umbilical-cord-derived-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5419</span> Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20stem%20cells" title="aggregated stem cells">aggregated stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen%20profiles" title=" dissolved oxygen profiles"> dissolved oxygen profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred-tank" title=" stirred-tank"> stirred-tank</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20expansion" title=" 3D expansion"> 3D expansion</a> </p> <a href="https://publications.waset.org/abstracts/49847/modeling-of-oxygen-supply-profiles-in-stirred-tank-aggregated-stem-cells-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5418</span> Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Barbaro">K. Barbaro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Di%20Egidio"> F. Di Egidio</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amaddeo"> A. Amaddeo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lupoli"> G. Lupoli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eramo"> S. Eramo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Barraco"> G. Barraco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Amaddeo"> D. Amaddeo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gallottini"> C. Gallottini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxy%20apatite" title="nano-hydroxy apatite">nano-hydroxy apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20mesenchymal%20stem%20cells" title=" adipose mesenchymal stem cells"> adipose mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20evaluation" title=" morphological evaluation"> morphological evaluation</a> </p> <a href="https://publications.waset.org/abstracts/12800/morphological-evaluation-of-mesenchymal-stem-cells-derived-from-adipose-tissue-of-dog-treated-with-different-concentrations-of-nano-hydroxy-apatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5417</span> Usage of Cord Blood Stem Cells of Asphyxia Infants for Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shah%20Farhat">Ahmad Shah Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Prenatal asphyxia or birth asphyxia is the medical situation resulting from a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Human umbilical cord blood (UCB) is a well-established source of hematopoietic stem/progenitor cells (HSPCs) for allogeneic stem cell transplantation. These can be used clinically to care for children with malignant diseases. Low O2 can cause in proliferation and differentiation of stem cells. Method: the cord blood of 11 infants with 3-5 Apgar scores or need to cardiac pulmonary Resuscitation as an asphyxia group and ten normal infants with more than 8 Apgar scores as the normal group was collected, and after isolating hematopoietic stem cells, the cells were cultured in enriched media for 14 days to compare the numbers of colonies by microscope. Results: There was a significant difference in the number of RBC precursor colonies (red colonies) in cultured media with 107 cord blood hematopoietic stem cells of infants who were exposed to hypoxemia in two wells of palate. There was not a significant difference in the number of white cell colonies in the two groups in the two wells of the plate. Conclusion: Hypoxia in the perinatal period can cause the increase of hematopoietic stem cells of cord blood, special red precursor stem cells in vitro, like an increase of red blood cells in the body when exposed to low oxygen conditions. Thus, it will be usable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphyxia" title="asphyxia">asphyxia</a>, <a href="https://publications.waset.org/abstracts/search?q=neonre" title=" neonre"> neonre</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cell" title=" red cell"> red cell</a> </p> <a href="https://publications.waset.org/abstracts/177379/usage-of-cord-blood-stem-cells-of-asphyxia-infants-for-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5416</span> Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Montaser">Laila Montaser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Gabr"> Hala Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20El-Bassuony"> Maha El-Bassuony</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Tawfeek"> Gehan Tawfeek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow" title="bone marrow">bone marrow</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocyte" title=" hepatocyte"> hepatocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells "> stem cells </a> </p> <a href="https://publications.waset.org/abstracts/13255/human-mesenchymal-stem-cells-as-a-potential-source-for-cell-therapy-in-liver-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5415</span> The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalaf%20Reyad%20Raslan">Ahmed Khalaf Reyad Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a> </p> <a href="https://publications.waset.org/abstracts/145693/the-using-of-hybrid-superparamagnetic-magnetite-nanoparticles-fe3o4-graphene-oxide-functionalized-surface-with-collagen-to-target-the-cancer-stem-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5414</span> Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Y.%20Meligy">Fatma Y. Meligy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=synovial%20membrane" title=" synovial membrane"> synovial membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=myogenic%20differentiation" title=" myogenic differentiation "> myogenic differentiation </a> </p> <a href="https://publications.waset.org/abstracts/29107/isolation-characterization-and-myogenic-differentiation-of-synovial-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5413</span> Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balakrishna%20Shetty">Balakrishna Shetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title="stem cells">stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=DWI" title=" DWI"> DWI</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20vascular%20disease" title=" peripheral vascular disease"> peripheral vascular disease</a> </p> <a href="https://publications.waset.org/abstracts/166309/tracking-of-intramuscular-stem-cells-by-magnetic-resonance-diffusion-weighted-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5412</span> 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Yin%20Liu">Xiao-Yin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Xue%20Zhou"> Liang-Xue Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title="traumatic brain injury">traumatic brain injury</a>, <a href="https://publications.waset.org/abstracts/search?q=exosomes" title=" exosomes"> exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20growth%20factor-1" title=" insulin growth factor-1"> insulin growth factor-1</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells" title=" neural stem cells"> neural stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20regeneration" title=" neural regeneration"> neural regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title=" angiogenesis"> angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20recovery" title=" functional recovery"> functional recovery</a> </p> <a href="https://publications.waset.org/abstracts/168527/3d-printed-collagenchitosan-scaffolds-loaded-with-exosomes-derived-from-neural-stem-cells-pretreated-with-insulin-growth-factor-1-for-neural-regeneration-after-traumatic-brain-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5411</span> A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Ping%20Liu">Shih-Ping Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Hsuan%20Chang"> Cheng-Hsuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chuen%20Huang"> Yu-Chuen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Yin%20Chen"> Shih-Yin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Woei-Cherng%20Shyu"> Woei-Cherng Shyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cordycepin" title="cordycepin">cordycepin</a>, <a href="https://publications.waset.org/abstracts/search?q=iPS%20cells" title=" iPS cells"> iPS cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Jak2%2FStat3%20signaling%20pathway" title=" Jak2/Stat3 signaling pathway"> Jak2/Stat3 signaling pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a> </p> <a href="https://publications.waset.org/abstracts/6862/a-novel-application-of-cordycepin-cordycepssinensis-extract-maintaining-stem-cell-pluripotency-and-improving-ips-generation-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5410</span> Differential Expression of Biomarkers in Cancer Stem Cells and Side Populations in Breast Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Dhawan">Dipali Dhawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancerous epithelial cells are confined to a primary site by the continued expression of adhesion molecules and the intact basal lamina. However, as the cancer progresses some cells are believed to undergo an epithelial-mesenchymal transition (EMT) event, leading to increased motility, invasion and, ultimately, metastasis of the cells from the primary tumour to secondary sites within the body. These disseminated cancer cells need the ability to self-renew, as stem cells do, in order to establish and maintain a heterogeneous metastatic tumour mass. Identification of the specific subpopulation of cancer stem cells amenable to the process of metastasis is highly desirable. In this study, we have isolated and characterized cancer stem cells from luminal and basal breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-468, MCF7 and T47D) on the basis of cell surface markers CD44 and CD24; as well as Side Populations (SP) using Hoechst 33342 dye efflux. The isolated populations were analysed for epithelial and mesenchymal markers like E-cadherin, N-cadherin, Sfrp1 and Vimentin by Western blotting and Immunocytochemistry. MDA-MB-231 cell lines contain a major population of CD44+CD24- cells whereas MCF7, T47D and MDA-MB-231 cell lines show a side population. We observed higher expression of N-cadherin in MCF-7 SP cells as compared to MCF-7NSP (Non-side population) cells suggesting that the SP cells are mesenchymal like cells and hence express increased N-cadherin with stem cell-like properties. There was an expression of Sfrp1 in the MCF7- NSP cells as compared to no expression in MCF7-SP cells, which suggests that the Wnt pathway is expressed in the MCF7-SP cells. The mesenchymal marker Vimentin was expressed only in MDA-MB-231 cells. Hence, understanding the breast cancer heterogeneity would enable a better understanding of the disease progression and therapeutic targeting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title="cancer stem cells">cancer stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial%20to%20mesenchymal%20transition" title=" epithelial to mesenchymal transition"> epithelial to mesenchymal transition</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/21001/differential-expression-of-biomarkers-in-cancer-stem-cells-and-side-populations-in-breast-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5409</span> Immunoliposomes Conjugated with CD133 Antibody for Targeting Melanoma Cancer Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Yin">Chuan Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) represent a subpopulation of cancer cells that possess the characteristics associated with normal stem cells. CD133 is a phenotype of melanoma CSCs responsible for melanoma metastasis and drug resistance. Although adriamycin (ADR) is commonly used drug in melanoma therapy, but it is ineffective in the treatment of melanoma CSCs. In this study, we constructed CD133 antibody conjugated ADR immunoliposomes (ADR-Lip-CD133) to target CD133+ melanoma CSCs. The results showed that the immunoliposomes possessed a small particle size (~150 nm), high drug encapsulation efficiency (~90%). After 72 hr treatment on the WM266-4 melanoma tumorspheres, the IC50 values of the drug formulated in ADR-Lip-CD133, ADR-Lip (ADR liposomes) and ADR are found to be 24.42, 57.13 and 59.98 ng/ml respectively, suggesting that ADR-Lip-CD133 was more effective than ADR-Lip and ADR. Significantly, ADR-Lip-CD133 could almost completely abolish the tumorigenic ability of WM266-4 tumorspheres in vivo, and showed the best therapeutic effect in WM266-4 melanoma xenograft mice. It is noteworthy that ADR-Lip-CD133 could selectively kill CD133+ melanoma CSCs of WM266-4 cells both in vitro and in vivo. ADR-Lip-CD133 represent a potential approach in targeting and killing CD133+ melanoma CSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title="cancer stem cells">cancer stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoliposomes" title=" immunoliposomes"> immunoliposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=CD133" title=" CD133"> CD133</a> </p> <a href="https://publications.waset.org/abstracts/32389/immunoliposomes-conjugated-with-cd133-antibody-for-targeting-melanoma-cancer-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5408</span> Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Macgregor-Ramiasa">Melanie Macgregor-Ramiasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Hopp"> Isabel Hopp</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Murray"> Patricia Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Vasilev"> Krasimir Vasilev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotopography" title="nanotopography">nanotopography</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymer" title=" plasma polymer"> plasma polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=oxazoline" title=" oxazoline"> oxazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/57005/plasma-engineered-nanorough-substrates-for-stem-cells-in-vitro-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5407</span> Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20shady">Khaled A. shady</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagr%20B.%20Bazeed"> Fagr B. Bazeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20K.%20Abousamra"> Nashwa K. Abousamra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihab%20H.%20Elberawe"> Ihab H. Elberawe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20E.%20shaalan"> Ashraf E. shaalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Sobh"> Mohamed A. Sobh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title="physical activity">physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cells" title=" hematopoietic stem cells"> hematopoietic stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization" title=" mobilization"> mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=athletes" title=" athletes"> athletes</a> </p> <a href="https://publications.waset.org/abstracts/158031/aerobic-exercise-increases-circulating-hematopoietic-stem-cells-and-endothelial-progenitor-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5406</span> The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Gaber%20Abdel%20Raheem">Ahmed Gaber Abdel Raheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20Ahmed%20Mohamed"> Nashwa Ahmed Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amikacin" title="amikacin">amikacin</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20cells" title=" hair cells"> hair cells</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorineural%20hearing%20loss" title=" sensorineural hearing loss"> sensorineural hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a> </p> <a href="https://publications.waset.org/abstracts/30808/the-role-of-bone-marrow-stem-cells-transplantation-in-the-repair-of-damaged-inner-ear-in-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5405</span> A Prospective Study on the Efficacy of Mesenchymal Stem Cells in Intervertebral Disc Regeneration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhu%20Thangaraju">Prabhu Thangaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Deepak"> Manoj Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivakumar"> A. Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of inter vertebral disc along with spinal fusion has many disadvantages such as causing stress fractures. If it is possible regenerate the spine it would be possible avoid the complications of the surgery and achieve better results. Our study involves the use of mesenchymal stem cells in regenerating the discs. Our study involved 10 patients who presented with degenerative disc disease between 2008-2011 in our hospital. After adequate pre-operative check prepared mesenchymal stem cells were injected into the disc spaces. These patients were subjected to conservative therapy for a minimum of six weeks before they were accepted into the study. They were followed up regularly for a minimum of 2years with serial radiographs and MRI. 8 out of the 10 patients had completed reduction in the pain. The T2 weighted MRI images in 9 out of the 10 patients showed a bright signal compared the previous Images which indicated that there was improvement in the hydration levels. From the case study of 10 patients who were subjected to mesenchymal cell therapy in our hospital, we can conclude that the use of mesenchymal cells in treatment of intervertebral disc degeneration in a safe and effective option. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20spine" title=" the spine"> the spine</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20degeneration" title=" disc degeneration "> disc degeneration </a> </p> <a href="https://publications.waset.org/abstracts/16025/a-prospective-study-on-the-efficacy-of-mesenchymal-stem-cells-in-intervertebral-disc-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5404</span> Comparative Stem Cells Therapy for Regeneration of Liver Fibrosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Imam">H. M. Imam</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Rezk"> H. M. Rezk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Tohamy"> A. F. Tohamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Human umbilical cord blood (HUCB) is considered as a unique source for stem cells. HUCB contain different types of progenitor cells which could differentiate into hepatocytes. Aims: To investigate the potential of rat's liver damage repair using human umbilical cord mesenchymal stem cells (hUCMSCs). We investigated the feasibility for hUCMSCs in recovery from liver damage. Moreover, investigating fibrotic liver repair and using the CCl4-induced model for liver damage in the rat. Methods: Rats were injected with 0.5 ml/kg CCl4 to induce liver damage and progressive liver fibrosis. hUCMSCs were injected into the rats through the tail vein; Stem cells were transplanted at a dose of 1×106 cells/rat after 72 hours of CCl4 injection without receiving any immunosuppressant. After (6 and 8 weeks) of transplantation, blood samples were collected to assess liver functions (ALT, AST, GGT and ALB) and level of Procollagen III as a liver fibrosis marker. In addition, hepatic tissue regeneration was assessed histopathologically and immunohistochemically using antihuman monoclonal antibodies against CD34, CK19 and albumin. Results: Biochemical and histopathological analysis showed significantly increased recovery from liver damage in the transplanted group. In addition, HUCB stem cells transdifferentiated into functional hepatocytes in rats with hepatic injury which results in improving liver structure and function. Conclusion: Our findings suggest that transplantation of hUCMSCs may be a novel therapeutic approach for treating liver fibrosis. Therefore, hUCMSCs are a potential option for treatment of liver cirrhosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20tetra%20chloride" title="carbon tetra chloride">carbon tetra chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrosis" title=" liver fibrosis"> liver fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/27746/comparative-stem-cells-therapy-for-regeneration-of-liver-fibrosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5403</span> A Ferutinin Analogue with Enhanced Potency and Selectivity against Estrogen Receptor Positive Breast Cancer Cells in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remi%20Safi">Remi Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Hamade"> Aline Hamade</a>, <a href="https://publications.waset.org/abstracts/search?q=Najat%20Bteich"> Najat Bteich</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20El%20Saghir"> Jamal El Saghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Diab%20Assaf"> Mona Diab Assaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20El-Sabban"> Marwan El-Sabban</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadia%20Najjar"> Fadia Najjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced a significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferutinin" title="ferutinin">ferutinin</a>, <a href="https://publications.waset.org/abstracts/search?q=hemi-synthetic%20analogue" title=" hemi-synthetic analogue"> hemi-synthetic analogue</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=estrogen" title=" estrogen"> estrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%2Fprogenitor%20cells" title=" stem/progenitor cells"> stem/progenitor cells</a> </p> <a href="https://publications.waset.org/abstracts/98903/a-ferutinin-analogue-with-enhanced-potency-and-selectivity-against-estrogen-receptor-positive-breast-cancer-cells-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5402</span> Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Ahmadi">Rasha Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glioblastoma" title="Glioblastoma">Glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cancer%20Stem%20Cells" title="Cancer Stem Cells">Cancer Stem Cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomarker%20Discovery" title="Biomarker Discovery">Biomarker Discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Gene%20Expression%20Profiles" title="Gene Expression Profiles">Gene Expression Profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioinformatics%20Analysis" title="Bioinformatics Analysis">Bioinformatics Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumor%20Microenvironment" title="Tumor Microenvironment">Tumor Microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/147739/hsa-mir-192-5p-and-hsa-mir-129-5p-prominent-biomarkers-in-regulation-glioblastoma-cancer-stem-cells-genes-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5401</span> In vitro Establishment and Characterization of Oral Squamous Cell Carcinoma Derived Cancer Stem-Like Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Salian">Varsha Salian</a>, <a href="https://publications.waset.org/abstracts/search?q=Shama%20Rao"> Shama Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Narendra"> N. Narendra</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohana%20Kumar"> B. Mohana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving evidence proposes the existence of a highly tumorigenic subpopulation of undifferentiated, self-renewing cancer stem cells, responsible for exhibiting resistance to conventional anti-cancer therapy, recurrence, metastasis and heterogeneous tumor formation. Importantly, the mechanisms exploited by cancer stem cells to resist chemotherapy are very less understood. Oral squamous cell carcinoma (OSCC) is one of the most regularly diagnosed cancer types in India and is associated commonly with alcohol and tobacco use. Therefore, the isolation and in vitro characterization of cancer stem-like cells from patients with OSCC is a critical step to advance the understanding of the chemoresistance processes and for designing therapeutic strategies. With this, the present study aimed to establish and characterize cancer stem-like cells in vitro from OSCC. The primary cultures of cancer stem-like cell lines were established from the tissue biopsies of patients with clinical evidence of an ulceroproliferative lesion and histopathological confirmation of OSCC. The viability of cells assessed by trypan blue exclusion assay showed more than 95% at passage 1 (P1), P2 and P3. Replication rate was performed by plating cells in 12-well plate and counting them at various time points of culture. Cells had a more marked proliferative activity and the average doubling time was less than 20 hrs. After being cultured for 10 to 14 days, cancer stem-like cells gradually aggregated and formed sphere-like bodies. More spheroid bodies were observed when cultured in DMEM/F-12 under low serum conditions. Interestingly, cells with higher proliferative activity had a tendency to form more sphere-like bodies. Expression of specific markers, including membrane proteins or cell enzymes, such as CD24, CD29, CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1) is being explored for further characterization of cancer stem-like cells. To summarize the findings, the establishment of OSCC derived cancer stem-like cells may provide scope for better understanding the cause for recurrence and metastasis in oral epithelial malignancies. Particularly, identification and characterization studies on cancer stem-like cells in Indian population seem to be lacking thus provoking the need for such studies in a population where alcohol consumption and tobacco chewing are major risk habits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem-like%20cells" title="cancer stem-like cells">cancer stem-like cells</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20squamous%20cell%20carcinoma" title=" oral squamous cell carcinoma"> oral squamous cell carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/85339/in-vitro-establishment-and-characterization-of-oral-squamous-cell-carcinoma-derived-cancer-stem-like-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5400</span> Studying the Antiapoptotic Activity of Β Cells from Cord Blood Based Mesenchymal Stem Cells as an Approach to Treat Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parcha%20Sreenivasa%20Rao">Parcha Sreenivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lakshmi"> P. Lakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes Mellitus is metabolic disorder, characterized by high glucose levels in the blood due to one of the reason i.e., the death of β cells. The lack of β cells leads to the reduced insulin levels. The β cell death generally occurs due to apoptosis induced by the several cytokines. IL-1β, IFN- ϒ and TNF –α cytokines that are generally cause apoptosis to the β cell. The nutrient based apoptosis is generally seen with high glucose and free fatty acids. It is also noted that the β cell death triggered by Fas ligand and its receptor Fas at the surface of the activated CD8+ T- lymphocytes. Reports also reveal that the β cell apoptosis is under control of the transcription factors NF-kB and STAT- 1. The arresting or opposing of the β cell apoptosis can be overcome by the different growth factors like GLP-1, growth hormone, prolactin, VEGF, Dipeptidyl peptidase-4, Vildagliptin, suberoylanilidehydroxamic acid, trichistatin-A, XIAP, Bcl-2, FGF-21. Present investigation explains antiapoptotic property of the β cells derived from the mesenchymal stem cells of umbilical cord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title="stem cells">stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=umblical%20cord" title=" umblical cord"> umblical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/39952/studying-the-antiapoptotic-activity-of-b-cells-from-cord-blood-based-mesenchymal-stem-cells-as-an-approach-to-treat-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5399</span> Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Hormozi%20Moghaddam">Z. Hormozi Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mokhtari-Dizaji"> M. Mokhtari-Dizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Movahedin"> M. Movahedin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Ravari"> M. E. Ravari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p&lt;0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning <em>in vitro</em> and <em>in vivo</em> by estimating the cavitation phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20index" title=" mechanical index"> mechanical index</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a> </p> <a href="https://publications.waset.org/abstracts/63084/ultrasound-mechanical-index-as-a-parameter-affecting-of-the-ability-of-proliferation-of-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5398</span> Wound Healing Potential and Comparison of Mummy Substance Effect on Adipose and Wharton’s Jelly-Derived Mesenchymal Stem Cells Co-Cultured with Human Fibroblast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Hassanpour%20Khodaei">Sepideh Hassanpour Khodaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background/Objectives: The purpose of this study is to evaluate the effect of mummy substances on two issues of proliferation and production of matrix protein synthesis in wound healing. Methods: The methodology used for this aim involves isolating mesenchymal stem cells and human fibroblasts procured at Pastor Institute, Iran. The cells were treated with mummy substances separately and co-cultured between ASCs and WJSCs, and fibroblasts. Proliferation was assessed by Ki67 method in monolayer conditions. Synthesis of components of extracellular matrix (ECM) such as collagen type I, type III, and fibronectin 1 (FN1) was determined by qPCR. Results: The effects of adipocyte stem cells (ASCs), Wharton Jelly Stem Cells (WJSCs), and Mummy material on fibroblast proliferation and migration were evaluated. The present finding underlined the importance of Mummy material, ASCs, and WJSCs in the proliferation and migration of fibroblast cells. Furthermore, the expression of collagen I, III, and FN1 was increased in the presence of the above material and cells. Conclusion: This study presented an effective in vitro method for the healing process. Hence, the prospect of utilizing Mummy material and stem cell-based therapies in wound healing as a therapeutic approach is promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mummy%20material" title="mummy material">mummy material</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20tissue" title=" adipose tissue"> adipose tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=Wharton%E2%80%99s%20jelly" title=" Wharton’s jelly"> Wharton’s jelly</a> </p> <a href="https://publications.waset.org/abstracts/152817/wound-healing-potential-and-comparison-of-mummy-substance-effect-on-adipose-and-whartons-jelly-derived-mesenchymal-stem-cells-co-cultured-with-human-fibroblast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5397</span> A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirsten%20Wilson">Kirsten Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20M.%20Brauer"> Patrick M. Brauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Babic"> Sandra Babic</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Golubeva"> Diana Golubeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Van%20Eyk"> Jessica Van Eyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinya%20Wang"> Tinya Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Avanti%20Karkhanis"> Avanti Karkhanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20A.%20Le%20Fevre"> Tim A. Le Fevre</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20I.%20Kokaji"> Andy I. Kokaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Allen%20C.%20Eaves"> Allen C. Eaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20A.%20Louis"> Sharon A. Louis</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Nooshin%20Tabatabaei-Zavareh">Nooshin Tabatabaei-Zavareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title="stem cells">stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=B%20cells" title=" B cells"> B cells</a>, <a href="https://publications.waset.org/abstracts/search?q=immunology" title=" immunology"> immunology</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoiesis" title=" hematopoiesis"> hematopoiesis</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC" title=" PSC"> PSC</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a> </p> <a href="https://publications.waset.org/abstracts/182989/a-serum-and-feeder-free-culture-system-for-the-robust-generation-of-human-stem-cell-derived-cd19-b-cells-and-antibody-secreting-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5396</span> Decellularized Brain-Chitosan Scaffold for Neural Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-An%20Chen">Yun-An Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Jun%20Lin"> Hung-Jun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Horng%20Young"> Tai-Horng Young</a>, <a href="https://publications.waset.org/abstracts/search?q=Der-Zen%20Liu"> Der-Zen Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decellularized brain extracellular matrix had been shown that it has the ability to influence on cell proliferation, differentiation and associated cell phenotype. However, this scaffold is thought to have poor mechanical properties and rapid degradation, it is hard for cell recellularization. In this study, we used decellularized brain extracellular matrix combined with chitosan, which is naturally occurring polysaccharide and non-cytotoxic polymer, forming a 3-D scaffold for neural stem/precursor cells (NSPCs) regeneration. HE staining and DAPI fluorescence staining confirmed decellularized process could effectively vanish the cellular components from the brain. GAGs and collagen I, collagen IV were be showed a great preservation by Alcain staining and immunofluorescence staining respectively. Decellularized brain extracellular matrix was well mixed in chitosan to form a 3-D scaffold (DB-C scaffold). The pore size was approximately 50±10 μm examined by SEM images. Alamar blue results demonstrated NSPCs had great proliferation ability in DB-C scaffold. NSPCs that were cultured in this complex scaffold differentiated into neurons and astrocytes, as reveled by NSPCs expression of microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP). In conclusion, DB-C scaffold may provide bioinformatics cues for NSPCs generation and aid for CNS injury functional recovery applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=decellularization" title=" decellularization"> decellularization</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%2Fprecursor%20cells" title=" neural stem/precursor cells"> neural stem/precursor cells</a> </p> <a href="https://publications.waset.org/abstracts/41130/decellularized-brain-chitosan-scaffold-for-neural-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5395</span> Epigenomic Analysis of Lgr5+ Stem Cells in Gastrointestinal Tract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyo-Min%20Kim">Hyo-Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokjin%20Ham"> Seokjin Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Joung%20Yoo"> Mi-Joung Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseon%20Kim"> Minseon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Young%20Roh"> Tae-Young Roh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gastrointestinal (GI) tract of most animals, including murine, is highly compartmentalized epithelia which also provide distinct different functions of its own tissue. Nevertheless, these epithelia share certain characteristics that enhance immune responses to infections and maintain the barrier function of the intestine. GI tract epithelia also undergo regeneration not only in homeostatic conditions but also in a response to the damage. A full turnover of the murine gastrointestinal epithelium occurs every 4-5 day, a process that is regulated and maintained by a minor population of Lgr5+ adult stem cell that commonly conserved in the bottom of crypts through GI tract. Maintenance of the stem cell is somehow regulated by epigenetic factors according to recent studies. Chromatin vacancy, remodelers, histone variants and histone modifiers could affect adult stem cell fate. In this study, Lgr5-EGFP reporter mouse was used to take advantage of exploring the epigenetic dynamics among Lgr5 positive mutual stem cell in GI tract. Cells were isolated by fluorescence-activated cell sorting (FACS), gene expression levels, chromatin accessibility changes and histone modifications were analyzed. Some notable chromatin structural related epigenetic variants were detected. To identify the overall cell-cell interaction inside the stem cell niche, an extensive genome-wide analysis should be also followed. According to the results, nevertheless, we expected a broader understanding of cellular niche maintaining stem cells and epigenetic barriers through conserved stem cell in GI tract. We expect that our study could provide more evidence of adult stem cell plasticity and more chances to understand each stem cell that takes parts in certain organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20stem%20cell" title="adult stem cell">adult stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title=" epigenetics"> epigenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=LGR5%20stem%20cell" title=" LGR5 stem cell"> LGR5 stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20tract" title=" gastrointestinal tract"> gastrointestinal tract</a> </p> <a href="https://publications.waset.org/abstracts/84885/epigenomic-analysis-of-lgr5-stem-cells-in-gastrointestinal-tract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=180">180</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=181">181</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10