CINXE.COM
Search results for: multiple Clouds
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multiple Clouds</title> <meta name="description" content="Search results for: multiple Clouds"> <meta name="keywords" content="multiple Clouds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multiple Clouds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multiple Clouds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4838</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multiple Clouds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4838</span> Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Yin">Feng Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20detection" title="cloud detection">cloud detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20remove" title=" cloud remove"> cloud remove</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20imagery" title=" multi-temporal imagery"> multi-temporal imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20resources%20investigation" title=" land resources investigation"> land resources investigation</a> </p> <a href="https://publications.waset.org/abstracts/90359/multi-temporal-cloud-detection-and-removal-in-satellite-imagery-for-land-resources-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4837</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4836</span> An Experiment of Three-Dimensional Point Clouds Using GoPro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Hwa%20Kim">Jong-Hwa Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Wook%20Pyeon"> Mu-Wook Pyeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-dam%20Eo"> Yang-dam Eo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ill-Woong%20Jang"> Ill-Woong Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GoPro" title="GoPro">GoPro</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=DLT" title=" DLT"> DLT</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds" title=" point clouds"> point clouds</a> </p> <a href="https://publications.waset.org/abstracts/5342/an-experiment-of-three-dimensional-point-clouds-using-gopro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4835</span> Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Kermarrec">G. Kermarrec</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hartmann"> J. Hartmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20analysis" title="deformation analysis">deformation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modelling" title=" surface modelling"> surface modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanner" title=" terrestrial laser scanner"> terrestrial laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=T-splines" title=" T-splines"> T-splines</a> </p> <a href="https://publications.waset.org/abstracts/130510/using-t-splines-to-model-point-clouds-from-terrestrial-laser-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4834</span> Design of Cloud Service Brokerage System Intermediating Integrated Services in Multiple Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongjae%20Kang">Dongjae Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokho%20Son"> Sokho Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinmee%20Kim"> Jinmee Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud service brokering is a new service paradigm that provides interoperability and portability of application across multiple Cloud providers. In this paper, we designed cloud service brokerage system, any broker, supporting integrated service provisioning and SLA based service life cycle management. For the system design, we introduce the system concept and whole architecture, details of main components and use cases of primary operations in the system. These features ease the Cloud service provider and customer’s concern and support new Cloud service open market to increase cloud service profit and prompt Cloud service echo system in cloud computing related area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20service%20brokerage" title="cloud service brokerage">cloud service brokerage</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds" title=" multiple Clouds"> multiple Clouds</a>, <a href="https://publications.waset.org/abstracts/search?q=Integrated%20service%20provisioning" title=" Integrated service provisioning"> Integrated service provisioning</a>, <a href="https://publications.waset.org/abstracts/search?q=SLA" title=" SLA"> SLA</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20service" title=" network service"> network service</a> </p> <a href="https://publications.waset.org/abstracts/17018/design-of-cloud-service-brokerage-system-intermediating-integrated-services-in-multiple-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4833</span> Scientific Interpretation of “Fertilizing Winds” Mentioned in Verse 15:22 of Al-Quran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Mamunur%20Rashid">Md. Mamunur Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allah (SWT) bestowed us with the Divine blessing, providing the wonderful source of water as stated in verse 15:22 of Al-Quran. Arabic “Ar-Riaaha Lawaaqiha (ٱلرِّيَـٰحَ لَوَٰقِحَ)” of this verse is translated as “fertilizing winds.” The “fertilizing winds” literally, refer the winds of having the roles: to fertilize something similar to the “zygotes” in humans and animals (formation of clouds in the sky in this case); to produce fertilizers for the plants, crops, etc.; and to pollinate the plants. In this paper, these roles of “fertilizing winds” have been validated by presenting the modern knowledge of science in this regard. Existing interpretations are mostly focused on the “formation of clouds in the sky” while few of them mention about the pollination of trees. However, production of fertilizers, in this regard, has not been considered by any translator or interpreter. It has been observed that the winds contain, the necessary components of forming the clouds; the necessary components of producing the fertilizers; and the necessary components to pollinate the plants. The Science of Meteorology gives us the clear understanding of the formation of clouds. Moreover, we know that the lightning bolts breaks the nitrogen molecules of winds and the water molecules of vapor to form fertilizers. Pollination is a common role of winds in plants fertilization. All the scientific phenomena presented here give us the better interpretations of “fertilizing winds.” <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Quran" title="Al-Quran">Al-Quran</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizing%20winds" title=" fertilizing winds"> fertilizing winds</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorology" title=" meteorology"> meteorology</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific" title=" scientific"> scientific</a> </p> <a href="https://publications.waset.org/abstracts/173739/scientific-interpretation-of-fertilizing-winds-mentioned-in-verse-1522-of-al-quran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4832</span> PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenhao%20Lan">Wenhao Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Li"> Ning Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Tong"> Qiang Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mirror%20symmetry" title="mirror symmetry">mirror symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=oriented%20bounding%20box" title=" oriented bounding box"> oriented bounding box</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud%20registration" title=" point cloud registration"> point cloud registration</a>, <a href="https://publications.waset.org/abstracts/search?q=PointNetLK-OBB" title=" PointNetLK-OBB"> PointNetLK-OBB</a> </p> <a href="https://publications.waset.org/abstracts/132017/pointnetlk-obb-a-point-cloud-registration-algorithm-with-high-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4831</span> Optimization of Cloud Classification Using Particle Swarm Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riffi%20Mohammed%20Amine">Riffi Mohammed Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=clouds" title=" clouds"> clouds</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20image" title=" meteorological image"> meteorological image</a> </p> <a href="https://publications.waset.org/abstracts/192148/optimization-of-cloud-classification-using-particle-swarm-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4830</span> Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Samkeyat%20Shohan">S. M. Samkeyat Shohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20properties" title="cloud properties">cloud properties</a>, <a href="https://publications.waset.org/abstracts/search?q=photolysis%20rate" title=" photolysis rate"> photolysis rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stratospheric%20ozone" title=" stratospheric ozone"> stratospheric ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=tropospheric%20ozone" title=" tropospheric ozone"> tropospheric ozone</a> </p> <a href="https://publications.waset.org/abstracts/85744/clouds-influence-on-atmospheric-ozone-from-gome-2-satellite-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4829</span> Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhanuj%20M.%20Gandikota">Dhanuj M. Gandikota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=aerial%20laser%20scanning" title=" aerial laser scanning"> aerial laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title=" terrestrial laser scanning"> terrestrial laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20symmetry" title=" fractal symmetry"> fractal symmetry</a> </p> <a href="https://publications.waset.org/abstracts/151864/efficacy-of-deep-learning-for-below-canopy-reconstruction-of-satellite-and-aerial-sensing-point-clouds-through-fractal-tree-symmetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4828</span> Frequency- and Content-Based Tag Cloud Font Distribution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81gnes%20Bog%C3%A1rdi-M%C3%A9sz%C3%B6ly">Ágnes Bogárdi-Mészöly</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Hashimoto"> Takeshi Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Yokoyama"> Shohei Yokoyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ishikawa"> Hiroshi Ishikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tag%20cloud" title="tag cloud">tag cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=font%20distribution%20algorithm" title=" font distribution algorithm"> font distribution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-based" title=" frequency-based"> frequency-based</a>, <a href="https://publications.waset.org/abstracts/search?q=content-based" title=" content-based"> content-based</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20law" title=" power law"> power law</a> </p> <a href="https://publications.waset.org/abstracts/8529/frequency-and-content-based-tag-cloud-font-distribution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4827</span> Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang">Xavier Lorang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Girard"> Sylvain Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20imperfections" title=" geometric imperfections"> geometric imperfections</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20uncertainty" title=" propagation of uncertainty"> propagation of uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/130259/geometric-imperfections-in-lattice-structures-a-simulation-strategy-to-predict-strength-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4826</span> Aerosol - Cloud Interaction with Summer Precipitation over Major Cities in Eritrea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Abraham%20Berhane">Samuel Abraham Berhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingbing%20Bu"> Lingbing Bu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the spatiotemporal variability of aerosols, clouds, and precipitation within the major cities in Eritrea and it investigates the relationship between aerosols, clouds, and precipitation concerning the presence of aerosols over the study region. In Eritrea, inadequate water supplies will have both direct and indirect adverse impacts on sustainable development in areas such as health, agriculture, energy, communication, and transport. Besides, there exists a gap in the knowledge on suitable and potential areas for cloud seeding. Further, the inadequate understanding of aerosol-cloud-precipitation (ACP) interactions limits the success of weather modification aimed at improving freshwater sources, storage, and recycling. Spatiotemporal variability of aerosols, clouds, and precipitation involve spatial and time series analysis based on trend and anomaly analysis. To find the relationship between aerosols and clouds, a correlation coefficient is used. The spatiotemporal analysis showed larger variations of aerosols within the last two decades, especially in Assab, indicating that aerosol optical depth (AOD) has increased over the surrounding Red Sea region. Rainfall was significantly low but AOD was significantly high during the 2011 monsoon season. Precipitation was high during 2007 over most parts of Eritrea. The correlation coefficient between AOD and rainfall was negative over Asmara and Nakfa. Cloud effective radius (CER) and cloud optical thickness (COT) exhibited a negative correlation with AOD over Nakfa within the June–July–August (JJA) season. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model that is used to find the path and origin of the air mass of the study region showed that the majority of aerosols made their way to the study region via the westerly and the southwesterly winds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol-cloud-precipitation" title="aerosol-cloud-precipitation">aerosol-cloud-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title=" aerosol optical depth"> aerosol optical depth</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20effective%20radius" title=" cloud effective radius"> cloud effective radius</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20optical%20thickness" title=" cloud optical thickness"> cloud optical thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=HYSPLIT" title=" HYSPLIT"> HYSPLIT</a> </p> <a href="https://publications.waset.org/abstracts/148138/aerosol-cloud-interaction-with-summer-precipitation-over-major-cities-in-eritrea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4825</span> Shape Management Method of Large Structure Based on Octree Space Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gichun%20Cha">Gichun Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee"> Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20scan%20data" title="3D scan data">3D scan data</a>, <a href="https://publications.waset.org/abstracts/search?q=octree%20space%20partitioning" title=" octree space partitioning"> octree space partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20management" title=" shape management"> shape management</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title=" terrestrial laser scanning"> terrestrial laser scanning</a> </p> <a href="https://publications.waset.org/abstracts/57257/shape-management-method-of-large-structure-based-on-octree-space-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4824</span> Improved Accuracy of Ratio Multiple Valuation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julianto%20Agung%20Saputro">Julianto Agung Saputro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jogiyanto%20Hartono"> Jogiyanto Hartono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple" title="multiple">multiple</a>, <a href="https://publications.waset.org/abstracts/search?q=valuation" title=" valuation"> valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/57424/improved-accuracy-of-ratio-multiple-valuation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4823</span> Measuring the Cavitation Cloud by Electrical Impedance Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Malik">Michal Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Primas"> Jiri Primas</a>, <a href="https://publications.waset.org/abstracts/search?q=Darina%20Jasikova"> Darina Jasikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Kotek"> Michal Kotek</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Kopecky"> Vaclav Kopecky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a case study dealing with the viability of using Electrical Impedance Tomography for measuring cavitation clouds in a pipe setup. The authors used a simple passive cavitation generator to cause a cavitation cloud, which was then recorded for multiple flow rates using electrodes in two measuring planes. The paper presents the results of the experiment, showing the used industrial grade tomography system ITS p2+ is able to measure the cavitation cloud and may be particularly useful for identifying the inception of cavitation in setups where other measuring tools may not be viable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20cloud" title="cavitation cloud">cavitation cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity%20measurement" title=" conductivity measurement"> conductivity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20impedance%20tomography" title=" electrical impedance tomography"> electrical impedance tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20induced%20cavitation" title=" mechanically induced cavitation"> mechanically induced cavitation</a> </p> <a href="https://publications.waset.org/abstracts/84715/measuring-the-cavitation-cloud-by-electrical-impedance-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4822</span> The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sohrabi">Sahar Sohrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20private%20cloud" title=" real-time private cloud"> real-time private cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a> </p> <a href="https://publications.waset.org/abstracts/38592/the-application-of-bayesian-heuristic-for-scheduling-in-real-time-private-clouds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4821</span> Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexiou%20Dimitra">Alexiou Dimitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Fragkaki%20Maria"> Fragkaki Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Multiple%20Factorial%20Correspondence%20Analysis" title="Multiple Factorial Correspondence Analysis">Multiple Factorial Correspondence Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Principal%20Component%20Analysis" title=" Principal Component Analysis"> Principal Component Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Factor%20Analysis" title=" Factor Analysis"> Factor Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.U.-28%20countries" title=" E.U.-28 countries"> E.U.-28 countries</a>, <a href="https://publications.waset.org/abstracts/search?q=Statistical%20package%20IBM%20SPSS%2020" title=" Statistical package IBM SPSS 20"> Statistical package IBM SPSS 20</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIC%20Analysis%20V%201.1%20Software" title=" CHIC Analysis V 1.1 Software"> CHIC Analysis V 1.1 Software</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurostat.eu%20Statistics" title=" Eurostat.eu Statistics"> Eurostat.eu Statistics</a> </p> <a href="https://publications.waset.org/abstracts/48410/data-and-spatial-analysis-for-economy-and-education-of-28-eu-member-states-for-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4820</span> Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Fernandes">Henrique Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Catalucci"> Sofia Catalucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Leach"> Richard Leach</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Sugand"> Kapil Sugand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holography" title="holography">holography</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scans" title=" 3D scans"> 3D scans</a>, <a href="https://publications.waset.org/abstracts/search?q=hologram%20box" title=" hologram box"> hologram box</a>, <a href="https://publications.waset.org/abstracts/search?q=metrology" title=" metrology"> metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a> </p> <a href="https://publications.waset.org/abstracts/163214/holographic-visualisation-of-3d-point-clouds-in-real-time-measurements-a-proof-of-concept-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4819</span> A More Powerful Test Procedure for Multiple Hypothesis Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunpu%20Zhang">Shunpu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20test" title="multiple test">multiple test</a>, <a href="https://publications.waset.org/abstracts/search?q=single-step%20procedure" title=" single-step procedure"> single-step procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=stepwise%20procedure" title=" stepwise procedure"> stepwise procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=p-value%20for%20multiple%20testing" title=" p-value for multiple testing"> p-value for multiple testing</a> </p> <a href="https://publications.waset.org/abstracts/183745/a-more-powerful-test-procedure-for-multiple-hypothesis-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4818</span> Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Haines">Ben Haines</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bai"> Li Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title="3D reconstruction">3D reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=multiview%20stereo" title=" multiview stereo"> multiview stereo</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation" title=" particle swarm optimisation"> particle swarm optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20consistency" title=" photo consistency"> photo consistency</a> </p> <a href="https://publications.waset.org/abstracts/59669/towards-a-robust-patch-based-multi-view-stereo-technique-for-textureless-and-occluded-3d-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4817</span> Evaluation of Fusion Sonar and Stereo Camera System for 3D Reconstruction of Underwater Archaeological Object</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadpiroon%20Onmek">Yadpiroon Onmek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Triboulet"> Jean Triboulet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Druon"> Sebastien Druon</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Jouvencel"> Bruno Jouvencel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to develop the 3D underwater reconstruction of archaeology object, which is based on the fusion between a sonar system and stereo camera system. The underwater images are obtained from a calibrated camera system. The multiples image pairs are input, and we first solve the problem of image processing by applying the well-known filter, therefore to improve the quality of underwater images. The features of interest between image pairs are selected by well-known methods: a FAST detector and FLANN descriptor. Subsequently, the RANSAC method is applied to reject outlier points. The putative inliers are matched by triangulation to produce the local sparse point clouds in 3D space, using a pinhole camera model and Euclidean distance estimation. The SFM technique is used to carry out the global sparse point clouds. Finally, the ICP method is used to fusion the sonar information with the stereo model. The final 3D models have a précised by measurement comparing with the real object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title="3D reconstruction">3D reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion" title=" fusion"> fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20system" title=" stereo system"> stereo system</a>, <a href="https://publications.waset.org/abstracts/search?q=sonar%20system" title=" sonar system"> sonar system</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/73700/evaluation-of-fusion-sonar-and-stereo-camera-system-for-3d-reconstruction-of-underwater-archaeological-object" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4816</span> Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Temnikov">A. G. Temnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Belova"> O. S. Belova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Chernensky"> L. L. Chernensky</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Gerastenok"> T. K. Gerastenok</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Y.%20Lysov"> N. Y. Lysov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Orlov"> A. V. Orlov</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Zhuravkova"> D. S. Zhuravkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20and%20channel%20discharges" title="cloud and channel discharges">cloud and channel discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometeor%20form" title=" hydrometeor form"> hydrometeor form</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20initiation" title=" lightning initiation"> lightning initiation</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20and%20positive%20artificial%20charged%20aerosol%20cloud" title=" negative and positive artificial charged aerosol cloud"> negative and positive artificial charged aerosol cloud</a> </p> <a href="https://publications.waset.org/abstracts/67721/influence-of-model-hydrometeor-form-on-probability-of-discharge-initiation-from-artificial-charged-water-aerosol-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4815</span> Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiling%20Chen">Chiling Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiaoying%20Chou"> Chiaoying Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Siyang%20Wu"> Siyang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monsoon" title="Monsoon">Monsoon</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classification" title=" supervised classification"> supervised classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Pix4D" title=" Pix4D"> Pix4D</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20point%20clouds" title=" 3D point clouds"> 3D point clouds</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminate%20accuracy" title=" discriminate accuracy"> discriminate accuracy</a> </p> <a href="https://publications.waset.org/abstracts/77769/applying-unmanned-aerial-vehicle-on-agricultural-damage-a-case-study-of-the-meteorological-disaster-on-taiwan-paddy-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4814</span> Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Chun">Kwang Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kemeny"> John Kemeny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=remote-sensing" title=" remote-sensing"> remote-sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20visualization" title=" scientific visualization"> scientific visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20stability" title=" underground stability"> underground stability</a> </p> <a href="https://publications.waset.org/abstracts/105946/geomechanical-technologies-for-assessing-three-dimensional-stability-of-underground-excavations-utilizing-remote-sensing-finite-element-analysis-and-scientific-visualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4813</span> The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Wook%20Park">Sang Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Su%20Park"> Jun Su Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousok%20Kim"> Yousok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20healthcare%20monitoring" title="structural healthcare monitoring">structural healthcare monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title=" terrestrial laser scanning"> terrestrial laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20stress%20distribution" title=" estimation of stress distribution"> estimation of stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20transformation" title=" coordinate transformation"> coordinate transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20smoothing%20spline%20interpolation" title=" cubic smoothing spline interpolation"> cubic smoothing spline interpolation</a> </p> <a href="https://publications.waset.org/abstracts/25460/the-estimation-method-of-stress-distribution-for-beam-structures-using-the-terrestrial-laser-scanning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4812</span> Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Yerlikaya">U. Yerlikaya</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Balkan"> R. T. Balkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%2A%20algorithm" title="A* algorithm">A* algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20turrets" title=" autonomous turrets"> autonomous turrets</a>, <a href="https://publications.waset.org/abstracts/search?q=high-dimensional%20C-space" title=" high-dimensional C-space"> high-dimensional C-space</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold%20C-space" title=" manifold C-space"> manifold C-space</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds" title=" point clouds"> point clouds</a> </p> <a href="https://publications.waset.org/abstracts/134869/obtaining-high-dimensional-configuration-space-for-robotic-systems-operating-in-a-common-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4811</span> Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Zhuravkova">D. S. Zhuravkova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Temnikov"> A. G. Temnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Belova"> O. S. Belova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Chernensky"> L. L. Chernensky</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Gerastenok"> T. K. Gerastenok</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Kalugina"> I. Y. Kalugina</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Y.%20Lysov"> N. Y. Lysov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.V.%20Orlov"> A.V. Orlov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=main%20stage%20of%20discharge" title="main stage of discharge">main stage of discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometeor%20form" title=" hydrometeor form"> hydrometeor form</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20parameters" title=" lightning parameters"> lightning parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20and%20positive%20artificial%20charged%20aerosol%20cloud" title=" negative and positive artificial charged aerosol cloud"> negative and positive artificial charged aerosol cloud</a> </p> <a href="https://publications.waset.org/abstracts/67737/parameters-of-main-stage-of-discharge-between-artificial-charged-aerosol-cloud-and-ground-in-presence-of-model-hydrometeor-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4810</span> Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Deswal">S. Deswal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pal"> M. Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20plunging%20jets" title=" multiple plunging jets"> multiple plunging jets</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-linear%20regression" title=" multi-linear regression"> multi-linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20sciences" title=" earth sciences"> earth sciences</a> </p> <a href="https://publications.waset.org/abstracts/5905/multi-linear-regression-based-prediction-of-mass-transfer-by-multiple-plunging-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4809</span> Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20radiative%20forcing%20%28ARF%29" title="aerosol radiative forcing (ARF)">aerosol radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=MISR" title=" MISR"> MISR</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a>, <a href="https://publications.waset.org/abstracts/search?q=SBDART" title=" SBDART"> SBDART</a> </p> <a href="https://publications.waset.org/abstracts/182412/aerosol-direct-radiative-forcing-over-the-indian-subcontinent-a-comparative-analysis-from-the-satellite-observation-and-radiative-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=161">161</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=162">162</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiple%20Clouds&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>