CINXE.COM
Search results for: asperigillus fumigatus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: asperigillus fumigatus</title> <meta name="description" content="Search results for: asperigillus fumigatus"> <meta name="keywords" content="asperigillus fumigatus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="asperigillus fumigatus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="asperigillus fumigatus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 36</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: asperigillus fumigatus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Characterization and Optimization of Antimicrobial Compound/S Produced by Asperigillus Fumigatus Isolated from Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20M.%20Kewisha">Mohammad A. M. Kewisha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xerophilic fungi , which are responsible for many cases of biodeterioration monuments, have been known as an interesting source of antimicrobial compounds. Sixty nine fungal strains, isolated from different localities and species inside Egyptian museums, were screened for antimicrobial activity against some bacterial species and unicellular fungi. The most potent antimicrobial activity was obtained by Asperigillus fumigatus which was identified by ITS4 ……. and showed activity against Staphylococcus aureus with 20 mm and C. albicans with18 mm of inhibition zone. Different parameters were optimized to enhance this activity. The culture grown under stationary conditions for 8 days at 30°C and pH 8 gave the best antimicrobial activity. Moreover, both starch and yeast extract showed the most suitable carbon and nitrogen sources, respectively. The antimicrobial compound was purified and subjected to spectroscopic characterization, which revealed that the antimicrobial compound might be 5,7 ethoxy, 4\,5\ methoxy isorhamnetin -3- O- galactoside. This study suggests that Aspergillus fumagates as a potential candidate offering a better scope for the production, purification and isolation of broad-spectrum antimicrobial compounds. These findings will facilitate the scale-up and further purification to ascertain the compounds responsible for antimicrobial activity, which can be exploited for the treatment of biodeterioration monuments and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=asperigillus%20fumigatus" title=" asperigillus fumigatus"> asperigillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Identification%20by%20ITS4" title=" Identification by ITS4"> Identification by ITS4</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=C.albicans" title=" C.albicans"> C.albicans</a> </p> <a href="https://publications.waset.org/abstracts/171668/characterization-and-optimization-of-antimicrobial-compounds-produced-by-asperigillus-fumigatus-isolated-from-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Efficiency for Enzyme Production of Fungi Isolated from the Stomach of Buffalo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suphalucksana">Suphalucksana</a>, <a href="https://publications.waset.org/abstracts/search?q=Wichai"> Wichai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangsoponjit%20Settasit"> Sangsoponjit Settasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Soytong%20%20Kasem"> Soytong Kasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study on the efficiency for enzyme production of fungi isolated from stomach of buffalo was conducted. The fungi were collected from 4 parts of stomach as rumen, reticulum, omasum and abomasums. The objective to study the efficiency of fungi from stomach of buffalo had effected to produced enzyme and to selected fungi for their ability to produced enzyme cellulase, hemicellulase and ligninase. Results shown that the fungi isolated from rumen were: Eupenicillium sp. (B-RU-01-1), Eupenicillium sp. (B-RU-02-3G), Rhyzopus stolonifer (B-RU-01-4) and Trichoderma sp. (B-RU-01-2). From the reticulum, Aspergillus glaucus (B-RET-02-3), Aspergillus orchraceus (B-RET-02-2) and Penicillium sp. (B-RET-02-4) were found. In the omasum Aspergillus fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA-01-4) and Rhizopus stolonifer (B-OMA-02-3) were isolated and in the abomasums Aspergillus flavas (B-ABO-02-3), Aspergillus fumigatus (B-ABO-02-1), Aspergillus niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4) and Mucor sp. (B-ABO-02-4G). Results of enzyme analysis revealed that cellulase was produced by isolated: Eupenicillium sp. (B-RU-02-3G), Eupenicillium sp. (B-RU-01-1), Penicillium sp. (B-RET-02-4), Aspergillius glaucus (B-RET-02-3), Aspergillus ochraceus (B-RET-02-2), Aspergillius fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA-01-4), Aspergillius flavus (B-ABO-02-3), Aspergillius fumigatus (B-ABO-02-1), Aspergillius niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4). Hemicellulase was produced Eupenicillium sp. (B-RU-02-3G), Eupenicillium sp. (B-RU-01-1), Rhizopus stolonifer (B-RU-01-4), Trichoderma sp. (B-RU-01-2), Aspergillius glaucus (B-RET-02-3), Aspergillus ochraceus (B-RET-02-2), Penicillium sp. (B-RET-02-4), Aspergillius fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA -01-4), Aspergillius flavus (B-ABO-02-3), Aspergillius fumigatus (B-ABO-02-1) Aspergillius niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4), Mucor sp. (B-ABO-02-4G). For the enzyme ligninase, two isolates were found to produced this enzyme namely : Trichoderma sp. (B-RU-01-2) and Mucor sp. (B-ABO-02-4G). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20production%20from%20fungi" title="enzyme production from fungi">enzyme production from fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20%20production" title=" enzyme production"> enzyme production</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20technology" title=" agricultural technology"> agricultural technology</a> </p> <a href="https://publications.waset.org/abstracts/15539/efficiency-for-enzyme-production-of-fungi-isolated-from-the-stomach-of-buffalo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Analysis of Aspergillus fumigatus IgG Serologic Cut-Off Values to Increase Diagnostic Specificity of Allergic Bronchopulmonary Aspergillosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushmita%20Roy%20Chowdhury">Sushmita Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Holding"> Steve Holding</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujoy%20Khan"> Sujoy Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The immunogenic responses of the lung towards the fungus Aspergillus fumigatus may range from invasive aspergillosis in the immunocompromised, fungal ball or infection within a cavity in the lung in those with structural lung lesions, or allergic bronchopulmonary aspergillosis (ABPA). Patients with asthma or cystic fibrosis are particularly predisposed to ABPA. There are consensus guidelines that have established criteria for diagnosis of ABPA, but uncertainty remains on the serologic cut-off values that would increase the diagnostic specificity of ABPA. We retrospectively analyzed 80 patients with severe asthma and evidence of peripheral blood eosinophilia ( > 500) over the last 3 years who underwent all serologic tests to exclude ABPA. Total IgE, specific IgE and specific IgG levels against Aspergillus fumigatus were measured using ImmunoCAP Phadia-100 (Thermo Fisher Scientific, Sweden). The Modified ISHAM working group 2013 criteria (obligate criteria: asthma or cystic fibrosis, total IgE > 1000 IU/ml or > 417 kU/L and positive specific IgE Aspergillus fumigatus or skin test positivity; with ≥ 2 of peripheral eosinophilia, positive specific IgG Aspergillus fumigatus and consistent radiographic opacities) was used in the clinical workup for the final diagnosis of ABPA. Patients were divided into 3 groups - definite, possible, and no evidence of ABPA. Specific IgG Aspergillus fumigatus levels were not used to assign the patients into any of the groups. Of 80 patients (males 48, females 32; mean age 53.9 years ± SD 15.8) selected for the analysis, there were 30 patients who had positive specific IgE against Aspergillus fumigatus (37.5%). 13 patients fulfilled the Modified ISHAM working group 2013 criteria of ABPA (‘definite’), while 15 patients were ‘possible’ ABPA and 52 did not fulfill the criteria (not ABPA). As IgE levels were not normally distributed, median levels were used in the analysis. Median total IgE levels of patients with definite and possible ABPA were 2144 kU/L and 2597 kU/L respectively (non-significant), while median specific IgE Aspergillus fumigatus at 4.35 kUA/L and 1.47 kUA/L respectively were significantly different (comparison of standard deviations F-statistic 3.2267, significance level p=0.040). Mean levels of IgG anti-Aspergillus fumigatus in the three groups (definite, possible and no evidence of ABPA) were compared using ANOVA (Statgraphics Centurion Professional XV, Statpoint Inc). Mean levels of IgG anti-Aspergillus fumigatus (Gm3) in definite ABPA was 125.17 mgA/L ( ± SD 54.84, with 95%CI 92.03-158.32), while mean Gm3 levels in possible and no ABPA were 18.61 mgA/L and 30.05 mgA/L respectively. ANOVA showed a significant difference between the definite group and the other groups (p < 0.001). This was confirmed using multiple range tests (Fisher's least significant difference procedure). There was no significant difference between the possible ABPA and not ABPA groups (p > 0.05). The study showed that a sizeable proportion of patients with asthma are sensitized to Aspergillus fumigatus in this part of India. A higher cut-off value of Gm3 ≥ 80 mgA/L provides a higher serologic specificity towards definite ABPA. Long-term studies would provide us more information if those patients with 'possible' APBA and positive Gm3 later develop clear ABPA, and are different from the Gm3 negative group in this respect. Serologic testing with clear defined cut-offs are a valuable adjunct in the diagnosis of ABPA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergic%20bronchopulmonary%20aspergillosis" title="allergic bronchopulmonary aspergillosis">allergic bronchopulmonary aspergillosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigatus" title=" Aspergillus fumigatus"> Aspergillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=asthma" title=" asthma"> asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=IgE%20level" title=" IgE level"> IgE level</a> </p> <a href="https://publications.waset.org/abstracts/78025/analysis-of-aspergillus-fumigatus-igg-serologic-cut-off-values-to-increase-diagnostic-specificity-of-allergic-bronchopulmonary-aspergillosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Haddad">Ahmed M. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20S.%20El-Shaal"> Hadeel S. El-Shaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadallah%20M.%20Abu-Elreesh"> Gadallah M. Abu-Elreesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=oleaginous" title=" oleaginous"> oleaginous</a> </p> <a href="https://publications.waset.org/abstracts/73658/biodiesel-production-and-heavy-metal-removal-by-aspergillus-fumigatus-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Investigation of Azol Resistance in Aspergillosis Caused by Gradient Test and Agar Plaque Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Yazgan">Zeynep Yazgan</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Ayg%C3%BCn"> Gökhan Aygün</a>, <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20%C3%87al%C4%B1%C5%9Fkan"> Reyhan Çalışkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Invasive fungal infections are a serious threat in terms of morbidity and mortality, especially in immunocompromised patients. The most frequently isolated agents are Aspergillus genus fungi, and sensitivity to azoles, which are the first choice in treatment, decreases. In our study, we aimed to investigate the use of the agar plate screening method as a fast, easy, and practical method in determining azole resistance in Aspergillus spp. species. Methods: Our study was conducted with 125 Aspergillus spp. isolates produced from various clinical samples. Aspergillus spp. isolates were identified by conventional methods and azole resistance was determined by gradient test and agar plate screening method. Broth microdilution method was applied to resistant isolates, and CypA-L98H and CypA-M220 mutations in the cyp51A gene were investigated. Results: In our study, 55 A. fumigatus complex (44%), 42 A. flavus (33.6%), 6 A. terreus (5%), 4 A. niger (3%) and 18 Aspergillus spp. (14%) were identified. With the gradient test method, resistance to VOR and POS was detected in 1 (1.8%) of A.fumigatus isolates, and resistance to ITR was detected in 3 (5.45%). With the agar plate method, 1 of the A.fumigatus isolates (1.8%) had VOR, ITR, POS, 1 of the A.terreus isolates (16.7%) had VOR, 1 of the A.niger isolates (25%) had ITR. Resistance to VOR and POS was detected in 2 Aspergillus spp. isolates (11%), and resistance to ITR was detected in 1 (5.6%). Sensitivity and specificity were determined as 100% for VOR and POS in A. fumigatus species, 33.3% and 100% for ITR, respectively, 100% for ITR in A. flavus species, and 100% for ITR and POS in A. terreus species. By broth microdilution method in 7 isolates in which resistance was detected by gradient test and/or agar plate screening method; 1 A.fumigatus resistant to ITR, VOR, POS, 2 A.fumigatus resistant to ITR, 2 Aspergillus spp. ITR, VOR, POS MICs were determined as 2µg/ml and 8µg/ml, 8µg/ml and >32µg/ml, 0.5µg/ml and 4µg/ml, respectively. CypA-L98H mutations were detected in 5 of these isolates, CypA-M220 mutations were detected in 6, and no mutation was detected in 1. CypA-L98H and CypA-M220 mutations were detected in 1 isolate for which resistance was not detected. Conclusion: The need for rapid antifungal susceptibility screening tests is increasing in the treatment of aspergillosis. Although the sensitivity of the agar plate method was determined to be 33.3% for A.fumigatus ITR in our study, its sensitivity and specificity were determined to be 100% for ITR, VOR, and POS in other species. The low sensitivity value detected for A.fumigatus showed that agar plate drug concentrations should be updated in accordance with the latest regulations of EUCAST guidelines. The CypA-L98H and CypA-M220 mutations detected in our study suggested that the distribution of azole resistance-related mutations in different regions in our country should be investigated. In conclusion, it is thought that the agar plate method, which can be easily applied to detect azole resistance, is a fast and practical method in routine use and can contribute to both the determination of effective treatment strategies and the generation of epidemiological data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus" title="Aspergillus">Aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=agar%20plate" title=" agar plate"> agar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=azole%20resistance" title=" azole resistance"> azole resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cyp51A" title=" cyp51A"> cyp51A</a>, <a href="https://publications.waset.org/abstracts/search?q=cypA-L98H" title=" cypA-L98H"> cypA-L98H</a>, <a href="https://publications.waset.org/abstracts/search?q=cypA-M220" title=" cypA-M220"> cypA-M220</a> </p> <a href="https://publications.waset.org/abstracts/177832/investigation-of-azol-resistance-in-aspergillosis-caused-by-gradient-test-and-agar-plaque-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Molecular Characterization of Two Thermoplastic Biopolymer-Degrading Fungi Utilizing rRNA-Based Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuha%20Mansour%20Alhazmi">Nuha Mansour Alhazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20Mohamed%20Aly"> Magda Mohamed Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Fardus%20M.%20Bokhari"> Fardus M. Bokhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bahieldin"> Ahmed Bahieldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Edris"> Sherif Edris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of 30 fungal isolates, 2 new isolates were proven to degrade poly-β-hydroxybutyrate (PHB). Enzyme assay for these isolates indicated the optimal environmental conditions required for depolymerase enzyme to induce the highest level of biopolymer degradation. The two isolates were basically characterized at the morphological level as Trichoderma asperellum (isolate S1), and Aspergillus fumigates (isolate S2) using standard approaches. The aim of the present study was to characterize these two isolates at the molecular level based on the highly diverged rRNA gene(s). Within this gene, two domains of the ribosome large subunit (LSU) namely internal transcribed spacer (ITS) and 26S were utilized in the analysis. The first domain comprises the ITS1/5.8S/ITS2 regions ( > 500 bp), while the second domain comprises the D1/D2/D3 regions ( > 1200 bp). Sanger sequencing was conducted at Macrogen (Inc.) for the two isolates using primers ITS1/ITS4 for the first domain, while primers LROR/LR7 for the second domain. Sizes of the first domain ranged between 594-602 bp for S1 isolate and 581-594 bp for S2 isolate, while those of the second domain ranged between 1228-1238 bp for S1 isolate and 1156-1291 for S2 isolate. BLAST analysis indicated 99% identities of the first domain of S1 isolate with T. asperellum isolates XP22 (ID: KX664456.1), CTCCSJ-G-HB40564 (ID: KY750349.1), CTCCSJ-F-ZY40590 (ID: KY750362.1) and TV (ID: KU341015.1). BLAST of the first domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other T. asperellum and A. fumigatus isolates and strains showed high level of identities with S1 and S2 isolates, respectively, based on the diversity of the first domain. BLAST of the second domain of S1 isolate indicated 99 and 100% identities with only two strains of T. asperellum namely TR 3 (ID: HM466685.1) and G (ID: KF723005.1), respectively. However, other T. species (ex., atroviride, hamatum, deliquescens, harzianum, etc.) also showed high level of identities. BLAST of the second domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other A. fumigatus isolates and strains showed high level of identities with S2 isolate. Overall, the results of molecular characterization based on rRNA diversity for the two isolates of T. asperellum and A. fumigatus matched those obtained by morphological characterization. In addition, ITS domain proved to be more sensitive than 26S domain in diversity profiling of fungi at the species level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigates" title="Aspergillus fumigates">Aspergillus fumigates</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20asperellum" title=" Trichoderma asperellum"> Trichoderma asperellum</a>, <a href="https://publications.waset.org/abstracts/search?q=PHB" title=" PHB"> PHB</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=BLAST" title=" BLAST"> BLAST</a>, <a href="https://publications.waset.org/abstracts/search?q=ITS" title=" ITS"> ITS</a>, <a href="https://publications.waset.org/abstracts/search?q=26S" title=" 26S"> 26S</a>, <a href="https://publications.waset.org/abstracts/search?q=rRNA" title=" rRNA"> rRNA</a> </p> <a href="https://publications.waset.org/abstracts/87955/molecular-characterization-of-two-thermoplastic-biopolymer-degrading-fungi-utilizing-rrna-based-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Biodegradation Potential of Selected Micromycetes Against Dyeing Unit Effluents of Sapphire Industry, Raiwind Road Lahore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samina%20Sarwar">Samina Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajra%20Khalil"> Hajra Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20reduction" title="biological reduction">biological reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20isolates" title=" fungal isolates"> fungal isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=micromycetes" title=" micromycetes"> micromycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=mycoremediation" title=" mycoremediation"> mycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/167216/biodegradation-potential-of-selected-micromycetes-against-dyeing-unit-effluents-of-sapphire-industry-raiwind-road-lahore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Biodegradation Potential of Selected Micromycetes against Dyeing Unit Effluents of Sapphire Industry in Raiwind Road Lahore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samina%20Sarwar">Samina Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajra%20Khalil"> Hajra Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20reduction" title="biological reduction">biological reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20isolates" title=" fungal isolates"> fungal isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=micromycetes" title=" micromycetes"> micromycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=mycoremediation" title=" mycoremediation"> mycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/160808/biodegradation-potential-of-selected-micromycetes-against-dyeing-unit-effluents-of-sapphire-industry-in-raiwind-road-lahore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Antifungal Activity of Medicinal Plants Used Traditionally for the Treatment of Fungal Infections and Related Ailments in South Africa </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Machaba">T. C. Machaba</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahlo"> S. M. Mahlo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigates the antifungal properties of crude plant extracts from selected medicinal plant species. Eight plant species used by the traditional healers and local people to treat fungal infections were selected for further phytochemical analysis and biological assay. The selected plant species were extracted with solvent of various polarities such as acetone, methanol, ethanol, hexane, dichloromethane, ethyl acetate and water. Leaf, roots and bark extracts of<em> Maerua juncea</em> Pax, <em>Albuca seineri</em> (Engl & K. Krause) J.C Manning & Goldblatt, <em>Senna italica</em> Mill., <em>Elephantorrhiza elephantina</em> (Burch.) Skeels, <em>Indigofera circinata</em> Benth., <em>Schinus molle</em> L., <em>Asparagus buchananii </em>Bak., were screened for antifunga<em>l </em>activity against three animal fungal pathogens<em> (Candida albicans, Aspergillus fumigatus </em>and<em> Cryptococcus neoformans</em>). All plant extracts were active against the tested microorganisms. Acetone, dichloromethane, hexane and ethanol extracts of <em>Senna italica</em> and <em>Elephantorrhiza elephantine</em> had excellent activity against <em>Candida albican</em>s and <em>A. fumigatus</em> with the lowest MIC value of 0.02 mg/ml. Bioautography assay was used to determine the number of antifungal compounds presence in the plant extracts. No active compounds were observed in plant extracts of <em>Indigofera circinnata</em>, <em>Schinus molle</em> and <em>Pentarrhinum insipidum</em> with good antifungal activity against <em>C. albicans</em> and <em>A. fumigatus</em> indicating possible synergism between separated metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioautography" title=" bioautography"> bioautography</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanical%20survey" title=" ethnobotanical survey"> ethnobotanical survey</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a> </p> <a href="https://publications.waset.org/abstracts/65664/antifungal-activity-of-medicinal-plants-used-traditionally-for-the-treatment-of-fungal-infections-and-related-ailments-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20M.%20Abd%20El-Rahim">Wafaa M. Abd El-Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20A.%20El-Meleigy"> Magda A. El-Meleigy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Refaat"> Eman Refaat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20fumigates" title="A. fumigates">A. fumigates</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20lignin-%20degrading%20enzymes" title=" extracellular lignin- degrading enzymes"> extracellular lignin- degrading enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20dye" title=" textile dye"> textile dye</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removing" title=" dye removing"> dye removing</a> </p> <a href="https://publications.waset.org/abstracts/17335/optimization-of-the-culture-medium-incubation-period-ph-and-temperatures-for-maximal-dye-bioremoval-using-a-fumigates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> The First Fungal Identification from Mini-BAL of Critical COVID-19 Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Fallah">Fatemeh Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensieh%20Lotfali"> Ensieh Lotfali</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Azimi"> Leila Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khodaei"> Hannan Khodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Rajabnejad"> Maryam Rajabnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20Abdollahi"> Nafiseh Abdollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Tayebi"> Hossein Tayebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saham%20Ansari"> Saham Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Yaghoubi"> Saeedeh Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Karimi"> Abdollah Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Coronavirus disease 2019 (COVID-19) has become a worldwide issue due to its high prevalence and rapid transmission. Fungal infections have been detected in COVID-19 patients, leading to increased morbidity and mortality. Objectives: This study aimed to isolate Aspergillus fumigatus and Mucor spp. on mini-bronchoalveolar lavage samples obtained from children with COVID-19 hospitalized in an Iranian children’s hospital. Methods: A cross-sectional descriptive study was performed on mini-bronchoalveolar lavage samples from children confirmed positive for COVID-19 admitted to ICU with a ventilator from April 2021 to February 2022. Demographic characteristics were recorded, and fungal DNA was extracted from mini-BAL samples taken from children. Nested PCR was made with two primers for Aspergillus fumigatus and Mucor spp. Results: Out of 100 children with COVID-19, all samples were negative for Aspergillus fumigatus; however, 12 cases were positive for BAL PCR for Mucor spp. Among the 12 patients, fever, shortness of breath, cough, and decreased level of consciousness were reported in 8.3% (n: 1), 16.6% (n: 2), 25% (n: 3), and 25% (n: 3), respectively. Most cases (41.7%; n: 5) suffered from heart disease, followed by underlying malignancy (33.4%; n: 4). All positive BAL PCR for Mucor spp. cases had significantly higher chest CT scan scores and spent more time under a ventilator. Conclusions: The identification of COVID-19 with Mucor spp. was observed among 12% (n: 12) of children hospitalized in a COVID-19 ICU. When dealing with pediatric COVID-19 patients, clinicians should consider the differential diagnosis of fungal co-infections and have a low threshold to begin treatment. Moreover, it is highly advisable to take prophylactic measures, such as properly using corticosteroids and shortening the intubation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspergillosis" title="aspergillosis">aspergillosis</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20identification" title=" COVID-19 identification"> COVID-19 identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mucormycosis" title=" mucormycosis"> mucormycosis</a>, <a href="https://publications.waset.org/abstracts/search?q=paediatrics" title=" paediatrics"> paediatrics</a> </p> <a href="https://publications.waset.org/abstracts/184705/the-first-fungal-identification-from-mini-bal-of-critical-covid-19-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawang%20D.%20N.">Dawang D. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasat%20G.%20S."> Dasat G. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nden%20D."> Nden D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endophyte" title="endophyte">endophyte</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20extract" title=" fungal extract"> fungal extract</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/161317/antimicrobial-activity-of-endophytes-on-some-selected-clinical-isolates-escherichia-coli-staphylococcus-aureus-salmonella-typhi-bacillus-subtilis-klebsiella-pneumoniae-aspergillus-fumigatus-pseudomomonas-aeruginosa-and-penicillium-chryysogenum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Razavi%20Khosroshahi">Seyed Mehdi Razavi Khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as well <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas" title="Xanthomonas">Xanthomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=antipathogen" title=" antipathogen"> antipathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=LNCaP" title=" LNCaP"> LNCaP</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigatus" title=" Aspergillus fumigatus"> Aspergillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=spegillusn%20flavus" title=" spegillusn flavus"> spegillusn flavus</a> </p> <a href="https://publications.waset.org/abstracts/96441/xanthotoxin-a-plant-derived-furanocoumarin-with-antipathogenic-and-cytotoxic-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Behidj">N. Behidj</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Benyounes"> K. Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dahmane"> T. Dahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Allem"> A. Allem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is <em>Thymus inodorus</em>by the middle agar diffusion method on following microorganisms. We have <em>Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans.</em> During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; <em>A. Niger</em>, <em>A. fumigatus</em> and <em>C. albicans</em>are the most resistant. But it is noted that, <em>S. aureus</em> is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of <em>Thymus inodorus</em> flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20extracts" title=" organic extracts"> organic extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extracts" title=" aqueous extracts"> aqueous extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=Thymus%20numidicus" title=" Thymus numidicus"> Thymus numidicus</a> </p> <a href="https://publications.waset.org/abstracts/53887/effectiveness-of-the-flavonoids-isolated-from-thymus-inodorus-by-different-solvents-against-some-pathogenis-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Storage of Maize Grains Using Powder and Oils of Commonly Used Medicinal Plants (Aframomum melegueta, Garcinia kola and Piper guineense)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Adejumo">T. O. Adejumo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Akinyemi"> O. S. Akinyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powders and oils of Aframomum melegueta, Garcinia kola and Piper guineense were tested as preservatives for the storage of maize grains for four weeks. The concentrations of the powders were 32.5gkg-1, 65.0gkg-1 and 97.5gkg-1 maize, while those of oils were 0.85mlkg-1, 0.50mlkg-1 and 0.75mlkg-1 maize respectively. Powders of the three botanicals at 97.5gkg-1 maize possessed insecticidal effect on Sitophilus zeamais and also inhibitory activities on Aspergillus flavus, A. fumigatus, A. niger and Fusarium verticillioides, while little effect was observed for other concentrations. Oils of the three botanicals at 0.50mlkg-1 and 0.75mlkg-1 maize showed an insecticidal effect on S. zeamais and also inhibitory activities on A. flavus, A. fumigatus, A. niger, F. verticillioides, Penicillium and Rhizopus species. Oils showed more potential as a protectant against fungal and insect pest in storage maize grains than powders. Powders and oils of A. melegueta, G. kola and P. guineense could be successfully used as biopesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aframomum%20melegueta" title="aframomum melegueta">aframomum melegueta</a>, <a href="https://publications.waset.org/abstracts/search?q=garcinia%20kola" title=" garcinia kola"> garcinia kola</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=oils" title=" oils"> oils</a>, <a href="https://publications.waset.org/abstracts/search?q=piper%20guineense" title=" piper guineense"> piper guineense</a> </p> <a href="https://publications.waset.org/abstracts/35674/storage-of-maize-grains-using-powder-and-oils-of-commonly-used-medicinal-plants-aframomum-melegueta-garcinia-kola-and-piper-guineense" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> The Discovery of Competitive Glca Inhibitors That Inhibits the Human Pathogenic Fungi Aspergillus Fumigatus and Candida Albicans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reem%20Al-Shidhani">Reem Al-Shidhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20S.%20R.%20Storer"> Isabelle S. R. Storer</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Bromley"> Michael J. Bromley</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Tabernero"> Lydia Tabernero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Invasive fungal diseases are an increasing global health concern that contributes to the high mortality rates in immunocompromised patients. The rising of antifungal resistance severely lowers the efficacy of the limited antifungal agents available. New antifungal drugs that target new mechanisms are necessary to tackle the current shortfalls. Amongst post- modifications, phosphorylation is a predominant and an outstanding protein alteration in all eukaryotes. In fungi, protein phosphorylation plays a vital role in many signal transduction pathways, including cell cycle, cell growth, metabolism, transcription, differentiation, proliferation, and virulence. The investigation of Aspergillus fumigatus phosphatases revealed seven genes essential for viability. Inhibiting one of these phosphatases is a new interesting route to develop novel antifungal drugs. In this study, we carried out an early drug discovery process targeting oneessential phosphatase, GlcA. Here, we report the identification of new GlcA inhibitors that show antifungal activity. These important finding open a new avenue to the development of novel antifungals to expand the current narrow arsenal of clinical candidates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invasive%20fungal%20diseases" title="invasive fungal diseases">invasive fungal diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphatases" title=" phosphatases"> phosphatases</a>, <a href="https://publications.waset.org/abstracts/search?q=GlcA" title=" GlcA"> GlcA</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20inhibitors" title=" competitive inhibitors"> competitive inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/154247/the-discovery-of-competitive-glca-inhibitors-that-inhibits-the-human-pathogenic-fungi-aspergillus-fumigatus-and-candida-albicans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ponchang%20Apollos%20Wuyep">Ponchang Apollos Wuyep</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Njolke%20Mafe"> Alice Njolke Mafe</a>, <a href="https://publications.waset.org/abstracts/search?q=Longchi%20Satkat%20Zacheaus"> Longchi Satkat Zacheaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogun%20Ojochogu"> Dogun Ojochogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dabot%20Ayuba%20Yakubu"> Dabot Ayuba Yakubu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terminalia%20mantaly" title="Terminalia mantaly">Terminalia mantaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigatus" title=" Aspergillus fumigatus"> Aspergillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a> </p> <a href="https://publications.waset.org/abstracts/152628/the-in-vitro-and-in-vivo-antifungal-activity-of-terminalia-mantaly-on-aspergillus-species-using-drosophila-melanogaster-uas-diptericin-as-a-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Assessment of Bio-Control Quality of Ethanolic Extracts of Some Tropical Plants on Fruit Rot Pathogens of Pineapple Fruits in Ado Ekiti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Ijato">J. Y. Ijato</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adewumi"> A. Adewumi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20O%20Yakubu"> H. O Yakubu</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Olajide"> O. O. Olajide</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20O.%20Ojo"> B. O. Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Adanikin"> B. A. Adanikin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-harvest fruit rot pathogens are one of the major factors that are responsible for food security challenges in developing countries like Nigeria. These pathogens also cause fruit food poisoning. Biocidal effects of ethanolic extracts of Khaya grandifoliola, Hyptis suaveolens, Zingiber officinale, Calophyllum inophyllum, Datura stramonium on the mycelia growth of fungal rot pathogens of pineapple fruit was investigated, the ethanolic extracts of these test plants exhibited high significant inhibitory effects on the rot pathogens, the highest ethanolic extract inhibition of Zingiber officinale was on Aspergillus flavus (38.40%) at 1.0g/ml while the least inhibitory effect was on Aspergillus fumigatus (23.10%) at 1.0g/ml, the highest ethanol extract inhibition of Datura stramonium was on Aspergillus tubingensis (24.00%) at 1.0g/ml while the least inhibitory effect was 10.00% on Colletotrichum fruticola at 1.0g/ml, the highest ethanol extract inhibition of Calophyllum inophyllum was on Trichoderma harzianum (18.50%) at 1.0g/ml while the least inhibitory effect was on Aspergillus flavus (15.00%) at 1.0g/ml, the highest ethanol extract inhibition of Hyptis suaveolens was on Aspergillus fumigatus (35.00%) at 1.0g/ml while the least inhibitory effect was on Aspergillus niger (20.00%) at 1.0g/ml, the highest ethanol extract inhibition of Khaya grandifoliola was on Aspergillus flavus (35.00%) at 1.00g/ml while the least inhibitory effect was on Aspergillus fumigates (22.00%) at 1.0g/ml, the antifungal capacity of these test plant extracts on rot causing fungi on pineapple fruit reveals the possibility of their use by farmers and fruit traders as alternative to chemical fungicide that portends great threat to human and environmental health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20rot" title="fruit rot">fruit rot</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple" title=" pineapple"> pineapple</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20poisoning" title=" food poisoning"> food poisoning</a> </p> <a href="https://publications.waset.org/abstracts/154335/assessment-of-bio-control-quality-of-ethanolic-extracts-of-some-tropical-plants-on-fruit-rot-pathogens-of-pineapple-fruits-in-ado-ekiti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Orabueze">I. C. Orabueze</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Amudalat"> A. A. Amudalat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20%20Adesegun"> S. A. Adesegun</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Usman"> A. A. Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activities" title="antimicrobial activities">antimicrobial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Bridelia%20ferruginea" title=" Bridelia ferruginea"> Bridelia ferruginea</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20disinfection" title=" dental disinfection"> dental disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=methanolic%20extract" title=" methanolic extract"> methanolic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=Olax%20subscorpioidea" title=" Olax subscorpioidea"> Olax subscorpioidea</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanical%20survey" title=" ethnobotanical survey"> ethnobotanical survey</a> </p> <a href="https://publications.waset.org/abstracts/46901/antimicrobial-value-of-olax-subscorpioidea-and-bridelia-ferruginea-on-micro-organism-isolates-of-dental-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Cross-Linked Amyloglucosidase Aggregates: A New Carrier Free Immobilization Strategy for Continuous Saccharification of Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidra%20Pervez">Sidra Pervez</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman"> Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of attaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. Cross-linked enzyme aggregate (CLEAs) is a new approach for immobilization of enzymes using carrier free strategy. This method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. Among many industrial enzymes, amyloglucosidase is an important amylolytic enzyme that hydrolyzes alpha (1→4) and alpha (1→6) glycosidic bonds in starch molecule and produce glucose as a sole end product. Glucose liberated by amyloglucosidase can be used for the production of ethanol and glucose syrups. Besides this amyloglucosidase can be widely used in various food and pharmaceuticals industries. For production of amyloglucosidase on commercial scale, filamentous fungi of genera Aspergillus are mostly used because they secrete large amount of enzymes extracellularly. The current investigation was based on isolation and identification of filamentous fungi from genus Aspergillus for the production of amyloglucosidase in submerged fermentation and optimization of cultivation parameters for starch saccharification. Natural isolates were identified as Aspergillus niger KIBGE-IB36, Aspergillus fumigatus KIBGE-IB33, Aspergillus flavus KIBGE-IB34 and Aspergillus terreus KIBGE-IB35 on taxonomical basis and 18S rDNA analysis and their sequence were submitted to GenBank. Among them, Aspergillus fumigatus KIBGE-IB33 was selected on the basis of maximum enzyme production. After optimization of fermentation conditions enzyme was immobilized on CLEA. Different parameters were optimized for maximum immobilization of amyloglucosidase. Data of enzyme stability (thermal and Storage) and reusability suggested the applicability of immobilized amyloglucosidase for continuous saccharification of starch in industrial processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspergillus" title="aspergillus">aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20processes" title=" industrial processes"> industrial processes</a>, <a href="https://publications.waset.org/abstracts/search?q=starch%20saccharification" title=" starch saccharification"> starch saccharification</a> </p> <a href="https://publications.waset.org/abstracts/30962/cross-linked-amyloglucosidase-aggregates-a-new-carrier-free-immobilization-strategy-for-continuous-saccharification-of-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yik%20Sin%20Chan">Yik Sin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bee%20Ling%20Chuah"> Bee Ling Chuah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Quan%20Chan"> Wei Quan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Jin%20Cheng"> Ri Jin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Hang%20Oon"> Yan Hang Oon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Soo%20Khoo"> Kong Soo Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Weng%20Sit"> Nam Weng Sit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bactericidal" title="bactericidal">bactericidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus" title=" Chikungunya virus"> Chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicidal" title=" fungicidal"> fungicidal</a> </p> <a href="https://publications.waset.org/abstracts/12520/evaluation-of-medicinal-plants-catunaregam-spinosa-houttuynia-cordata-and-rhapis-excelsa-from-malaysia-for-antibacterial-antifungal-and-antiviral-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparative Analysis of Biodegradation on Polythene and Plastics Buried in Fadama Soil Amended With Organic and Inorganic Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baba%20John">Baba John</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Mohammed"> Abdullahi Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to compare the analysis of biodegradation on polythene and plastics buried in fadama soil amended with Organic and Inorganic fertilizer. Physico- chemical properties of the samples were determined. Bacteria and Fungi implicated in the biodegradation were identified and enumerated. Physico- chemical properties before the analysis indicated pH range of the samples from 4.28 – 5.80 , While the percentage Organic carbon and Organic matter was highest in cow dung samples with 3.89% and 6.69% respectively. The total Nitrogen percentage was recorded to be highest in Chicken dropping (0.68), while the availability of Phosphorus (P), Sodium (Na), Pottasium (K), and Magnessium (mg) was recorded to be highest in F – soil (Control), with values to be 37ppm, 1.63 Cmolkg-1, 0.35 Cmolkg-1 and 1.18 Cmolkg-1 respectively, except for calcium which was recorded to be highest in Cow dung (5.80 Cmolkg-1). However, physico – chemical properties of the samples after analysis indicated pH range of 4.6 – 5.80, Percentage Organic carbon and Organic matter was highest in Fadama soil mixed with fertilizer, having 0.7% and 1.2% respectively. Total Percentage Nitrogen content was found to be highest (0.56) in Fadama soil mixed with poultry dropping. Availability of Sodium (Na), Pottasium (K), and Calcium (Ca) was recorded to be highest in Fadama Soil mixed with Cow dung with values to be 0.64 Cmolkg-1, 2.07 Cmolkg-1 and 3.36 Cmolkg-1 respectively. The percentage weight loss of polythene and plastic bags after nine months in fadama soil mixed with poultry dropping was 11.9% for polythene and 6.0% for plastics. Weight loss in fadama soil mixed with cow dung was 18.1% for polythene and 4.7% for plastics. Weight loss of polythene and plastic in fadama soil mixed with fertilizer (NPK) was 7.4% for polythene and 3.3% for plastics. While, the percentage weight loss of polythene and plastics after nine months of burial in fadama soil (control) was 3.5% and 0.0% respectively. The bacteria species isolated from Fadama soil, organic and inorganic fertilizers before amendments include: S. aureus, Micrococcus sp, Streptococcus. pyogenes, Psuedomonas aeruginosa Bacillus subtilis and Bacillus cereus. The fungi species include: Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium sp, Mucor sp Penicillium sp and Candida sp. The bacteria species isolated and characterized after nine months of seeding include: S. aureus, Micrococcus sp, S. pyogenes, P. aeruginosa and B. subtilis. The fungi species are: A. niger A. flavus, A. fumigatus, Mucor sp, Penicillium sp and Fusarium sp. The result of this study indicated that plastic materials can be degraded in the fadama soil irrespective of whether the soil is amended or not. The Period of composting also has a significant impact on the rate at which polythene and plastics are degraded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadama" title="Fadama">Fadama</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20and%20polythene" title=" plastic and polythene"> plastic and polythene</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a> </p> <a href="https://publications.waset.org/abstracts/28594/comparative-analysis-of-biodegradation-on-polythene-and-plastics-buried-in-fadama-soil-amended-with-organic-and-inorganic-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar">S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sultana"> R. Sultana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to evaluate the effect of <em>Aspergillus</em> species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. <em>Aspergillus flavus, A. fumigatus</em> and <em>A. niger,</em> excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of <em>Aspergillus.</em> In the control replicate, the mortality ratio for stage (N<sub>4</sub>-N<sub>6</sub>) was maximum on day 2<sup>nd</sup> i.e. [F<sub>10.7</sub> = 18.33, P < 0.05] followed by [F<sub>4.20</sub> = 07.85, P < 0.05] and [F<sub>3.77</sub> = 06.11, P < 0.05] on 4<sup>th</sup> and 3<sup>rd </sup>day, respectively. Similarly, it was a minimum i.e. [F<sub>0.48</sub> = 84.65, P < 0.05] on the 1<sup>st</sup> day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H<sub>2</sub>O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of <em>Aspergillus </em>supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acridid" title="acridid">acridid</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=grasshoppers" title=" grasshoppers"> grasshoppers</a> </p> <a href="https://publications.waset.org/abstracts/60931/effect-of-entomopathogenic-fungi-on-the-food-consumption-of-acrididae-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Min%20Yi">Yeng Min Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md%20Illias"> Rosli Md Illias</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehhuddin%20Hamdan"> Salehhuddin Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title=" cell surface display"> cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=TibA%20autotransporter" title=" TibA autotransporter"> TibA autotransporter</a> </p> <a href="https://publications.waset.org/abstracts/39502/cell-surface-display-of-xylanase-on-escherichia-coli-by-tiba-autotransporter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Synthesis, Characterization, Computational Study, Antimicrobial Evaluation, in Vivo Toxicity Study of Manganese (II) and Copper (II) Complexes with Derivative Sulfa-drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Bouchoucha">Afaf Bouchoucha</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Si%20Larbi"> Karima Si Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Bourouaia"> Mohamed Amine Bourouaia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah.Boulanouar"> Salah.Boulanouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia.Djabbar"> Safia.Djabbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis, characterization and comparative biological study of manganese (II) and copper (II) complexes with an heterocyclic ligand used in pharmaceutical field (Scheme 1), were reported. Two kinds of complexes were obtained with derivative sulfonamide, [M (L)₂ (H₂O)₂].H₂O and [M (L)₂ (Cl)₂]3H₂O. These complexes have been prepared and characterized by elemental analysis, FAB mass, ESR magnetic measurements, FTIR, UV-Visible spectra and conductivity. Their stability constants have been determined by potentiometric methods in a water-ethanol (90:10 v/v) mixture at a 0.2 mol l-1 ionic strength (NaCl) and at 25.0 ± 0.1 ºC using Sirko program. DFT calculations were done using B3LYP/6-31G(d) and B3LYP/LanL2DZ. The antimicrobial activity of ligand and complexes against the species Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilisan, Candida albicans, Candida tropicalis, Saccharomyces, Aspergillus fumigatus and Aspergillus terreus has been carried out and compared using agar-diffusion method. Also, the toxicity study was evaluated on synchesis complexes using Mice of NMRI strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hetterocyclic%20ligand" title="hetterocyclic ligand">hetterocyclic ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=complex" title=" complex"> complex</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20constant" title=" stability constant"> stability constant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20and%20genotoxicity%20study" title=" acute and genotoxicity study"> acute and genotoxicity study</a> </p> <a href="https://publications.waset.org/abstracts/157973/synthesis-characterization-computational-study-antimicrobial-evaluation-in-vivo-toxicity-study-of-manganese-ii-and-copper-ii-complexes-with-derivative-sulfa-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Molecular Profiling and Potential Bioactive Characteristics of Endophytic Fungi Isolated from Leptadenia Pyrotechnica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walaa%20Al-Maghraby">Walaa Al-Maghraby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophytes are organisms that colonize internal plant tissues without causing apparent harm to their host. Almost all groups of microorganisms have been found in endophytic association with plants may be fungi. They stimulate the production of secondary metabolites with a diverse range of biological activities. Leptadenia pyrotechnica is a more or less leafless, erect shrub with straight stems which is highly distributed in Saudi Arabia. Four endophytes fungi were isolated from Leptadenia pyrotechnica and identified using 18S ribosomal RNA sequences, which revealed four fungi genuses, namely Aspergillus terreus; Aspergillus welwitschiae; Aspergillus fumigatus and Aspergillus flavus. In this present study, four endophytic fungi from Leptadenia pyrotechnica were used for obtaining crude aqueous and ethyl acetate extracts for antimicrobial screening against 6 human pathogens, the antibacterial tests presented satisfactory results, where the pathogenic bacteria were inhibited by the four extracts tested, except for Escherichia coli that was inhibited by all extracts except ethyl acetate extract of Aspergillus terreus. Analysis of variance showed that the extract produced by endophyte Leptadenia pyrotechnica was the most effective against all bacteria, either gram-negative or positive. However, the extract was not efficient against pathogenic fungi. Therefore, this study indicates that endophytes from medicinal plant Leptadenia pyrotechnica could be potential sources of antibacterial substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20sp" title=" Aspergillus sp"> Aspergillus sp</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytes" title=" endophytes"> endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptadenia%20pyrotechnica" title=" Leptadenia pyrotechnica"> Leptadenia pyrotechnica</a> </p> <a href="https://publications.waset.org/abstracts/120642/molecular-profiling-and-potential-bioactive-characteristics-of-endophytic-fungi-isolated-from-leptadenia-pyrotechnica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Fermentable Bio-Ethanol Using Bakers and Palmwine Yeasts: Indices of Bioavailability of Carbohydrate and Sugar from Fungal Treated Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezeonu">Ezeonu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20Stephen"> Chukwuma Stephen</a>, <a href="https://publications.waset.org/abstracts/search?q=Onwurah"> Onwurah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikechukwu%20Noel%20Emmanuel"> Ikechukwu Noel Emmanuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure strains of Aspergillus fumigatus (AF), aspergillus niger (AN), aspergillus oryzae (AO), trichophyton mentagrophyte (TM), trichophyton rubrum (TR) and Trichophyton soudanense (TS) were isolated from decomposing rice husk. Freshly processed rice husk in Mandle’s medium were heat pre-treated using an autoclave at 121oC for 20 minutes. The isolated fungi as monoculture and di-culture combinations were inoculated into each of the pre-treated rice husk with the exception of two controls. Seven days hydrolysis was followed by estimation of carbohydrate, reducing sugar and non-reducing sugar. Fungal treated rice husks were left to ferment for 7 days with introduction of both baker’s and palm wine yeast. The result obtained in the work gave the highest carbohydrate (20.53 ± 2.73 %) from rice husks treated with TS + TR di-culture. The highest soluble reducing sugar (2.66 ± 0.14 %) was obtained from rice husk treated with TM. The highest soluble nonreducing sugar (18.08 ± 2.61 %) was from AF. The introduction of yeasts from palm wine gave the highest bio-ethanol (12.82 ± 0.39 %) from AO. The highest bio-ethanol (6.60 ± 0.10 %) from baker's yeast fermentation was in AO + TS treated rice husk. There was increased availability of sugar and moderate yield of bio-ethanol, especially from palm wine yeast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungi" title="fungi">fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate" title=" carbohydrate"> carbohydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20sugar" title=" reducing sugar"> reducing sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-reducing%20sugar" title=" non-reducing sugar"> non-reducing sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/27558/fermentable-bio-ethanol-using-bakers-and-palmwine-yeasts-indices-of-bioavailability-of-carbohydrate-and-sugar-from-fungal-treated-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyabode%20A.%20Kehinde">Iyabode A. Kehinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitope%20A.%20Oyedele"> Temitope A. Oyedele</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20G.%20Afolabi"> Clement G. Afolabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=storage%20methods" title="storage methods">storage methods</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=African%20Yam%20Bean" title=" African Yam Bean"> African Yam Bean</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a> </p> <a href="https://publications.waset.org/abstracts/94612/effects-of-storage-methods-on-proximate-compositions-of-african-yam-bean-sphenostylis-stenocarpa-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Deuterium Effect on the Growth of the Fungus Aspergillus Fumigatus and Candida Albicans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Doostishoar">Farzad Doostishoar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Hasanzadeh"> Abdolreza Hasanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Ayatolahi%20Mousavi"> Seyed Amin Ayatolahi Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Goals: Deuterium has different action from its isotopes hydrogen in chemical reactions and biochemical processes. It is not a significant difference in heavier atoms between the behavior of heavier isotope and the lighter One but for very lighter atoms it is significant . According to that most of the weight of all creatures body is water natural rate can be significant. In this article we want to study the effect of reduced deuterium on the fungus cell. If we saw the dependence of deuterium concentration of environment on the cells growth we can test this in invivo models too. Methods: First we measured deuterium concentration of the distillated water this analyze was operated by Arak’s heavy water company. Then the deuterium was diluted to ½ ¼ 1/8 1/16 by adding water free of deuterium for making media. In tree of samples the deuterium concentration was increased by adding D2O up to 10,50,100 times more concentrated. For candida albicans growth we used sabor medium and for aspergillus fomigatis growth we used sabor medium containing chloramphenicol. After culturing the funguses species we put the mediums for each species in the shaker incubator for 10 days in 25 centigrade. In different days and times the plates were studied morphologically and some microscopic characteristics were studied too. This experiments and cultures were repeated 3 times. Results: Statistical analyzes by paired-sample T test showed that aspergilus fomigatoos growth was decreased in concentration of 72 ppm( half deuterium concentration of negative control) significantly. In deuterium concentration reduction the growth reduce into the negative control significantly. The project results showed that candida albicans was sensitive to reduce and decrease of the deuterium in all concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deuterium" title="deuterium">deuterium</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cell" title=" cancer cell"> cancer cell</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20albicans" title=" candida albicans"> candida albicans</a> </p> <a href="https://publications.waset.org/abstracts/25328/deuterium-effect-on-the-growth-of-the-fungus-aspergillus-fumigatus-and-candida-albicans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Amylase Activities of Mould Isolated from Spoilt Ogi and Eko: Two (2) Fermented Maize Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gafar%20Bamigbade">Gafar Bamigbade</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebunkola%20Omemu"> Adebunkola Omemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Ogi” is a fermented cereal gruel prepared from maize (Zea mays), millet (Pennisetum typhoideum) or guinea corn (Sorghum bicolour). It could be boiled to give a thicker consistency wrapped in leaf allowed to cool and set to a gel known as “eko”. The objective of this study is to determine the amylase activities of mould associated with the spoilage of Ogi and eko. Moulds were isolated from spoilt Ogi and eko samples using standard microbiological procedures. The isolate was then screened for amylase production using starch agar medium. Positive isolates were used for amylase production by solid state fermentation (SFF) using rice bran as the medium. An alpha-amylase and glucoamylase activity of the crude enzyme was determined using the DNS method. The mean mold Population ranged from 1.15 X 105cfu/g for raw Ogi to 6.25 X 105cfu/g for Eko (wrapped in Leaves). Twenty-seven (27) moulds isolated from the sample include A. niger, A. flavus, A. fumigatus, Rhizopus species and Penicillium species. Aspergillus flavus had the highest percentage (51.9%) of incidence while Penicillium species had the least (3.7%). Out of the 27 isolates screened, 19 were found to be amylase positive by showing a clear zone around their colony after flooding with iodine solution. Diameter of clear zone ranged from 3.00mm (Aspergillus niger, C4) to 22.00mm (Aspergillus flavus, A1). Aspergillus niger isolated from spoilt Eko wrapped in leaf has the highest percentage alpha-amylase activity (30.8%) and Aspergillus flavus isolated from spoilt raw ogi has the lowest activity (11.4%). Aspergillus niger isolated from spoilt Eko wrapped in nylon produces the highest glucoamylase activity (240U/ml) while penicillium specie isolated from spoilt cooked ogi has the lowest activity (100U/ml). This study shows that moulds associated with spoilage of ogi and eko can produce amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucoamylase" title="glucoamylase">glucoamylase</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20amylase" title=" alpha amylase"> alpha amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=ogi" title=" ogi"> ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=eko" title=" eko"> eko</a> </p> <a href="https://publications.waset.org/abstracts/65050/amylase-activities-of-mould-isolated-from-spoilt-ogi-and-eko-two-2-fermented-maize-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=asperigillus%20fumigatus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=asperigillus%20fumigatus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>