CINXE.COM

Zufallsvariable – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Zufallsvariable – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"d79b45c1-d0a3-4f7e-987e-8a1d1b84c5be","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Zufallsvariable","wgTitle":"Zufallsvariable","wgCurRevisionId":247549682,"wgRevisionId":247549682,"wgArticleId":64265,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"], "wgCategories":["Stochastik","Statistischer Grundbegriff"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Zufallsvariable","wgRelevantArticleId":64265,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":247549682,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q176623","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles": "ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Zufallsvariable – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Zufallsvariable"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Zufallsvariable&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Zufallsvariable"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Zufallsvariable rootpage-Zufallsvariable skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Zufallsvariable</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><p>In der <a href="/wiki/Stochastik" title="Stochastik">Stochastik</a> ist eine <b>Zufallsvariable</b> (auch <b>zufällige Variable</b><sup id="cite_ref-Lexikon-511_1-0" class="reference"><a href="#cite_note-Lexikon-511-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>, <b>zufällige Größe</b><sup id="cite_ref-Bewersdorff2012_2-0" class="reference"><a href="#cite_note-Bewersdorff2012-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>, <b>zufällige Veränderliche</b><sup id="cite_ref-Lexikon-511_1-1" class="reference"><a href="#cite_note-Lexikon-511-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>, <b>zufälliges Element</b><sup id="cite_ref-Lexikon-511_1-2" class="reference"><a href="#cite_note-Lexikon-511-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>, <b>Zufallselement</b><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>, <b>Zufallsveränderliche</b><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>) eine Größe, deren Wert vom Zufall abhängig ist.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Formal ist eine Zufallsvariable eine <a href="/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik)">Funktion</a>, die jedem <a href="/wiki/Ergebnis_(Stochastik)" title="Ergebnis (Stochastik)">möglichen Ergebnis</a> eines <a href="/wiki/Zufallsexperiment" title="Zufallsexperiment">Zufallsexperiments</a> eine Größe zuordnet.<sup id="cite_ref-Bewersdorff2012_2-1" class="reference"><a href="#cite_note-Bewersdorff2012-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Ist diese Größe eine <a href="/wiki/Reelle_Zahl" title="Reelle Zahl">reelle Zahl</a>, so spricht man von einer <b>reellen Zufallsvariablen</b> oder <b>Zufallsgröße</b><sup id="cite_ref-Lexikon-511_1-3" class="reference"><a href="#cite_note-Lexikon-511-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>. Beispiele für reelle Zufallsvariablen sind die Augensumme von zwei geworfenen Würfeln und die Gewinnhöhe in einem <a href="/wiki/Gl%C3%BCcksspiel" title="Glücksspiel">Glücksspiel</a>. Zufallsvariablen können aber auch komplexere mathematische Objekte sein, wie <a href="/wiki/Zufallsfeld" title="Zufallsfeld">Zufallsfelder</a>, <a href="/wiki/Zufallsbewegung" class="mw-redirect" title="Zufallsbewegung">Zufallsbewegungen</a>, <a href="/wiki/Zufallspermutation" class="mw-redirect" title="Zufallspermutation">Zufallspermutationen</a> oder <a href="/wiki/Zufallsgraph" title="Zufallsgraph">Zufallsgraphen</a>. Über verschiedene Zuordnungsvorschriften können einem Zufallsexperiment auch verschiedene Zufallsvariablen zugeordnet werden.<sup id="cite_ref-Bewersdorff2012_2-2" class="reference"><a href="#cite_note-Bewersdorff2012-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Den einzelnen Wert, den eine Zufallsvariable bei der Durchführung eines Zufallsexperiments annimmt, nennt man <a href="/wiki/Realisierung_(Stochastik)" title="Realisierung (Stochastik)">Realisierung</a><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> oder im Falle eines <a href="/wiki/Stochastischer_Prozess" title="Stochastischer Prozess">stochastischen Prozesses</a> einen <a href="/wiki/Pfad_(Stochastik)" title="Pfad (Stochastik)">Pfad</a>. Bei der <a href="/wiki/Zufallszahlenerzeugung" class="mw-redirect" title="Zufallszahlenerzeugung">Zufallszahlenerzeugung</a> werden Realisierungen spezieller Zufallsexperimente als <a href="/wiki/Zufallszahl" title="Zufallszahl">Zufallszahlen</a> bezeichnet. </p><p>Während <a href="/wiki/Andrei_Nikolajewitsch_Kolmogorow" title="Andrei Nikolajewitsch Kolmogorow">A. N. Kolmogorow</a> zunächst von <i>durch den Zufall bestimmten Größen</i> sprach<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>, führte er 1933 den Begriff <i>zufällige Größe</i> ein<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> und sprach später von <i>Zufallsgrößen</i>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Im Jahr 1933 ist auch schon der Begriff <i>Zufallsvariable</i> in Gebrauch.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Bereits 1935 ist der Begriff <i>zufällige Variable</i> nachweisbar.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Später hat sich (ausgehend vom englischen <i>random variable</i>, das sich gegen <i>chance variable</i> und <i>stochastic Variable </i> durchsetzte<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>) der etwas irreführende Begriff<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <i>Zufallsvariable</i> durchgesetzt. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Einführung"><span class="tocnumber">1</span> <span class="toctext">Einführung</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Notation"><span class="tocnumber">1.1</span> <span class="toctext">Notation</span></a></li> <li class="toclevel-2 tocsection-3"><a href="#Elemente_der_Maßtheorie"><span class="tocnumber">1.2</span> <span class="toctext">Elemente der Maßtheorie</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-4"><a href="#Definition"><span class="tocnumber">2</span> <span class="toctext">Definition</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#Beispiel:_Zweimaliger_Würfelwurf"><span class="tocnumber">2.1</span> <span class="toctext">Beispiel: Zweimaliger Würfelwurf</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Bemerkungen"><span class="tocnumber">2.2</span> <span class="toctext">Bemerkungen</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Reelle_Zufallsvariable"><span class="tocnumber">2.3</span> <span class="toctext">Reelle Zufallsvariable</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Mehrdimensionale_Zufallsvariable"><span class="tocnumber">2.4</span> <span class="toctext">Mehrdimensionale Zufallsvariable</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Komplexe_Zufallsvariable"><span class="tocnumber">2.5</span> <span class="toctext">Komplexe Zufallsvariable</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Numerische_oder_erweiterte_Zufallsvariable"><span class="tocnumber">2.6</span> <span class="toctext">Numerische oder erweiterte Zufallsvariable</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Zufallselement"><span class="tocnumber">2.7</span> <span class="toctext">Zufallselement</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-12"><a href="#Die_Verteilung_von_Zufallsvariablen,_Existenz"><span class="tocnumber">3</span> <span class="toctext">Die Verteilung von Zufallsvariablen, Existenz</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#Mathematische_Attribute_für_Zufallsvariablen"><span class="tocnumber">4</span> <span class="toctext">Mathematische Attribute für Zufallsvariablen</span></a> <ul> <li class="toclevel-2 tocsection-14"><a href="#Diskret"><span class="tocnumber">4.1</span> <span class="toctext">Diskret</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Konstant"><span class="tocnumber">4.2</span> <span class="toctext">Konstant</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Unabhängig"><span class="tocnumber">4.3</span> <span class="toctext">Unabhängig</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Identisch_verteilt"><span class="tocnumber">4.4</span> <span class="toctext">Identisch verteilt</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Unabhängig_und_identisch_verteilt"><span class="tocnumber">4.5</span> <span class="toctext">Unabhängig und identisch verteilt</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Austauschbar"><span class="tocnumber">4.6</span> <span class="toctext">Austauschbar</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-20"><a href="#Mathematische_Attribute_für_reelle_Zufallsvariablen"><span class="tocnumber">5</span> <span class="toctext">Mathematische Attribute für reelle Zufallsvariablen</span></a> <ul> <li class="toclevel-2 tocsection-21"><a href="#Kenngrößen"><span class="tocnumber">5.1</span> <span class="toctext">Kenngrößen</span></a></li> <li class="toclevel-2 tocsection-22"><a href="#Stetig_oder_kontinuierlich"><span class="tocnumber">5.2</span> <span class="toctext">Stetig oder kontinuierlich</span></a></li> <li class="toclevel-2 tocsection-23"><a href="#Verteilungsfunktion"><span class="tocnumber">5.3</span> <span class="toctext">Verteilungsfunktion</span></a></li> <li class="toclevel-2 tocsection-24"><a href="#Transformation"><span class="tocnumber">5.4</span> <span class="toctext">Transformation</span></a> <ul> <li class="toclevel-3 tocsection-25"><a href="#Beispiel"><span class="tocnumber">5.4.1</span> <span class="toctext">Beispiel</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-26"><a href="#Erwartungswert"><span class="tocnumber">5.5</span> <span class="toctext">Erwartungswert</span></a></li> <li class="toclevel-2 tocsection-27"><a href="#Integrierbar_und_quasi-integrierbar"><span class="tocnumber">5.6</span> <span class="toctext">Integrierbar und quasi-integrierbar</span></a></li> <li class="toclevel-2 tocsection-28"><a href="#Standardisierung"><span class="tocnumber">5.7</span> <span class="toctext">Standardisierung</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-29"><a href="#Sonstiges"><span class="tocnumber">6</span> <span class="toctext">Sonstiges</span></a></li> <li class="toclevel-1 tocsection-30"><a href="#Literatur"><span class="tocnumber">7</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-31"><a href="#Weblinks"><span class="tocnumber">8</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-32"><a href="#Einzelnachweise"><span class="tocnumber">9</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Einführung"><span id="Einf.C3.BChrung"></span>Einführung</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Einführung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Einführung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Grundidee hinter der Zufallsvariable ist es, den Zufall mit Hilfe des Begriffes der <a href="/wiki/Funktion_(Mathematik)" title="Funktion (Mathematik)">Funktion</a> zu modellieren. Dies wird einige Vorteile mit sich bringen. Angenommen, wir betrachten ein Zufallsexperiment, welches nur zwei Ausgänge hat, welche wir mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20e29ac56d6cc52eaeb2f9c0bf79ef706428ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b914a8bfef5d1b9b106048afa0aab4a99251f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{2}}"></span> notieren. Mit Hilfe der Funktion können wir nun eine „zufällige Variable“ definieren, die berücksichtigt, ob <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20e29ac56d6cc52eaeb2f9c0bf79ef706428ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{1}}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b914a8bfef5d1b9b106048afa0aab4a99251f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{2}}"></span> eingetroffen ist. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:A_random_variable.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/A_random_variable.jpg/220px-A_random_variable.jpg" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/A_random_variable.jpg/330px-A_random_variable.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/A_random_variable.jpg/440px-A_random_variable.jpg 2x" data-file-width="612" data-file-height="436" /></a><figcaption>Ein Beispiel einer Zufallsvariable. Die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> steht für eine beliebige Menge, welche die Zahlen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1,0,1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1,0,1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f0523ca92fd48efb5c64ef4dbbe8c05dd994d15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.363ex; height:2.509ex;" alt="{\displaystyle -1,0,1}"></span> enthält.</figcaption></figure> <p>Dies geschieht durch die Funktion </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )={\begin{cases}a_{1},&amp;\quad {\text{wenn }}\omega =\omega _{1},\\a_{2},&amp;\quad {\text{wenn }}\omega =\omega _{2}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wenn&#xA0;</mtext> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wenn&#xA0;</mtext> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )={\begin{cases}a_{1},&amp;\quad {\text{wenn }}\omega =\omega _{1},\\a_{2},&amp;\quad {\text{wenn }}\omega =\omega _{2}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b82d84bb64573c2346fa4140d55e2c34eaea550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.972ex; height:6.176ex;" alt="{\displaystyle X(\omega )={\begin{cases}a_{1},&amp;\quad {\text{wenn }}\omega =\omega _{1},\\a_{2},&amp;\quad {\text{wenn }}\omega =\omega _{2}.\end{cases}}}"></span></dd></dl> <p>wobei die Werte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf42ecda092975c9c69dae84e16182ba5fe2e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/270580da7333505d9b73697417d0543c43c98b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{2}}"></span> vom Experiment abhängen, welches man modelliert. Man nennt </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20e29ac56d6cc52eaeb2f9c0bf79ef706428ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b914a8bfef5d1b9b106048afa0aab4a99251f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{2}}"></span> <a href="/wiki/Ergebnis_(Stochastik)" title="Ergebnis (Stochastik)">Ergebnisse</a> und zusammen bilden sie den <a href="/wiki/Ergebnisraum" title="Ergebnisraum">Ergebnisraum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f989ee01df6242de19384a4ada27c68e5afd6a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.135ex; height:2.843ex;" alt="{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}"></span>. Welches dieser Ergebnisse eintritt, wissen wir <a href="/wiki/A_priori" title="A priori">a priori</a> nicht.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf42ecda092975c9c69dae84e16182ba5fe2e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/270580da7333505d9b73697417d0543c43c98b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{2}}"></span> Realisierungen der Zufallsvariable. Wir notieren die Menge, in der sie sich befinden, mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>.</li></ul> <p>In den meisten Fällen wählt man entweder die reellen Zahlen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403069620dea86b725997dd3b085172bd11f1bec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.552ex; height:2.176ex;" alt="{\displaystyle E=\mathbb {R} }"></span> oder eine diskrete Menge wie zum Beispiel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d22ddc1999a3f762e30d2c8891a99b03d06835be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.552ex; height:2.176ex;" alt="{\displaystyle E=\mathbb {N} }"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20fecba36f88aefc44d8a94e940ffd454794461e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.424ex; height:2.176ex;" alt="{\displaystyle E=\mathbb {Z} }"></span>. Allgemeiner kann <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> aber auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, ein <a href="/wiki/Banach-Raum" class="mw-redirect" title="Banach-Raum">Banach-Raum</a> oder ein <a href="/wiki/Topologischer_Vektorraum" title="Topologischer Vektorraum">topologischer Vektorraum</a> sein. </p><p>Eine Zufallsvariable ist somit eine Abbildung der Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d99cb9d5a88548388921cc682df17876bdecaab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.082ex; height:2.176ex;" alt="{\displaystyle X\colon \Omega \to E}"></span>. </p> <ul><li><b>Beispiel (Münzwurf): </b> Wir möchten einen Münzwurf modellieren. Seien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}={\text{Kopf}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Kopf</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}={\text{Kopf}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9e1c86844d066314c7dedf8e151d1b84b118743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.153ex; width:10.727ex; height:2.509ex;" alt="{\displaystyle \omega _{1}={\text{Kopf}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{2}={\text{Zahl}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Zahl</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{2}={\text{Zahl}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2f5e210dd8af0f961e69c88cccedc28e5adf220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.121ex; height:2.509ex;" alt="{\displaystyle \omega _{2}={\text{Zahl}}}"></span> das zufällige Ergebnis des Münzwurfs und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f989ee01df6242de19384a4ada27c68e5afd6a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.135ex; height:2.843ex;" alt="{\displaystyle \Omega =\{\omega _{1},\omega _{2}\}}"></span>. Nun können wir verschiedene Zufallsvariablen bilden, zum Beispiel eine Wette, bei der 1 EUR ausgezahlt wird, wenn Zahl erscheint und sonst nichts. Dann ist die Auszahlungssumme die Zufallsvariable</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )={\begin{cases}0,&amp;\quad {\text{wenn }}\omega =\omega _{1},\\1,&amp;\quad {\text{wenn }}\omega =\omega _{2},\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wenn&#xA0;</mtext> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wenn&#xA0;</mtext> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )={\begin{cases}0,&amp;\quad {\text{wenn }}\omega =\omega _{1},\\1,&amp;\quad {\text{wenn }}\omega =\omega _{2},\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f09b360fe951beb84f6f17392ccbae9ec22f08db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.85ex; height:6.176ex;" alt="{\displaystyle X(\omega )={\begin{cases}0,&amp;\quad {\text{wenn }}\omega =\omega _{1},\\1,&amp;\quad {\text{wenn }}\omega =\omega _{2},\end{cases}}}"></span></dd></dl></dd> <dd>Wir haben also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dac97b493b8da48c509596f28389f8dc2b13853" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.545ex; height:2.509ex;" alt="{\displaystyle a_{1}=0}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54d6d77aa893417872e5a68750196e072ea93ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.545ex; height:2.509ex;" alt="{\displaystyle a_{2}=1}"></span> gewählt, hätten wir hingegen bei falscher Wette 1 EUR bezahlen müssen, dann hätten wir uns für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee74ab1a700c9d827bdd24251de62e686f42a61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.353ex; height:2.509ex;" alt="{\displaystyle a_{1}=-1}"></span> entschieden.</dd></dl> <ul><li><b>Beispiel (Würfelwurf): </b> Wir möchten einen Würfelwurf modellieren. Seien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}=1,\omega _{2}=2,\dots ,\omega _{6}=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}=1,\omega _{2}=2,\dots ,\omega _{6}=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/842e0515857e534778ac11ee2b1916b38562b05a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.495ex; height:2.509ex;" alt="{\displaystyle \omega _{1}=1,\omega _{2}=2,\dots ,\omega _{6}=6}"></span>, dann ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{\omega _{1},\omega _{2},\dots ,\omega _{6}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{\omega _{1},\omega _{2},\dots ,\omega _{6}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cd7efeeca975a0fae2cfd1b96b5d1e62003e20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.814ex; height:2.843ex;" alt="{\displaystyle \Omega =\{\omega _{1},\omega _{2},\dots ,\omega _{6}\}}"></span> und der Würfel die Zufallsvariable</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bca35a6440d28b2b0a2de411921aa09535516f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.426ex; height:2.843ex;" alt="{\displaystyle X(\omega )=\omega .}"></span></dd></dl></dd></dl> <ul><li><b>Beispiel (2-facher Münzwurf): </b> Wir möchten den 2-fachen Münzwurf modellieren. Die Ergebnismenge ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{(K,K),(K,Z),(Z,Z),(Z,K)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{(K,K),(K,Z),(Z,Z),(Z,K)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/367ed973b69c40982d348313a2d7e8b790a9aede" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.562ex; height:2.843ex;" alt="{\displaystyle \Omega =\{(K,K),(K,Z),(Z,Z),(Z,K)\}}"></span>, ihre Elemente haben die Form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\left(\omega _{1},\omega _{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\left(\omega _{1},\omega _{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/023c133bbd2b1db4b90507e5fb2d84326ae6f424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.388ex; height:2.843ex;" alt="{\displaystyle \omega =\left(\omega _{1},\omega _{2}\right)}"></span>. Wettet man bei zwei Münzwürfen beide Male auf Kopf, so lassen sich beispielsweise folgende Zufallsvariablen untersuchen:</li></ul> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}(\omega ):=X(\omega _{1})\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}(\omega ):=X(\omega _{1})\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a5d873913211bcd9f02a6f8faf2a3e761d00aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.793ex; height:2.843ex;" alt="{\displaystyle X_{1}(\omega ):=X(\omega _{1})\in \{0,1\}}"></span> als Auszahlung nach der ersten Wette,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}(\omega ):=X(\omega _{2})\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}(\omega ):=X(\omega _{2})\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51cb22d173172593fa112dfcdf191b80371b28d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.793ex; height:2.843ex;" alt="{\displaystyle X_{2}(\omega ):=X(\omega _{2})\in \{0,1\}}"></span> als Auszahlung nach der zweiten Wette,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(\omega ):=X(\omega _{1})+X(\omega _{2})\in \{0,1,2\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(\omega ):=X(\omega _{1})+X(\omega _{2})\in \{0,1,2\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25235e4d4f47a590be63aab6f158432592f8c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.64ex; height:2.843ex;" alt="{\displaystyle S(\omega ):=X(\omega _{1})+X(\omega _{2})\in \{0,1,2\}}"></span> als Summe der beiden Auszahlungen.</li></ol> <p>Zufallsvariablen werden üblicherweise mit einem Großbuchstaben bezeichnet (hier <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,X_{1},X_{2},S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,X_{1},X_{2},S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62a8a555844cbbc4f372a0cff607bd549c8ae6c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.538ex; height:2.509ex;" alt="{\displaystyle X,X_{1},X_{2},S}"></span>), während man für die Realisierungen die entsprechenden Kleinbuchstaben verwendet (zum Beispiel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68209597f05acea5c148021527eb7fe21bd77a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.645ex; height:2.509ex;" alt="{\displaystyle x_{1}=1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{2}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{2}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1728b541c2d859bd489c1225a6aae0452099e611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.645ex; height:2.509ex;" alt="{\displaystyle x_{2}=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac386d8f227fb823cede9b3e33d706cad3ed306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.351ex; height:2.176ex;" alt="{\displaystyle s=1}"></span>). </p><p>Im Münzwurf-Beispiel hat die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{{\text{Kopf}},{\text{Zahl}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Kopf</mtext> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Zahl</mtext> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{{\text{Kopf}},{\text{Zahl}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dc7574e1e4b7d130125ff2c3b008b5fa7277809" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.632ex; height:2.843ex;" alt="{\displaystyle \Omega =\{{\text{Kopf}},{\text{Zahl}}\}}"></span> eine konkrete Interpretation. In der weiteren Entwicklung der Wahrscheinlichkeitstheorie ist es oft zweckmäßig, die Elemente von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> als abstrakte Repräsentanten des Zufalls zu betrachten, ohne ihnen eine konkrete Bedeutung zuzuweisen, und dann sämtliche zu modellierende Zufallsvorgänge als Zufallsvariable zu erfassen. </p> <div class="mw-heading mw-heading3"><h3 id="Notation">Notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Notation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Notation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Häufig verzichtet man auf die Schreibweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega _{i})=a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega _{i})=a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0374b4ed51c3db8dc0c89f6cbe21a820439e861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.163ex; height:2.843ex;" alt="{\displaystyle X(\omega _{i})=a_{i}}"></span> und benützt stattdessen die Kurzschreibweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4854264c118d5edafd36b389eda8d2f275b1b6e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.108ex; height:2.509ex;" alt="{\displaystyle X=a_{i}}"></span>. Dies sollte aber nicht falsch verstanden werden, denn es handelt sich hier nur um eine Abkürzung für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega _{i})=a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega _{i})=a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0374b4ed51c3db8dc0c89f6cbe21a820439e861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.163ex; height:2.843ex;" alt="{\displaystyle X(\omega _{i})=a_{i}}"></span> respektive für die Menge aller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>, so dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c01f08fd90e46ff361a02aa3901c104301da0c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.363ex; height:2.843ex;" alt="{\displaystyle X(\omega )=a_{i}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Elemente_der_Maßtheorie"><span id="Elemente_der_Ma.C3.9Ftheorie"></span>Elemente der Maßtheorie</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Elemente der Maßtheorie" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Elemente der Maßtheorie"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Damit man über Wahrscheinlichkeiten sprechen kann, müssen die Räume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> noch mit zusätzlichen Strukturen ausgestattet sein. Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> brauchen wir </p> <ul><li>ein System <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>, welches alle möglichen Ereignisse enthält,</li> <li>eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:\Sigma \to [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:\Sigma \to [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c81108e00759ea38fa320025d07276ed136fadcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.627ex; height:2.843ex;" alt="{\displaystyle P:\Sigma \to [0,1]}"></span>, welche den möglichen Ereignissen aus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> eine Wahrscheinlichkeit zuordnet.</li></ul> <p>Aus technischer Sicht verwendet man hierfür die <a href="/wiki/Ma%C3%9Ftheorie" title="Maßtheorie">Maßtheorie</a>, was zum Begriff des <a href="/wiki/Wahrscheinlichkeitsraum" title="Wahrscheinlichkeitsraum">Wahrscheinlichkeitsraumes</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> führt, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> eine sogenannte <a href="/wiki/%CE%A3-Algebra" title="Σ-Algebra">σ-Algebra</a> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> ein <a href="/wiki/Wahrscheinlichkeitsma%C3%9F" title="Wahrscheinlichkeitsmaß">Wahrscheinlichkeitsmaß</a> ist. Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> brauchen wir etwas ähnliches, welches mit der Struktur auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> verträglich ist. </p><p>Konkret brauchen wir für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> ein System <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span>, welches mit dem System <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> verträglich ist. Dies führt zum Begriff der <a href="/wiki/Messbare_Funktion" title="Messbare Funktion">Messbarkeit</a>. Es soll gelten </p> <ul><li>für jedes Element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba064cbb292b34ae9acdb71e2d4f791f4de495d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.947ex; height:2.509ex;" alt="{\displaystyle A\in \Sigma &#039;}"></span> muss das <a href="/wiki/Urbild_(Mathematik)" title="Urbild (Mathematik)">Urbild</a> unter der Zufallsvariable, das bedeutet die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B:=X^{-1}(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>:=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B:=X^{-1}(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/459565fa21ef2d749158c0b1773c3289488f0a3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.391ex; height:3.176ex;" alt="{\displaystyle B:=X^{-1}(A)}"></span>, ein Ereignis in dem System <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> sein, das bedeutet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b9b1f1a6c811c631d544e305634d268959d802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.283ex; height:2.176ex;" alt="{\displaystyle B\in \Sigma }"></span>.</li></ul> <p>Wenn diese Eigenschaft gilt, dann nennen wir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> eine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Sigma ,\Sigma ')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Sigma ,\Sigma ')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9de148db981622952bdf932ba661d971def12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:3.009ex;" alt="{\displaystyle (\Sigma ,\Sigma &#039;)}"></span>-messbare Funktion. Zufallsvariablen erfüllen diese Eigenschaft (für ein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span>) und sind messbare Funktionen. </p><p>Als Letztes ermöglicht uns die Messbarkeit, das Wahrscheinlichkeitsmaß <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> auf den Raum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\Sigma ')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\Sigma ')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b5c9bd9547e11f41374609a441a045c5d7cde9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.982ex; height:3.009ex;" alt="{\displaystyle (E,\Sigma &#039;)}"></span> zu übertragen. Dies führt zum Begriff der <a href="/wiki/Wahrscheinlichkeitsverteilung" class="mw-redirect" title="Wahrscheinlichkeitsverteilung">Wahrscheinlichkeitsverteilung</a>, welche als sogenanntes <a href="/wiki/Bildma%C3%9F" title="Bildmaß">Bildmaß</a> unter der Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f67cd8faa9a3c7f492a2cb6ff9ec25d8dea473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.249ex; height:3.343ex;" alt="{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}"></span> für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba064cbb292b34ae9acdb71e2d4f791f4de495d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.947ex; height:2.509ex;" alt="{\displaystyle A\in \Sigma &#039;}"></span> definiert ist. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=4" title="Abschnitt bearbeiten: Definition" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=4" title="Quellcode des Abschnitts bearbeiten: Definition"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Als Zufallsvariable bezeichnet man eine <a href="/wiki/Messbare_Funktion" title="Messbare Funktion">messbare Funktion</a> von einem <a href="/wiki/Wahrscheinlichkeitsraum" title="Wahrscheinlichkeitsraum">Wahrscheinlichkeitsraum</a> in einen <a href="/wiki/Messraum_(Mathematik)" title="Messraum (Mathematik)">Messraum</a>. </p><p>Eine formale mathematische Definition lässt sich wie folgt geben:<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>Es seien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> ein Wahrscheinlichkeitsraum und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\Sigma ')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\Sigma ')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b5c9bd9547e11f41374609a441a045c5d7cde9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.982ex; height:3.009ex;" alt="{\displaystyle (E,\Sigma &#039;)}"></span> ein Messraum. Eine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Sigma ,\Sigma ')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Sigma ,\Sigma ')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9de148db981622952bdf932ba661d971def12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:3.009ex;" alt="{\displaystyle (\Sigma ,\Sigma &#039;)}"></span>-messbare Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d99cb9d5a88548388921cc682df17876bdecaab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.082ex; height:2.176ex;" alt="{\displaystyle X\colon \Omega \to E}"></span> heißt dann eine <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>-Zufallsvariable auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span></i> oder einfach nur <b>Zufallsvariable</b>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Beispiel:_Zweimaliger_Würfelwurf"><span id="Beispiel:_Zweimaliger_W.C3.BCrfelwurf"></span>Beispiel: Zweimaliger Würfelwurf</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=5" title="Abschnitt bearbeiten: Beispiel: Zweimaliger Würfelwurf" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=5" title="Quellcode des Abschnitts bearbeiten: Beispiel: Zweimaliger Würfelwurf"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Twodice.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Twodice.svg/220px-Twodice.svg.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Twodice.svg/330px-Twodice.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Twodice.svg/440px-Twodice.svg.png 2x" data-file-width="476" data-file-height="298" /></a><figcaption>Summe von zwei Würfeln:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)\xrightarrow {S} (E,\Sigma ',P^{S})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>S</mi> </mpadded> </mover> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)\xrightarrow {S} (E,\Sigma ',P^{S})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36a76698eee12fbab3ba5e0787efb2431af165ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-top: -0.293ex; width:23.722ex; height:4.176ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)\xrightarrow {S} (E,\Sigma &#039;,P^{S})}"></span></figcaption></figure> <p>Das Experiment, mit einem fairen Würfel zweimal zu würfeln, lässt sich mit folgendem Wahrscheinlichkeitsraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> modellieren: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> ist die Menge der 36 möglichen Ergebnisse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{(1,1),(1,2),\dotsc ,(6,5),(6,6)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{(1,1),(1,2),\dotsc ,(6,5),(6,6)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b72b311178e86b977e87a7861bb80ddd91cf4296" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.02ex; height:2.843ex;" alt="{\displaystyle \Omega =\{(1,1),(1,2),\dotsc ,(6,5),(6,6)\}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> ist die <a href="/wiki/Potenzmenge" title="Potenzmenge">Potenzmenge</a> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span></li> <li>Will man zwei unabhängige Würfe mit einem fairen Würfel modellieren, so setzt man alle 36 Ergebnisse gleich wahrscheinlich, wählt also das <a href="/wiki/Wahrscheinlichkeitsma%C3%9F" title="Wahrscheinlichkeitsmaß">Wahrscheinlichkeitsmaß</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> als <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\{(n_{1},n_{2})\}\right)={\tfrac {1}{36}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>36</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\{(n_{1},n_{2})\}\right)={\tfrac {1}{36}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6727fc0cfe4d5cfa4eedb5973cce9985ecff3dd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.586ex; height:3.676ex;" alt="{\displaystyle P\left(\{(n_{1},n_{2})\}\right)={\tfrac {1}{36}}}"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1},n_{2}\in \{1,2,3,4,5,6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1},n_{2}\in \{1,2,3,4,5,6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d9b76f63fed850a002db38d659880246ed8ef2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.242ex; height:2.843ex;" alt="{\displaystyle n_{1},n_{2}\in \{1,2,3,4,5,6\}}"></span>.</li></ul> <p>Die Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> (gewürfelte Zahl des ersten Würfels), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> (gewürfelte Zahl des zweiten Würfels) und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> (Augensumme des ersten und zweiten Würfels) werden als folgende Funktionen definiert: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7bc6ddb6c0e2c5e8bb8d9d9c9bb62637bb78526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.79ex; height:2.843ex;" alt="{\displaystyle X_{1}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1},}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2b418a551dd622d099433d816ec54ea3b086482" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.79ex; height:2.843ex;" alt="{\displaystyle X_{2}\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{2},}"></span> und</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1}+n_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>;</mo> <mspace width="1em" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1}+n_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280055dc8ad5ba83d54e16b5472157c58016402d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.6ex; height:2.843ex;" alt="{\displaystyle S\colon \Omega \to \mathbb {R} ;\quad \left(n_{1},n_{2}\right)\mapsto n_{1}+n_{2},}"></span></li></ol> <p>wobei für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span> die <a href="/wiki/Borelsche_%CF%83-Algebra" title="Borelsche σ-Algebra">borelsche σ-Algebra</a> auf den reellen Zahlen gewählt wird. </p> <div class="mw-heading mw-heading3"><h3 id="Bemerkungen">Bemerkungen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=6" title="Abschnitt bearbeiten: Bemerkungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=6" title="Quellcode des Abschnitts bearbeiten: Bemerkungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In der Regel wird auf die konkrete Angabe der zugehörigen Räume verzichtet; es wird angenommen, dass aus dem Kontext klar ist, welcher Wahrscheinlichkeitsraum auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> und welcher Messraum auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> gemeint ist. </p><p>Bei einer endlichen Ergebnismenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> meistens als die Potenzmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> gewählt. Die Forderung, dass die verwendete Funktion messbar ist, ist dann immer erfüllt. Messbarkeit wird erst wirklich bedeutsam, wenn die Ergebnismenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> <a href="/wiki/Abz%C3%A4hlbarkeit" class="mw-redirect" title="Abzählbarkeit">überabzählbar</a> viele Elemente enthält. </p><p>Einige Klassen von Zufallsvariablen mit bestimmten Wahrscheinlichkeits- und Messräumen werden besonders häufig verwendet. Diese werden teilweise mit Hilfe alternativer Definitionen eingeführt, die keine Kenntnisse der Maßtheorie voraussetzen: </p> <div class="mw-heading mw-heading3"><h3 id="Reelle_Zufallsvariable">Reelle Zufallsvariable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=7" title="Abschnitt bearbeiten: Reelle Zufallsvariable" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=7" title="Quellcode des Abschnitts bearbeiten: Reelle Zufallsvariable"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bei reellen Zufallsvariablen ist der Bildraum die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> der <a href="/wiki/Reelle_Zahl" title="Reelle Zahl">reellen Zahlen</a> versehen mit der <a href="/wiki/Borelsche_%CF%83-Algebra" title="Borelsche σ-Algebra">borelschen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-Algebra</a>. Die allgemeine Definition von Zufallsvariablen lässt sich in diesem Fall zur folgenden Definition vereinfachen: </p> <dl><dd>Eine reelle Zufallsvariable ist eine Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b68ecb50490003c72b7d6627145965f602b302b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.984ex; height:2.176ex;" alt="{\displaystyle X\colon \Omega \to \mathbb {R} }"></span>, die jedem Ergebnis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> aus einer <a href="/wiki/Ergebnismenge" class="mw-redirect" title="Ergebnismenge">Ergebnismenge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> eine reelle Zahl <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ad6b0ad347d4b6b204815aabf621bd488934ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.235ex; height:2.843ex;" alt="{\displaystyle X(\omega )}"></span> zuordnet und die folgende Messbarkeitsbedingung erfüllt: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in \mathbb {R} :\ \lbrace \omega \mid X(\omega )\leq x\rbrace \in \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>:</mo> <mtext>&#xA0;</mtext> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in \mathbb {R} :\ \lbrace \omega \mid X(\omega )\leq x\rbrace \in \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7329d612d40011184bb856bb508ebcbb9844cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.549ex; height:2.843ex;" alt="{\displaystyle \forall x\in \mathbb {R} :\ \lbrace \omega \mid X(\omega )\leq x\rbrace \in \Sigma }"></span></dd></dl></dd></dl> <p>Das bedeutet, dass die Menge aller Ergebnisse, deren Realisierung unterhalb eines bestimmten Wertes liegt, ein Ereignis bilden muss. </p><p>Im Beispiel des zweimaligen Würfelns sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> jeweils reelle Zufallsvariablen. </p> <div class="mw-heading mw-heading3"><h3 id="Mehrdimensionale_Zufallsvariable">Mehrdimensionale Zufallsvariable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=8" title="Abschnitt bearbeiten: Mehrdimensionale Zufallsvariable" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=8" title="Quellcode des Abschnitts bearbeiten: Mehrdimensionale Zufallsvariable"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Zufallsvektor" title="Zufallsvektor">Zufallsvektor</a></i></div> <p>Eine mehrdimensionale Zufallsvariable ist eine messbare Abbildung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873bfd9250cbfe1e3bdb429b97676cca0db114bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.203ex; height:2.343ex;" alt="{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}"></span> für eine Dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>. Sie wird auch als Zufallsvektor bezeichnet. Damit ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=(X_{1},\dotsc ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=(X_{1},\dotsc ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600018be709a9b3af17ce5a01d49c722d8f8a82f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.187ex; height:2.843ex;" alt="{\displaystyle X=(X_{1},\dotsc ,X_{n})}"></span> gleichzeitig ein Vektor von einzelnen reellen Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}\colon \Omega \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}\colon \Omega \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e9aba11cd11624d105eef1d7499120206292cb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.728ex; height:2.509ex;" alt="{\displaystyle X_{i}\colon \Omega \to \mathbb {R} }"></span>, die alle auf dem gleichen Wahrscheinlichkeitsraum definiert sind. Die Verteilung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> wird als <a href="/wiki/Multivariate_Verteilung" title="Multivariate Verteilung">multivariat</a> bezeichnet, die Verteilungen der Komponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span> nennt man auch <a href="/wiki/Randverteilung" title="Randverteilung">Randverteilungen</a>. Die mehrdimensionalen Entsprechungen von Erwartungswert und Varianz sind der <a href="/wiki/Erwartungswertvektor" class="mw-redirect" title="Erwartungswertvektor">Erwartungswertvektor</a> und die <a href="/wiki/Kovarianzmatrix" title="Kovarianzmatrix">Kovarianzmatrix</a>. </p><p>Im Beispiel des zweimaligen Würfelns ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=(X_{1},X_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=(X_{1},X_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0beb456bae6b7f6f95c7287ec3ff1bb350ce3e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.879ex; height:2.843ex;" alt="{\displaystyle X=(X_{1},X_{2})}"></span> eine zweidimensionale Zufallsvariable. </p><p>Zufallsvektoren sollten nicht mit <a href="/wiki/Wahrscheinlichkeitsvektor" title="Wahrscheinlichkeitsvektor">Wahrscheinlichkeitsvektoren</a> (auch stochastische Vektoren genannt) verwechselt werden. Diese sind Elemente des <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, deren Komponenten positiv sind und deren Summe 1 ergibt. Sie beschreiben die Wahrscheinlichkeitsmaße auf Mengen mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> Elementen. </p> <div class="mw-heading mw-heading3"><h3 id="Komplexe_Zufallsvariable">Komplexe Zufallsvariable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=9" title="Abschnitt bearbeiten: Komplexe Zufallsvariable" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=9" title="Quellcode des Abschnitts bearbeiten: Komplexe Zufallsvariable"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bei komplexen Zufallsvariablen ist der Bildraum die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> der <a href="/wiki/Komplexe_Zahl" title="Komplexe Zahl">komplexen Zahlen</a> versehen mit der durch die kanonische Vektorraumisomorphie zwischen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> „geerbten“ borelschen σ-Algebra. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> ist genau dann eine Zufallsvariable, wenn Realteil <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/108f94af38db436086bba3990d14b525eea12e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.532ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} (X)}"></span> und Imaginärteil <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/788d1fb4db2eca2a13830ec882ef0f65b0cf892e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.565ex; height:2.843ex;" alt="{\displaystyle \operatorname {Im} (X)}"></span> jeweils reelle Zufallsvariablen sind. </p> <div class="mw-heading mw-heading3"><h3 id="Numerische_oder_erweiterte_Zufallsvariable">Numerische oder erweiterte Zufallsvariable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=10" title="Abschnitt bearbeiten: Numerische oder erweiterte Zufallsvariable" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=10" title="Quellcode des Abschnitts bearbeiten: Numerische oder erweiterte Zufallsvariable"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Erweiterte_Zufallsvariable" title="Erweiterte Zufallsvariable">Erweiterte Zufallsvariable</a></i></div> <p>Der Begriff <i>Zufallsvariable</i> ohne weitere Charakterisierung bedeutet meistens – und fast immer in anwendungsnahen Darstellungen – <i>reelle Zufallsvariable</i>. Zur Unterscheidung von einer solchen wird eine Zufallsvariable mit Werten in den <a href="/wiki/Erweiterte_reelle_Zahl" title="Erweiterte reelle Zahl">erweiterten reellen Zahlen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} \cup \{-\infty ,\infty \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} \cup \{-\infty ,\infty \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631d1ab8a49d8490d6dcfa45a673a5f13a7902c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.075ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} \cup \{-\infty ,\infty \}}"></span> als <b>numerische Zufallsvariable</b><sup id="cite_ref-LdM_17-0" class="reference"><a href="#cite_note-LdM-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> – entsprechend der Terminologie der <a href="/wiki/Numerische_Funktion" title="Numerische Funktion">numerischen Funktion</a> – oder als <b>erweiterte Zufallsvariable</b><sup id="cite_ref-LdM_17-1" class="reference"><a href="#cite_note-LdM-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> (engl. <i>extended random variable</i><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup>) bezeichnet. Es gibt aber auch eine abweichende Terminologie, bei der <i>Zufallsvariable</i> eine numerische Zufallsvariable bezeichnet und eine reelle Zufallsvariable immer als solche bezeichnet wird.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Zufallselement">Zufallselement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=11" title="Abschnitt bearbeiten: Zufallselement" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=11" title="Quellcode des Abschnitts bearbeiten: Zufallselement"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In der Literatur wird die obige Definition der Zufallsvariable manchmal für den Begriff <i>Zufallselement</i> oder <i>zufälliges Element</i> (resp. <span style="font-style:normal;font-weight:normal"><a href="/wiki/Englische_Sprache" title="Englische Sprache">englisch</a></span> <span lang="en-Latn" style="font-style:italic">random element</span>) verwendet, um reelle Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06dbfbb1b8302eb4834193d23f06190e073fa66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.97ex; height:2.176ex;" alt="{\displaystyle \Omega \to \mathbb {R} }"></span> von allgemeineren Objekten wie dem <a href="/wiki/Zufallsvektor" title="Zufallsvektor">Zufallsvektor</a>, dem <a href="/wiki/Zuf%C3%A4lliges_Ma%C3%9F" title="Zufälliges Maß">zufälligen Maß</a>, der <a href="/wiki/Zufallsfunktion" class="mw-redirect" title="Zufallsfunktion">Zufallsfunktion</a>, der <a href="/wiki/Stochastische_Geometrie" title="Stochastische Geometrie">Zufallsmenge</a>, der <a href="/wiki/Zufallsmatrix" title="Zufallsmatrix">Zufallsmatrix</a> usw. zu unterscheiden. </p> <div class="mw-heading mw-heading2"><h2 id="Die_Verteilung_von_Zufallsvariablen,_Existenz"><span id="Die_Verteilung_von_Zufallsvariablen.2C_Existenz"></span>Die Verteilung von Zufallsvariablen, Existenz</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=12" title="Abschnitt bearbeiten: Die Verteilung von Zufallsvariablen, Existenz" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=12" title="Quellcode des Abschnitts bearbeiten: Die Verteilung von Zufallsvariablen, Existenz"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Verteilung_einer_Zufallsvariablen" title="Verteilung einer Zufallsvariablen">Verteilung einer Zufallsvariablen</a></i></div> <p>Eng verknüpft mit dem eher technischen Begriff einer Zufallsvariablen ist der Begriff der auf dem Bildraum von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> induzierten <a href="/wiki/Wahrscheinlichkeitsverteilung" class="mw-redirect" title="Wahrscheinlichkeitsverteilung">Wahrscheinlichkeitsverteilung</a>. Mitunter werden beide Begriffe auch synonym verwendet. Formal wird die Verteilung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa5c9f7d9001853cd45fc84f8e2f39bf900f6b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.676ex;" alt="{\displaystyle P^{X}}"></span> einer Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> als das <a href="/wiki/Bildma%C3%9F" title="Bildmaß">Bildmaß</a> des Wahrscheinlichkeitsmaßes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> definiert, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f67cd8faa9a3c7f492a2cb6ff9ec25d8dea473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.249ex; height:3.343ex;" alt="{\displaystyle P^{X}(A)=P\left(X^{-1}(A)\right)}"></span> für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba064cbb292b34ae9acdb71e2d4f791f4de495d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.947ex; height:2.509ex;" alt="{\displaystyle A\in \Sigma &#039;}"></span>, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span> die auf dem Bildraum der Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> gegebene σ-Algebra ist.</dd></dl> <p>Statt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa5c9f7d9001853cd45fc84f8e2f39bf900f6b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.676ex;" alt="{\displaystyle P^{X}}"></span> werden in der Literatur für die Verteilung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> auch die Schreibweisen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X},X(P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X},X(P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b388d39e3fdc91112bc4df21a31d902c29ac5208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.693ex; height:2.843ex;" alt="{\displaystyle P_{X},X(P)}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\circ X^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2218;<!-- ∘ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\circ X^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35283e6c2e34aa2eeff8864e36c8789f17a17ea8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.27ex; height:2.676ex;" alt="{\displaystyle P\circ X^{-1}}"></span> verwendet. </p><p>Spricht man also beispielsweise von einer normalverteilten Zufallsvariablen, so ist damit eine Zufallsvariable mit Werten in den reellen Zahlen gemeint, deren Verteilung einer <a href="/wiki/Normalverteilung" title="Normalverteilung">Normalverteilung</a> entspricht. </p><p>Eigenschaften, welche sich allein über gemeinsame Verteilungen von Zufallsvariablen ausdrücken lassen, werden auch <i>wahrscheinlichkeitstheoretisch</i> genannt.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Für Behandlung solcher Eigenschaften ist es nicht notwendig, die konkrete Gestalt des (Hintergrund-)<a href="/wiki/Wahrscheinlichkeitsraum" title="Wahrscheinlichkeitsraum">Wahrscheinlichkeitsraumes</a> zu kennen, auf dem die Zufallsvariablen definiert sind. </p><p>Häufig wird deswegen von einer Zufallsvariablen lediglich die Verteilungsfunktion angegeben und der zu Grunde liegende Wahrscheinlichkeitsraum offen gelassen. Dies ist vom Standpunkt der Mathematik erlaubt, sofern es tatsächlich einen Wahrscheinlichkeitsraum gibt, der eine Zufallsvariable mit der gegebenen Verteilung erzeugen kann. Ein solcher Wahrscheinlichkeitsraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> lässt sich aber zu einer konkreten Verteilung leicht angeben, indem beispielsweise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa509a134d45e796a6c29cf98237b4a2ff85fd8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.455ex; height:2.176ex;" alt="{\displaystyle \Omega =\mathbb {R} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> als die Borelsche σ-Algebra auf den reellen Zahlen und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> als das durch die Verteilungsfunktion induzierte <a href="/wiki/Lebesgue-Stieltjes-Ma%C3%9F" title="Lebesgue-Stieltjes-Maß">Lebesgue-Stieltjes-Maß</a> gewählt wird. Als Zufallsvariable kann dann die <a href="/wiki/Identische_Abbildung" title="Identische Abbildung">identische Abbildung</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/843b834701cd225904df7352b22105e891957468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.984ex; height:2.176ex;" alt="{\displaystyle X\colon \mathbb {R} \to \mathbb {R} }"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bc36ff059665c15bef716cadc715dbeed4f380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.779ex; height:2.843ex;" alt="{\displaystyle X(\omega )=\omega }"></span> gewählt werden.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>Wenn eine <a href="/wiki/Familie_(Mathematik)" title="Familie (Mathematik)">Familie</a> von Zufallsvariablen betrachtet wird, reicht es aus wahrscheinlichkeitstheoretischer Perspektive genauso, die gemeinsame Verteilung der Zufallsvariablen anzugeben, die Gestalt des Wahrscheinlichkeitsraums kann wiederum offen gelassen werden. </p><p>Die Frage nach der konkreten Gestalt des Wahrscheinlichkeitsraumes tritt also in den Hintergrund, es ist jedoch von Interesse, ob zu einer Familie von Zufallsvariablen mit vorgegebenen endlichdimensionalen gemeinsamen Verteilungen ein Wahrscheinlichkeitsraum existiert, auf dem sie sich gemeinsam definieren lassen. Diese Frage wird für unabhängige Zufallsvariablen durch einen Existenzsatz von <a href="/wiki/%C3%89mile_Borel" title="Émile Borel">É. Borel</a> gelöst, der besagt, dass man im Prinzip auf den von Einheitsintervall und Lebesgue-Maß gebildeten Wahrscheinlichkeitsraum zurückgreifen kann. Ein möglicher Beweis nutzt, dass sich die binären Nachkommastellen der reellen Zahlen in [0,1] als ineinander verschachtelte <a href="/wiki/Bernoulli-Prozess" title="Bernoulli-Prozess">Bernoulli-Folgen</a> betrachten lassen (ähnlich <a href="/wiki/Hilberts_Hotel" title="Hilberts Hotel">Hilberts Hotel</a>).<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Mathematische_Attribute_für_Zufallsvariablen"><span id="Mathematische_Attribute_f.C3.BCr_Zufallsvariablen"></span>Mathematische Attribute für Zufallsvariablen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=13" title="Abschnitt bearbeiten: Mathematische Attribute für Zufallsvariablen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=13" title="Quellcode des Abschnitts bearbeiten: Mathematische Attribute für Zufallsvariablen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Verschiedene mathematische Attribute, die teilweise denen für allgemeine Funktionen entlehnt sind, finden bei Zufallsvariablen Anwendung. Die häufigsten werden in der folgenden Zusammenstellung kurz erklärt: </p> <div class="mw-heading mw-heading3"><h3 id="Diskret">Diskret</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=14" title="Abschnitt bearbeiten: Diskret" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=14" title="Quellcode des Abschnitts bearbeiten: Diskret"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Zufallsvariable wird als <a href="/wiki/Diskret" title="Diskret">diskret</a> bezeichnet, wenn sie nur <a href="/wiki/Endliche_Menge" title="Endliche Menge">endlich viele</a> oder <a href="/wiki/Abz%C3%A4hlbarkeit" class="mw-redirect" title="Abzählbarkeit">abzählbar unendlich viele</a> Werte annimmt oder etwas allgemeiner, wenn ihre Verteilung eine <a href="/wiki/Diskrete_Wahrscheinlichkeitsverteilung" title="Diskrete Wahrscheinlichkeitsverteilung">diskrete Wahrscheinlichkeitsverteilung</a> ist.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Im obigen Beispiel des zweimaligen Würfelns sind alle drei Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> diskret. Ein weiteres Beispiel für diskrete Zufallsvariablen sind <a href="/wiki/Zuf%C3%A4llige_Permutation" title="Zufällige Permutation">zufällige Permutationen</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Konstant">Konstant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=15" title="Abschnitt bearbeiten: Konstant" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=15" title="Quellcode des Abschnitts bearbeiten: Konstant"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Zufallsvariable wird als <a href="/wiki/Konstante_Funktion" title="Konstante Funktion">konstant</a> bezeichnet, wenn sie nur einen Wert annimmt: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f586c7137d42bb352375a01243d4804b72fc8756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.34ex; height:2.843ex;" alt="{\displaystyle X(\omega )=c}"></span> für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23a8931e1b954519d9fb9ba2e7f02eaa11ac91a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.965ex; height:2.176ex;" alt="{\displaystyle \omega \in \Omega }"></span>. Sie ist ein Spezialfall einer diskreten Zufallsvariable. </p><p>Es gilt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(\omega )=c\;\forall \omega \in \Omega \implies P(X=c)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mspace width="thickmathspace" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(\omega )=c\;\forall \omega \in \Omega \implies P(X=c)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c925309bbbda57094a51cab1906ab77634f50d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.53ex; height:2.843ex;" alt="{\displaystyle X(\omega )=c\;\forall \omega \in \Omega \implies P(X=c)=1}"></span><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>die Umkehrung gilt im Allgemeinen nicht. Eine Zufallsvariable die nur die rechte Seite erfüllt, heißt <i><a href="/wiki/Fast_sicher" title="Fast sicher">fast sicher</a> konstant</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Unabhängig"><span id="Unabh.C3.A4ngig"></span>Unabhängig</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=16" title="Abschnitt bearbeiten: Unabhängig" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=16" title="Quellcode des Abschnitts bearbeiten: Unabhängig"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Stochastisch_unabh%C3%A4ngige_Zufallsvariablen" title="Stochastisch unabhängige Zufallsvariablen">Stochastisch unabhängige Zufallsvariablen</a></i></div> <p>Zwei reelle Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8705438171d938b7f59cd1bfa5b7d99b6afa5cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.787ex; height:2.509ex;" alt="{\displaystyle X,Y}"></span> heißen unabhängig, wenn für je zwei Intervalle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a_{1},b_{1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a_{1},b_{1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90b50cd52227fb045ffb69b5802b79b7b539e8d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.663ex; height:2.843ex;" alt="{\displaystyle [a_{1},b_{1}]}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a_{2},b_{2}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a_{2},b_{2}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2cae95a31bf77847185496288d80966494407a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.663ex; height:2.843ex;" alt="{\displaystyle [a_{2},b_{2}]}"></span> die Ereignisse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{X}:=\{\omega |X(\omega )\in [a_{1},b_{1}]\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{X}:=\{\omega |X(\omega )\in [a_{1},b_{1}]\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7615978d11848b8e1a4ee4f4b89b06629296f6b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.25ex; height:2.843ex;" alt="{\displaystyle E_{X}:=\{\omega |X(\omega )\in [a_{1},b_{1}]\}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{Y}:=\{\omega |Y(\omega )\in [a_{2},b_{2}]\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{Y}:=\{\omega |Y(\omega )\in [a_{2},b_{2}]\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df986e92c89c31b7aec962b1e9229a9d885a20ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.897ex; height:2.843ex;" alt="{\displaystyle E_{Y}:=\{\omega |Y(\omega )\in [a_{2},b_{2}]\}}"></span> <a href="/wiki/Stochastisch_unabh%C3%A4ngige_Ereignisse" title="Stochastisch unabhängige Ereignisse">stochastisch unabhängig</a> sind. Das sind sie, wenn gilt: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(E_{X}\cap E_{Y})=P(E_{X})P(E_{Y})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(E_{X}\cap E_{Y})=P(E_{X})P(E_{Y})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe60dbe1b41597fed92d972127443da1dd7f9ffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.443ex; height:2.843ex;" alt="{\displaystyle P(E_{X}\cap E_{Y})=P(E_{X})P(E_{Y})}"></span>. </p><p>In obigem Beispiel sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> unabhängig voneinander; die Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> hingegen nicht. </p><p>Unabhängigkeit mehrerer Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\dotsc ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\dotsc ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29f695cbbfd7caccec825add6601fa8ec884f2ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.312ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\dotsc ,X_{n}}"></span> bedeutet, dass das Wahrscheinlichkeitsmaß <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> des Zufallsvektors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\left(X_{1},X_{2},\dotsc ,X_{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\left(X_{1},X_{2},\dotsc ,X_{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8eabf38484dd78622a8db83f21d5dc3823ec4b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.2ex; height:2.843ex;" alt="{\displaystyle X=\left(X_{1},X_{2},\dotsc ,X_{n}\right)}"></span> dem <a href="/wiki/Produktma%C3%9F" title="Produktmaß">Produktmaß</a> der Wahrscheinlichkeitsmaße der Komponenten, also dem Produktmaß von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X_{1}},P_{X_{2}},\dotsc ,P_{X_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X_{1}},P_{X_{2}},\dotsc ,P_{X_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682fa8035177933a58bc042cfa49e60c62f58194" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.096ex; height:2.843ex;" alt="{\displaystyle P_{X_{1}},P_{X_{2}},\dotsc ,P_{X_{n}}}"></span> entspricht.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> So lässt sich beispielsweise dreimaliges unabhängiges Würfeln durch den Wahrscheinlichkeitsraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> mit </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega =\{1,2,3,4,5,6\}^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega =\{1,2,3,4,5,6\}^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8b690b3e7c4bd0c8cd9dd6998cd857b0f56d8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.3ex; height:3.176ex;" alt="{\displaystyle \Omega =\{1,2,3,4,5,6\}^{3}}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> der Potenzmenge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> und</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\left(\left(n_{1},n_{2},n_{3}\right)\right)={\frac {1}{6^{3}}}={\frac {1}{216}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>216</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\left(\left(n_{1},n_{2},n_{3}\right)\right)={\frac {1}{6^{3}}}={\frac {1}{216}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f092082c9aa23b4ff8deeb782333735a54d9bd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.739ex; height:5.676ex;" alt="{\displaystyle P\left(\left(n_{1},n_{2},n_{3}\right)\right)={\frac {1}{6^{3}}}={\frac {1}{216}}}"></span></dd></dl> <p>modellieren; die Zufallsvariable „Ergebnis des <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-ten Wurfes“ ist dann </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}\left(n_{1},n_{2},n_{3}\right)=n_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}\left(n_{1},n_{2},n_{3}\right)=n_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc84e4375b2ba0d681030c9fad8ecaa53d20bc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.206ex; height:2.843ex;" alt="{\displaystyle X_{k}\left(n_{1},n_{2},n_{3}\right)=n_{k}}"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{1,2,3\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{1,2,3\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a00b1bbe866774d9373144fb192dfd50c97f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.932ex; height:2.843ex;" alt="{\displaystyle k\in \{1,2,3\}}"></span>.</dd></dl> <p>Die Konstruktion eines entsprechenden Wahrscheinlichkeitsraums für eine beliebige Familie unabhängiger Zufallsvariable mit gegebenen Verteilungen ist ebenfalls möglich.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Identisch_verteilt">Identisch verteilt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=17" title="Abschnitt bearbeiten: Identisch verteilt" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=17" title="Quellcode des Abschnitts bearbeiten: Identisch verteilt"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Zwei oder mehr Zufallsvariablen heißen identisch verteilt (bzw. <i>i.d. für identically distributed</i>), wenn ihre <a href="#Die_Verteilung_von_Zufallsvariablen,_Existenz">induzierten Wahrscheinlichkeitsverteilungen</a> gleich sind. In Beispiel des zweimaligen Würfelns sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> identisch verteilt; die Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> hingegen nicht. </p> <div class="mw-heading mw-heading3"><h3 id="Unabhängig_und_identisch_verteilt"><span id="Unabh.C3.A4ngig_und_identisch_verteilt"></span>Unabhängig und identisch verteilt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=18" title="Abschnitt bearbeiten: Unabhängig und identisch verteilt" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=18" title="Quellcode des Abschnitts bearbeiten: Unabhängig und identisch verteilt"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Unabh%C3%A4ngig_und_identisch_verteilte_Zufallsvariablen" title="Unabhängig und identisch verteilte Zufallsvariablen">Unabhängig und identisch verteilte Zufallsvariablen</a></i></div> <p>Häufig werden <a href="/wiki/Folge_(Mathematik)" title="Folge (Mathematik)">Folgen</a> von Zufallsvariablen untersucht, die sowohl unabhängig als auch identisch verteilt sind; demnach spricht man von unabhängig identisch verteilten Zufallsvariablen, üblicherweise mit <i>u.i.v.</i> bzw. <i>i.i.d.</i> (für <i>independent and identically distributed</i>) abgekürzt. </p><p>In obigem Beispiel des dreimaligen Würfelns sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f17eb6a51e16ea92736c904a92d8a78e73a598" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{3}}"></span> i.i.d. Die Summe der ersten beiden Würfe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1,2}=X_{1}+X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1,2}=X_{1}+X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bce2a33fc7fc45b9ed706d2b82d71ee72b19539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.654ex; height:2.843ex;" alt="{\displaystyle S_{1,2}=X_{1}+X_{2}}"></span> und die Summe des zweiten und dritten Wurfs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2,3}=X_{2}+X_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2,3}=X_{2}+X_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2c33731b272c508bfe289d6c45115a0daf3fd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.654ex; height:2.843ex;" alt="{\displaystyle S_{2,3}=X_{2}+X_{3}}"></span> sind zwar identisch verteilt, aber nicht unabhängig. Dagegen sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1,2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1,2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77c2c85a24d2ffd09d4373c911cd1c3ae0b9a8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.759ex; height:2.843ex;" alt="{\displaystyle S_{1,2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f17eb6a51e16ea92736c904a92d8a78e73a598" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{3}}"></span> unabhängig, aber nicht identisch verteilt. </p> <div class="mw-heading mw-heading3"><h3 id="Austauschbar">Austauschbar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=19" title="Abschnitt bearbeiten: Austauschbar" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=19" title="Quellcode des Abschnitts bearbeiten: Austauschbar"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Austauschbare_Familie_von_Zufallsvariablen" title="Austauschbare Familie von Zufallsvariablen">Austauschbare Familien von Zufallsvariablen</a> sind Familien, deren Verteilung sich nicht ändert, wenn man endlich viele Zufallsvariablen in der Familie vertauscht. Austauschbare Familien sind stets identisch verteilt, aber nicht notwendigerweise unabhängig. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematische_Attribute_für_reelle_Zufallsvariablen"><span id="Mathematische_Attribute_f.C3.BCr_reelle_Zufallsvariablen"></span>Mathematische Attribute für reelle Zufallsvariablen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=20" title="Abschnitt bearbeiten: Mathematische Attribute für reelle Zufallsvariablen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=20" title="Quellcode des Abschnitts bearbeiten: Mathematische Attribute für reelle Zufallsvariablen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Kenngrößen"><span id="Kenngr.C3.B6.C3.9Fen"></span>Kenngrößen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=21" title="Abschnitt bearbeiten: Kenngrößen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=21" title="Quellcode des Abschnitts bearbeiten: Kenngrößen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Zur Charakterisierung von Zufallsvariablen dienen einige wenige Funktionen, die wesentliche mathematische Eigenschaften der jeweiligen Zufallsvariable beschreiben. Die wichtigste dieser Funktionen ist die <a href="/wiki/Verteilungsfunktion" title="Verteilungsfunktion">Verteilungsfunktion</a>, die Auskunft darüber gibt, mit welcher Wahrscheinlichkeit die Zufallsvariable einen Wert bis zu einer vorgegebenen Schranke annimmt, beispielsweise die Wahrscheinlichkeit, höchstens eine Vier zu würfeln. Bei stetigen Zufallsvariablen wird diese durch die <a href="/wiki/Dichtefunktion" title="Dichtefunktion">Wahrscheinlichkeitsdichte</a> ergänzt, mit der die Wahrscheinlichkeit berechnet werden kann, dass die Werte einer Zufallsvariablen innerhalb eines bestimmten <a href="/wiki/Intervall_(Mathematik)" title="Intervall (Mathematik)">Intervalls</a> liegen. Des Weiteren sind Kennzahlen wie der <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswert</a>, die <a href="/wiki/Varianz_(Stochastik)" title="Varianz (Stochastik)">Varianz</a> oder höhere mathematische <a href="/wiki/Moment_(Stochastik)" title="Moment (Stochastik)">Momente</a> von Interesse. </p> <div class="mw-heading mw-heading3"><h3 id="Stetig_oder_kontinuierlich">Stetig oder kontinuierlich</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=22" title="Abschnitt bearbeiten: Stetig oder kontinuierlich" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=22" title="Quellcode des Abschnitts bearbeiten: Stetig oder kontinuierlich"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Das Attribut <a href="/wiki/Stetige_Funktion" title="Stetige Funktion">stetig</a> wird für unterschiedliche Eigenschaften verwendet. </p> <dl><dd><ul><li>Eine reelle Zufallsvariable wird als stetig (oder auch absolut stetig) bezeichnet, wenn sie eine <a href="/wiki/Wahrscheinlichkeitsdichte" class="mw-redirect" title="Wahrscheinlichkeitsdichte">Dichte</a> besitzt (ihre Verteilung <a href="/wiki/Absolut_stetiges_Ma%C3%9F" title="Absolut stetiges Maß">absolutstetig</a> bezüglich des <a href="/wiki/Lebesgue-Ma%C3%9F" title="Lebesgue-Maß">Lebesgue-Maßes</a> ist).<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup></li> <li>Eine reelle Zufallsvariable wird als stetig bezeichnet, wenn sie eine stetige <a href="/wiki/Verteilungsfunktion" title="Verteilungsfunktion">Verteilungsfunktion</a> besitzt.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Insbesondere bedeutet das, dass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\{X=x\})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\{X=x\})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b1c29a60ebcbd651d4de99f13c97f8cfd10690f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.549ex; height:2.843ex;" alt="{\displaystyle P(\{X=x\})=0}"></span> für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span> gilt.</li></ul></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Verteilungsfunktion">Verteilungsfunktion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=23" title="Abschnitt bearbeiten: Verteilungsfunktion" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=23" title="Quellcode des Abschnitts bearbeiten: Verteilungsfunktion"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Verteilungsfunktion" title="Verteilungsfunktion">Verteilungsfunktion</a></i></div> <p>Eine reelle Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> mit der Wahrscheinlichkeitsverteilung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> hat die <a href="/wiki/Verteilungsfunktion" title="Verteilungsfunktion">Verteilungsfunktion</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}(x)=P_{X}((-\infty ,x]),\quad x\in \mathbb {R} \;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}(x)=P_{X}((-\infty ,x]),\quad x\in \mathbb {R} \;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9933ef367f3db03da1a2ffd4903051b3f2d39e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.842ex; height:2.843ex;" alt="{\displaystyle F_{X}(x)=P_{X}((-\infty ,x]),\quad x\in \mathbb {R} \;.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Transformation">Transformation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=24" title="Abschnitt bearbeiten: Transformation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=24" title="Quellcode des Abschnitts bearbeiten: Transformation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wenn eine reelle Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> auf dem Ergebnisraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> und eine messbare Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\colon \mathbb {R} \to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x003A;<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\colon \mathbb {R} \to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/926a8888ada479f404e300131e232ca43f4c867b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.12ex; height:2.509ex;" alt="{\displaystyle g\colon \mathbb {R} \to \mathbb {R} }"></span> gegeben ist, dann ist auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=g(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=g(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fd834147d6175f13477acff6567727265d0000" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.777ex; height:2.843ex;" alt="{\displaystyle Y=g(X)}"></span> eine Zufallsvariable auf demselben Ergebnisraum, da die Verknüpfung messbarer Funktionen wieder messbar ist. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1fa9025e0f6127a028b801736123f552f7286fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.905ex; height:2.843ex;" alt="{\displaystyle g(X)}"></span> wird auch als <i>Transformation</i> der Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> unter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> bezeichnet. Die gleiche Methode, mit der man von einem Wahrscheinlichkeitsraum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ),P^{X})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ),P^{X})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28e926fe5fdfb98814188430862550331e78cffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.04ex; height:3.176ex;" alt="{\displaystyle (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ),P^{X})}"></span> gelangt, kann benutzt werden, um die Verteilung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> zu erhalten. </p><p>Die Verteilungsfunktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37d0ca4bbdea6d052310714859927ac076014141" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.981ex; height:2.509ex;" alt="{\displaystyle F_{Y}}"></span> der transformierten Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=g(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=g(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fd834147d6175f13477acff6567727265d0000" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.777ex; height:2.843ex;" alt="{\displaystyle Y=g(X)}"></span> kann mit der Wahrscheinlichkeitsverteilung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> bestimmt werden </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{Y}(y)=\operatorname {P} (g(X)\leq y),\quad y\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{Y}(y)=\operatorname {P} (g(X)\leq y),\quad y\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42a23a157885b8deb805ca2e5f7ba76fec467027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.626ex; height:2.843ex;" alt="{\displaystyle F_{Y}(y)=\operatorname {P} (g(X)\leq y),\quad y\in \mathbb {R} }"></span>.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Beispiel">Beispiel</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=25" title="Abschnitt bearbeiten: Beispiel" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=25" title="Quellcode des Abschnitts bearbeiten: Beispiel"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Es sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> eine reelle Zufallsvariable mit stetiger Verteilungsfunktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/062f285db773e329f6c270cb6b65fa076996c941" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.127ex; height:2.509ex;" alt="{\displaystyle F_{X}}"></span>. Dann ist die Verteilungsfunktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37d0ca4bbdea6d052310714859927ac076014141" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.981ex; height:2.509ex;" alt="{\displaystyle F_{Y}}"></span> der Zufallsvariablen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=X^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=X^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/164fd6721c56072e02ca8627ae6c18b1efa64e71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.923ex; height:2.676ex;" alt="{\displaystyle Y=X^{2}}"></span> durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{Y}(y)=\operatorname {P} (X^{2}\leq y)={\begin{cases}0&amp;{\text{falls }}y&lt;0\\F_{X}\left({\sqrt {y}}\right)-F_{X}\left(-{\sqrt {y}}\right)&amp;{\text{falls }}y\geq 0\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>falls&#xA0;</mtext> </mrow> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>falls&#xA0;</mtext> </mrow> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{Y}(y)=\operatorname {P} (X^{2}\leq y)={\begin{cases}0&amp;{\text{falls }}y&lt;0\\F_{X}\left({\sqrt {y}}\right)-F_{X}\left(-{\sqrt {y}}\right)&amp;{\text{falls }}y\geq 0\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ec87084ca907c8835c416ef076f632df8db7aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:59.857ex; height:6.176ex;" alt="{\displaystyle F_{Y}(y)=\operatorname {P} (X^{2}\leq y)={\begin{cases}0&amp;{\text{falls }}y&lt;0\\F_{X}\left({\sqrt {y}}\right)-F_{X}\left(-{\sqrt {y}}\right)&amp;{\text{falls }}y\geq 0\\\end{cases}}}"></span></dd></dl> <p>gegeben.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Erwartungswert">Erwartungswert</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=26" title="Abschnitt bearbeiten: Erwartungswert" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=26" title="Quellcode des Abschnitts bearbeiten: Erwartungswert"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswert</a></i></div> <p>Der <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswert</a> einer <a href="/wiki/Quasiintegrierbare_Zufallsvariable" class="mw-redirect" title="Quasiintegrierbare Zufallsvariable">quasi-integrierbaren</a> Zufallsgröße <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,\Sigma ,P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,\Sigma ,P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78c3ca06586219fdcc0bb6f1fbb52fe2df0a86d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.979ex; height:2.843ex;" alt="{\displaystyle (\Omega ,\Sigma ,P)}"></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\bar {\mathbb {R} }},{\mathcal {B}}({\bar {\mathbb {R} }}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\bar {\mathbb {R} }},{\mathcal {B}}({\bar {\mathbb {R} }}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c2f17a807293042cffe444eb51f622654e85ba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.552ex; height:3.009ex;" alt="{\displaystyle ({\bar {\mathbb {R} }},{\mathcal {B}}({\bar {\mathbb {R} }}))}"></span> mit der Verteilung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]=\int _{\Omega }X(\omega )\mathrm {d} P(\omega )=\int _{\mathbb {R} }x\mathrm {d} P_{X}(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]=\int _{\Omega }X(\omega )\mathrm {d} P(\omega )=\int _{\mathbb {R} }x\mathrm {d} P_{X}(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87b64985581b223370159897eeaa72cd8e3080c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.051ex; height:5.676ex;" alt="{\displaystyle \operatorname {E} [X]=\int _{\Omega }X(\omega )\mathrm {d} P(\omega )=\int _{\mathbb {R} }x\mathrm {d} P_{X}(x)\,}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Integrierbar_und_quasi-integrierbar">Integrierbar und quasi-integrierbar</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=27" title="Abschnitt bearbeiten: Integrierbar und quasi-integrierbar" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=27" title="Quellcode des Abschnitts bearbeiten: Integrierbar und quasi-integrierbar"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Eine Zufallsvariable heißt <a href="/wiki/Lebesgue-Integral" title="Lebesgue-Integral">integrierbar</a>, wenn der <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswert</a> der Zufallsvariable existiert und endlich ist. Die Zufallsvariable heißt <a href="/wiki/Quasiintegrierbare_Zufallsvariable" class="mw-redirect" title="Quasiintegrierbare Zufallsvariable">quasi-integrierbar</a>, wenn der Erwartungswert existiert, möglicherweise aber unendlich ist. Jede integrierbare Zufallsvariable ist folglich auch quasi-integrierbar. </p> <div class="mw-heading mw-heading3"><h3 id="Standardisierung">Standardisierung</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=28" title="Abschnitt bearbeiten: Standardisierung" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=28" title="Quellcode des Abschnitts bearbeiten: Standardisierung"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Standardisierung_(Statistik)" title="Standardisierung (Statistik)">Standardisierung (Statistik)</a></i></div> <p>Eine Zufallsvariable nennt man standardisiert, wenn ihr <a href="/wiki/Erwartungswert" title="Erwartungswert">Erwartungswert</a> 0 und ihre <a href="/wiki/Varianz_(Stochastik)" title="Varianz (Stochastik)">Varianz</a> 1 ist. Die Transformation einer Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> in eine standardisierte Zufallsvariable </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z={\frac {Y-\operatorname {E} (Y)}{\sqrt {\operatorname {Var} (Y)}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Y</mi> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mrow> <msqrt> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z={\frac {Y-\operatorname {E} (Y)}{\sqrt {\operatorname {Var} (Y)}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ee119f81e16b4f6badc4803277c04f0d19d4964" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.394ex; height:7.009ex;" alt="{\displaystyle Z={\frac {Y-\operatorname {E} (Y)}{\sqrt {\operatorname {Var} (Y)}}}}"></span></dd></dl> <p>bezeichnet man als Standardisierung der Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Sonstiges">Sonstiges</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=29" title="Abschnitt bearbeiten: Sonstiges" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=29" title="Quellcode des Abschnitts bearbeiten: Sonstiges"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Zeitlich zusammenhängende Zufallsvariablen können auch als <a href="/wiki/Stochastischer_Prozess" title="Stochastischer Prozess">stochastischer Prozess</a> aufgefasst werden</li> <li>Eine Folge von Realisierungen einer Zufallsvariable nennt man auch <a href="/w/index.php?title=Zufallsfolge&amp;action=edit&amp;redlink=1" class="new" title="Zufallsfolge (Seite nicht vorhanden)">Zufallsfolge</a> oder <a href="/w/index.php?title=Zufallssequenz&amp;action=edit&amp;redlink=1" class="new" title="Zufallssequenz (Seite nicht vorhanden)">Zufallssequenz</a></li> <li>Eine Zufallsvariable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x003A;<!-- : --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873bfd9250cbfe1e3bdb429b97676cca0db114bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.203ex; height:2.343ex;" alt="{\displaystyle X\colon \Omega \to \mathbb {R} ^{n}}"></span> erzeugt eine σ-Algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}_{X}({\mathcal {B}}):=\{X^{-1}(B)|B\in {\mathcal {B}}(\mathbb {R} ^{n})\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}_{X}({\mathcal {B}}):=\{X^{-1}(B)|B\in {\mathcal {B}}(\mathbb {R} ^{n})\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2b0007434c8b49490af1a5aaee306ab1e34c144" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.13ex; height:3.176ex;" alt="{\displaystyle {\mathcal {F}}_{X}({\mathcal {B}}):=\{X^{-1}(B)|B\in {\mathcal {B}}(\mathbb {R} ^{n})\}}"></span>, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6c98a281e076f96c138d1afd8177c414bf6587" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.249ex; height:2.843ex;" alt="{\displaystyle {\mathcal {B}}(\mathbb {R} ^{n})}"></span> die <a href="/wiki/Borelsche_%CF%83-Algebra" title="Borelsche σ-Algebra">Borelsche σ-Algebra</a> des <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> ist.</li> <li>Es gibt Zufallsvariablen, die weder diskret noch stetig sind. Ein Beispiel ist die Lebensdauer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> einer Maschine. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> ist eine Zufallsvariable mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;P(T=0)&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;P(T=0)&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18834379f8dfa7313414040c54bc66e1a208602f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.974ex; height:2.843ex;" alt="{\displaystyle 0&lt;P(T=0)&lt;1}"></span> (und daher nicht stetig), weil eine Maschine eine Wahrscheinlichkeit hat, von Anfang nicht zu funktionieren. Außerdem ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(T=t_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(T=t_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07f5f1d2864b05bc8b9297b1093f3b08237c09dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.444ex; height:2.843ex;" alt="{\displaystyle P(T=t_{0})=0}"></span> für alle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{0}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{0}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ae3fd2a0c33e44c8061e0050a1eaa7d84fd52b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.155ex; height:2.509ex;" alt="{\displaystyle t_{0}&gt;0}"></span> (und daher ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> nicht diskret).<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Ein anderes Beispiel ist die Wartezeit eines Autos vor einer Ampel.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Man kann in diesen Fällen eine Zerlegung in eine Summe aus einer stetigen und einer diskreten Zufallsvariablen vornehmen.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=30" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=30" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Karl_Hinderer" title="Karl Hinderer">Karl Hinderer</a>&#58; <cite style="font-style:italic">Grundbegriffe der Wahrscheinlichkeitstheorie</cite>. Springer, Berlin/ Heidelberg/ New York 1980, <a href="/wiki/Spezial:ISBN-Suche/3540073094" class="internal mw-magiclink-isbn">ISBN 3-540-07309-4</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Karl+Hinderer&amp;rft.btitle=Grundbegriffe+der+Wahrscheinlichkeitstheorie&amp;rft.date=1980&amp;rft.genre=book&amp;rft.isbn=3540073094&amp;rft.place=Berlin%2F+Heidelberg%2F+New+York&amp;rft.pub=Springer" style="display:none">&#160;</span></li> <li>Erich Härtter&#58; <cite style="font-style:italic">Wahrscheinlichkeitsrechnung für Wirtschafts- und Naturwissenschaftler</cite>. Vandenhoeck &amp; Ruprecht, Göttingen 1974, <a href="/wiki/Spezial:ISBN-Suche/3525031149" class="internal mw-magiclink-isbn">ISBN 3-525-03114-9</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Erich+H%C3%A4rtter&amp;rft.btitle=Wahrscheinlichkeitsrechnung+f%C3%BCr+Wirtschafts-+und+Naturwissenschaftler&amp;rft.date=1974&amp;rft.genre=book&amp;rft.isbn=3525031149&amp;rft.place=G%C3%B6ttingen&amp;rft.pub=Vandenhoeck+%26+Ruprecht" style="display:none">&#160;</span></li> <li><a href="/wiki/Michel_Lo%C3%A8ve" title="Michel Loève">Michel Loève</a>&#58; <cite class="lang" lang="en" dir="auto" style="font-style:italic">Probability Theory I.</cite> 4. Auflage. Springer, 1977, <a href="/wiki/Spezial:ISBN-Suche/0387902104" class="internal mw-magiclink-isbn">ISBN 0-387-90210-4</a> (englisch).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Michel+Lo%C3%A8ve&amp;rft.btitle=Probability+Theory+I.&amp;rft.date=1977&amp;rft.edition=4.&amp;rft.genre=book&amp;rft.isbn=0387902104&amp;rft.pub=Springer" style="display:none">&#160;</span></li> <li><a href="/wiki/P._Heinz_M%C3%BCller" title="P. Heinz Müller">P. H. Müller</a> (Hrsg.)&#58; <cite style="font-style:italic">Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik</cite>. 5. Auflage. Akademie-Verlag, Berlin 1991, <a href="/wiki/Spezial:ISBN-Suche/3055006089" class="internal mw-magiclink-isbn">ISBN 3-05-500608-9</a>, Zufällige Variable (random variable), <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>511</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Zuf%C3%A4llige+Variable+%28random+variable%29&amp;rft.btitle=Lexikon+der+Stochastik+-+Wahrscheinlichkeitsrechnung+und+mathematische+Statistik&amp;rft.date=1991&amp;rft.edition=5.&amp;rft.genre=bookitem&amp;rft.isbn=3055006089&amp;rft.pages=511&amp;rft.place=Berlin&amp;rft.pub=Akademie-Verlag" style="display:none">&#160;</span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=31" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=31" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noresize noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div><b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Random_variable?uselang=de"><span lang="en">Commons</span>: Zufallsvariable</a></span></b>&#160;– Sammlung von Bildern, Videos und Audiodateien</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wikibooks"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></div><b><a href="https://de.wikibooks.org/wiki/Statistik:_Zufallsvariablen" class="extiw" title="b:Statistik: Zufallsvariablen">Wikibooks: Zufallsvariablen</a></b>&#160;– Lern- und Lehrmaterialien</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wikibooks"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></div><b><a href="https://de.wikibooks.org/wiki/Statistik:_Funktionen_von_Zufallsvariablen" class="extiw" title="b:Statistik: Funktionen von Zufallsvariablen">Wikibooks: Funktionen von Zufallsvariablen</a></b>&#160;– Lern- und Lehrmaterialien</div> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit&amp;section=32" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Zufallsvariable&amp;action=edit&amp;section=32" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-Lexikon-511-1"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Lexikon-511_1-0">a</a></sup> <sup><a href="#cite_ref-Lexikon-511_1-1">b</a></sup> <sup><a href="#cite_ref-Lexikon-511_1-2">c</a></sup> <sup><a href="#cite_ref-Lexikon-511_1-3">d</a></sup></span> <span class="reference-text"><a href="/wiki/P._Heinz_M%C3%BCller" title="P. Heinz Müller">P. H. Müller</a> (Hrsg.)&#58; <cite style="font-style:italic">Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik</cite>. 5. Auflage. Akademie-Verlag, Berlin 1991, <a href="/wiki/Spezial:ISBN-Suche/3055006089" class="internal mw-magiclink-isbn">ISBN 3-05-500608-9</a>, Zufällige Variable (random variable), <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>511</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Zuf%C3%A4llige+Variable+%28random+variable%29&amp;rft.btitle=Lexikon+der+Stochastik+-+Wahrscheinlichkeitsrechnung+und+mathematische+Statistik&amp;rft.date=1991&amp;rft.edition=5.&amp;rft.genre=bookitem&amp;rft.isbn=3055006089&amp;rft.pages=511&amp;rft.place=Berlin&amp;rft.pub=Akademie-Verlag" style="display:none">&#160;</span></span> </li> <li id="cite_note-Bewersdorff2012-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Bewersdorff2012_2-0">a</a></sup> <sup><a href="#cite_ref-Bewersdorff2012_2-1">b</a></sup> <sup><a href="#cite_ref-Bewersdorff2012_2-2">c</a></sup></span> <span class="reference-text"> <a href="/wiki/J%C3%B6rg_Bewersdorff" title="Jörg Bewersdorff">Jörg Bewersdorff</a>&#58; <cite style="font-style:italic">Glück, Logik und Bluff. Mathematik im Spiel - Methoden, Ergebnisse und Grenzen</cite>. 6. Auflage. Springer Spektrum, Wiesbaden 2012, <a href="/wiki/Spezial:ISBN-Suche/9783834819239" class="internal mw-magiclink-isbn">ISBN 978-3-8348-1923-9</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>39</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-8348-2319-9">10.1007/978-3-8348-2319-9</a></span> (<a rel="nofollow" class="external text" href="https://books.google.de/books?id=aC0gBAAAQBAJ&amp;pg=PA39#v=onepage">eingeschränkte Vorschau</a>&#32;in der Google-Buchsuche).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=J%C3%B6rg+Bewersdorff&amp;rft.btitle=Gl%C3%BCck%2C+Logik+und+Bluff.+Mathematik+im+Spiel+-+Methoden%2C+Ergebnisse+und+Grenzen&amp;rft.date=2012&amp;rft.doi=10.1007%2F978-3-8348-2319-9&amp;rft.edition=6.&amp;rft.genre=book&amp;rft.isbn=9783834819239&amp;rft.pages=39&amp;rft.place=Wiesbaden&amp;rft.pub=Springer+Spektrum" style="display:none">&#160;</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><a href="/wiki/Peter_G%C3%A4nssler" class="mw-redirect" title="Peter Gänssler">Peter Gänssler</a>, Winfried Stute&#58; <cite style="font-style:italic">Wahrscheinlichkeitstheorie</cite>. Springer-Verlag, Berlin / Heidelberg / New York 1977, <a href="/wiki/Spezial:ISBN-Suche/3540084185" class="internal mw-magiclink-isbn">ISBN 3-540-08418-5</a>, Kap. VIII <i>Zufallselemente in metrischen Räumen</i>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-642-66749-7">10.1007/978-3-642-66749-7</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Kap.+VIII+Zufallselemente+in+metrischen+R%C3%A4umen&amp;rft.au=Peter+G%C3%A4nssler%2C+Winfried+Stute&amp;rft.btitle=Wahrscheinlichkeitstheorie&amp;rft.date=1977&amp;rft.doi=10.1007%2F978-3-642-66749-7&amp;rft.genre=bookitem&amp;rft.isbn=3540084185&amp;rft.place=Berlin+%2F+Heidelberg+%2F+New+York&amp;rft.pub=Springer-Verlag" style="display:none">&#160;</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">S. Goldberg&#58; <cite style="font-style:italic">Die Wahrscheinlichkeit</cite>. Vieweg, Braunschweig 1960, <a href="/wiki/Spezial:ISBN-Suche/3663010406" class="internal mw-magiclink-isbn">ISBN 3-663-01040-6</a>, Kap IV. <i>Zufallsveränderliche (Zufallsvariable)</i>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-663-02953-3">10.1007/978-3-663-02953-3</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Kap+IV.+Zufallsver%C3%A4nderliche+%28Zufallsvariable%29&amp;rft.au=S.+Goldberg&amp;rft.btitle=Die+Wahrscheinlichkeit&amp;rft.date=1960&amp;rft.doi=10.1007%2F978-3-663-02953-3&amp;rft.genre=bookitem&amp;rft.isbn=3663010406&amp;rft.place=Braunschweig&amp;rft.pub=Vieweg" style="display:none">&#160;</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><a href="/wiki/P%C3%A1l_R%C3%A9v%C3%A9sz" title="Pál Révész">Pál Révész</a>&#58; <cite style="font-style:italic">Die Gesetze der Grossen Zahlen</cite> (=&#160;<cite style="font-style:italic">Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>35</span>). Birkhäuser, Basel 1980, <a href="/wiki/Spezial:ISBN-Suche/303486941X" class="internal mw-magiclink-isbn">ISBN 3-0348-6941-X</a>, Kap. 2 <i>Unabhängige Zufallsveränderliche</i>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-0348-6940-9">10.1007/978-3-0348-6940-9</a></span> (Originalausgabe: <i>The Laws of Large Numbers</i>, Budapest 1967, übersetzt von Eva Vas).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Kap.%0A+2+Unabh%C3%A4ngige+Zufallsver%C3%A4nderliche&amp;rft.au=P%C3%A1l+R%C3%A9v%C3%A9sz&amp;rft.btitle=Die+Gesetze+der+Grossen+Zahlen&amp;rft.date=1980&amp;rft.doi=10.1007%2F978-3-0348-6940-9&amp;rft.genre=bookitem&amp;rft.isbn=303486941X&amp;rft.place=Basel&amp;rft.pub=Birkh%C3%A4user&amp;rft.series=Lehrb%C3%BCcher+und+Monographien+aus+dem+Gebiete+der+exakten+Wissenschaften" style="display:none">&#160;</span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><a href="/wiki/Norbert_Henze" title="Norbert Henze">Norbert Henze</a>: <i>Stochastik für Einsteiger: Eine Einführung in die faszinierende Welt des Zufalls.</i> Vieweg+Teubner Verlag, 2010, <a href="/wiki/Spezial:ISBN-Suche/9783834808158" class="internal mw-magiclink-isbn">ISBN 978-3-8348-0815-8</a>, <a href="//doi.org/10.1007/978-3-8348-9351-2" class="extiw" title="doi:10.1007/978-3-8348-9351-2">doi:10.1007/978-3-8348-9351-2</a>, S. 12.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">David Meintrup, Stefan Schäffler&#58; <cite style="font-style:italic">Stochastik</cite>. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, <a href="/wiki/Spezial:ISBN-Suche/3540216766" class="internal mw-magiclink-isbn">ISBN 3-540-21676-6</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>456&#8211;457</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/b137972">10.1007/b137972</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=David+Meintrup%2C+Stefan+Sch%C3%A4ffler&amp;rft.btitle=Stochastik&amp;rft.date=2005&amp;rft.doi=10.1007%2Fb137972&amp;rft.genre=book&amp;rft.isbn=3540216766&amp;rft.pages=456-457&amp;rft.place=Berlin+Heidelberg+New+York&amp;rft.pub=Springer-Verlag" style="display:none">&#160;</span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><a href="/wiki/Andrei_Nikolajewitsch_Kolmogorow" title="Andrei Nikolajewitsch Kolmogorow">Andrei Nikolajewitsch Kolmogorow</a>&#58; <cite style="font-style:italic">Über die Summen durch den Zufall bestimmter unabhängiger Größen</cite>. In: <cite style="font-style:italic"><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>99</span>, 1928, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>309<span style="display:inline-block;width:.2em">&#160;</span>ff</span>. (<a rel="nofollow" class="external text" href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0099">uni-goettingen.de</a>).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=%C3%9Cber+die+Summen+durch+den+Zufall+bestimmter+unabh%C3%A4ngiger+Gr%C3%B6%C3%9Fen&amp;rft.au=Andrei+Nikolajewitsch+Kolmogorow&amp;rft.btitle=Mathematische+Annalen&amp;rft.date=1928&amp;rft.genre=book&amp;rft.pages=309ff.&amp;rft.volume=99" style="display:none">&#160;</span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">Andrei Nikolajewitsch Kolmogorow&#58; <cite style="font-style:italic">Bemerkungen zu meiner Arbeit „Über die Summen durch den Zufall bestimmter unabhängiger Größen“</cite>. In: <cite style="font-style:italic"><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>99</span>, 1930, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>484<span style="display:inline-block;width:.2em">&#160;</span>ff</span>. (<a rel="nofollow" class="external text" href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0102">uni-goettingen.de</a>).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Bemerkungen+zu+meiner+Arbeit+%E2%80%9E%C3%9Cber+die+Summen+durch+den+Zufall+bestimmter+unabh%C3%A4ngiger+Gr%C3%B6%C3%9Fen%E2%80%9C&amp;rft.au=Andrei+Nikolajewitsch+Kolmogorow&amp;rft.btitle=Mathematische+Annalen&amp;rft.date=1930&amp;rft.genre=book&amp;rft.pages=484ff.&amp;rft.volume=99" style="display:none">&#160;</span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Andrei Nikolajewitsch Kolmogorow&#58; <cite style="font-style:italic">Grundbegriffe der Wahrscheinlichkeitsrechnung</cite>. Springer, Berlin 1933.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Andrei+Nikolajewitsch+Kolmogorow&amp;rft.btitle=Grundbegriffe+der+Wahrscheinlichkeitsrechnung&amp;rft.date=1933&amp;rft.genre=book&amp;rft.place=Berlin&amp;rft.pub=Springer" style="display:none">&#160;</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><a href="/wiki/Boris_Gnedenko" class="mw-redirect" title="Boris Gnedenko">Boris Gnedenko</a>, Andrei Nikolajewitsch Kolmogorow&#58; <cite style="font-style:italic">Grenzverteilung von Summen unabhängiger Zufallsgrößen</cite>. Akademie Verlag, 1959.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Boris+Gnedenko%2C+Andrei+Nikolajewitsch+Kolmogorow&amp;rft.btitle=Grenzverteilung+von+Summen+unabh%C3%A4ngiger+Zufallsgr%C3%B6%C3%9Fen&amp;rft.date=1959&amp;rft.genre=book&amp;rft.pub=Akademie+Verlag" style="display:none">&#160;</span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text">Z. Birnbaum, J. Schreier&#58; <cite style="font-style:italic">Anmerkung zum starken Gesetz der großen Zahlen</cite>. In: <cite style="font-style:italic">Studia Mathematica</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>4</span>, 1933, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.4064/sm-4-1-85-89">10.4064/sm-4-1-85-89</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Anmerkung+zum+starken+Gesetz+der+gro%C3%9Fen+Zahlen&amp;rft.au=Z.+Birnbaum%2C+J.+Schreier&amp;rft.btitle=Studia+Mathematica&amp;rft.date=1933&amp;rft.doi=10.4064%2Fsm-4-1-85-89&amp;rft.genre=book&amp;rft.volume=4" style="display:none">&#160;</span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text"><a href="/wiki/Oskar_N._Anderson" class="mw-redirect" title="Oskar N. Anderson">Oskar N. Anderson</a>&#58; <cite style="font-style:italic">Einführung in die Mathematische Statistik</cite>. Springer, Wien 1935, <a href="/wiki/Spezial:ISBN-Suche/3709158737" class="internal mw-magiclink-isbn">ISBN 3-7091-5873-7</a>, Kap 2.6 <i>Zufällige Variable</i>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>167</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-7091-5923-1">10.1007/978-3-7091-5923-1</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abookitem&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.atitle=Kap+2.6+Zuf%C3%A4llige+Variable&amp;rft.au=Oskar+N.+Anderson&amp;rft.btitle=Einf%C3%BChrung+in+die+Mathematische+Statistik&amp;rft.date=1935&amp;rft.doi=10.1007%2F978-3-7091-5923-1&amp;rft.genre=bookitem&amp;rft.isbn=3709158737&amp;rft.pages=167&amp;rft.place=Wien&amp;rft.pub=Springer" style="display:none">&#160;</span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text">Jeff Miller: <i>Earliest Known Uses of Some of the Words of Mathematics.</i> Abschnitt <a rel="nofollow" class="external text" href="https://jeff560.tripod.com/r.html">R</a>.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text">Eine Zufallsvariable ist weder <i>zufällig</i>, noch eine <a href="/wiki/Variable_(Mathematik)#Abgrenzung" title="Variable (Mathematik)"><i>Variable</i></a>, siehe Jürgen Hedderich, Lothar Sachs&#58; <cite style="font-style:italic">Angewandte Statistik: Methodensammlung mit R</cite>. 15. Auflage. 2016, <a href="/wiki/Spezial:ISBN-Suche/9783662456903" class="internal mw-magiclink-isbn">ISBN 978-3-662-45690-3</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>197</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-662-45691-0">10.1007/978-3-662-45691-0</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=J%C3%BCrgen+Hedderich%2C+Lothar+Sachs&amp;rft.btitle=Angewandte+Statistik%3A+Methodensammlung+mit+R&amp;rft.date=2016&amp;rft.doi=10.1007%2F978-3-662-45691-0&amp;rft.edition=15.&amp;rft.genre=book&amp;rft.isbn=9783662456903&amp;rft.pages=197" style="display:none">&#160;</span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text">Karl Hinderer: <i>Grundbegriffe der Wahrscheinlichkeitstheorie.</i> Springer, Berlin 1980, <a href="/wiki/Spezial:ISBN-Suche/3540073094" class="internal mw-magiclink-isbn">ISBN 3-540-07309-4</a> (nicht überprüft)</span> </li> <li id="cite_note-LdM-17"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-LdM_17-0">a</a></sup> <sup><a href="#cite_ref-LdM_17-1">b</a></sup></span> <span class="reference-text">Guido Walz (Hrsg.)&#58; <cite style="font-style:italic">Lexikon der Mathematik</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>4</span> (Moo bis Sch). Springer Spektrum, Berlin 2017, <a href="/wiki/Spezial:ISBN-Suche/9783662534991" class="internal mw-magiclink-isbn">ISBN 978-3-662-53499-1</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>98</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.btitle=Lexikon+der+Mathematik&amp;rft.date=2017&amp;rft.genre=book&amp;rft.isbn=9783662534991&amp;rft.pages=98&amp;rft.place=Berlin&amp;rft.pub=Springer+Spektrum&amp;rft.volume=Band+4+%28Moo+bis+Sch%29" style="display:none">&#160;</span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text">Galen R. Shorack&#58; <cite style="font-style:italic">Probability for Statisticians</cite> (=&#160;<cite style="font-style:italic">Springer Texts in Statistics</cite>). 2. Auflage. Springer, Cham 2017, <a href="/wiki/Spezial:ISBN-Suche/9783319522067" class="internal mw-magiclink-isbn">ISBN 978-3-319-52206-7</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>35</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-319-52207-4">10.1007/978-3-319-52207-4</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Galen+R.+Shorack&amp;rft.btitle=Probability+for+Statisticians&amp;rft.date=2017&amp;rft.doi=10.1007%2F978-3-319-52207-4&amp;rft.edition=2.&amp;rft.genre=book&amp;rft.isbn=9783319522067&amp;rft.pages=35&amp;rft.place=Cham&amp;rft.pub=Springer&amp;rft.series=Springer+Texts+in+Statistics" style="display:none">&#160;</span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text">Klaus D. Schmidt&#58; <cite style="font-style:italic">Maß und Wahrscheinlichkeit</cite>. 2.,durchgesehene Auflage. Springer, Berlin / Heidelberg 2011, <a href="/wiki/Spezial:ISBN-Suche/9783642210259" class="internal mw-magiclink-isbn">ISBN 978-3-642-21025-9</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>194</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Klaus+D.+Schmidt&amp;rft.btitle=Ma%C3%9F+und+Wahrscheinlichkeit&amp;rft.date=2011&amp;rft.edition=2.%2Cdurchgesehene+Auflage&amp;rft.genre=book&amp;rft.isbn=9783642210259&amp;rft.pages=194&amp;rft.place=Berlin+%2F+Heidelberg&amp;rft.pub=Springer" style="display:none">&#160;</span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text">Loève: <i>Probability Theory.</i> 4. Auflage. Band 1, Springer 1977, <a href="/wiki/Spezial:ISBN-Suche/0387902104" class="internal mw-magiclink-isbn">ISBN 0-387-90210-4</a>, S. 172f.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text">Robert B. Ash: <i>Real Analysis and Probability.</i> Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, Definition 5.6.2.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text">Olav Kallenberg: <i>Foundations of Modern Probability.</i> 2. Ausgabe. Springer, New York 2002, <a href="/wiki/Spezial:ISBN-Suche/0387953132" class="internal mw-magiclink-isbn">ISBN 0-387-95313-2</a>, S. 55.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text">David Meintrup, Stefan Schäffler&#58; <cite style="font-style:italic">Stochastik</cite>. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, <a href="/wiki/Spezial:ISBN-Suche/3540216766" class="internal mw-magiclink-isbn">ISBN 3-540-21676-6</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>90</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1007/b137972">10.1007/b137972</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=David+Meintrup%2C+Stefan+Sch%C3%A4ffler&amp;rft.btitle=Stochastik&amp;rft.date=2005&amp;rft.doi=10.1007%2Fb137972&amp;rft.genre=book&amp;rft.isbn=3540216766&amp;rft.pages=90&amp;rft.place=Berlin+Heidelberg+New+York&amp;rft.pub=Springer-Verlag" style="display:none">&#160;</span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="#cite_ref-24">↑</a></span> <span class="reference-text">Diese Implikation gilt, da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X=c)=P(\{\omega \mid X(\omega )=c\})=P(\Omega )=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X=c)=P(\{\omega \mid X(\omega )=c\})=P(\Omega )=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebbf762c72b4db70a424384458196b77f0c7c1f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.934ex; height:2.843ex;" alt="{\displaystyle P(X=c)=P(\{\omega \mid X(\omega )=c\})=P(\Omega )=1}"></span>.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text">Robert B. Ash: <i>Real Analysis and Probability.</i> Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a> (Definition 5.8.1)</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text">Klaus D. Schmidt: <i>Maß und Wahrscheinlichkeit.</i> Springer-Verlag, Berlin/ Heidelberg 2009, <a href="/wiki/Spezial:ISBN-Suche/9783540897293" class="internal mw-magiclink-isbn">ISBN 978-3-540-89729-3</a>, Kapitel 11.4.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><a href="#cite_ref-27">↑</a></span> <span class="reference-text"><a href="/wiki/Marek_Fisz" title="Marek Fisz">Marek Fisz</a>: <i>Wahrscheinlichkeitsrechnung und mathematische Statistik.</i> 11. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1989, Definition 2.3.3.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text">Robert B. Ash: <i>Real Analysis and Probability.</i> Academic Press, New York 1972, <a href="/wiki/Spezial:ISBN-Suche/0120652013" class="internal mw-magiclink-isbn">ISBN 0-12-065201-3</a>, S. 210.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><a href="#cite_ref-29">↑</a></span> <span class="reference-text">Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6a57e5eb282c81c2bb6f5e313012fa77bc08a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y&lt;0}"></span> ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {P} (X^{2}\leq y)=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})=\operatorname {P} (\emptyset )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2205;<!-- ∅ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {P} (X^{2}\leq y)=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})=\operatorname {P} (\emptyset )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6787fa532610ba79d9cea5834f0cbe8005b3d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.37ex; height:3.176ex;" alt="{\displaystyle \operatorname {P} (X^{2}\leq y)=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})=\operatorname {P} (\emptyset )=0}"></span>. Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/130e8795bc869a5b823133c5a0972693605c00bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y\geq 0}"></span> gilt <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})\\&amp;=\operatorname {P} (\{\omega \mid -{\sqrt {y}}\leq X(\omega )\leq {\sqrt {y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\}\setminus \{\omega \mid X(\omega )&lt;{\sqrt {-y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\})-\operatorname {P} (\{\omega \mid X(\omega )&lt;-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})+\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})\\&amp;=\operatorname {P} (\{\omega \mid -{\sqrt {y}}\leq X(\omega )\leq {\sqrt {y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\}\setminus \{\omega \mid X(\omega )&lt;{\sqrt {-y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\})-\operatorname {P} (\{\omega \mid X(\omega )&lt;-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})+\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30e966775e84cb8f62b0ccff1b9077ff358461d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.838ex; width:60.424ex; height:20.843ex;" alt="{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (\{\omega \mid X^{2}(\omega )\leq y\})\\&amp;=\operatorname {P} (\{\omega \mid -{\sqrt {y}}\leq X(\omega )\leq {\sqrt {y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\}\setminus \{\omega \mid X(\omega )&lt;{\sqrt {-y}}\})\\&amp;=\operatorname {P} (\{\omega \mid X(\omega )\leq {\sqrt {y}}\})-\operatorname {P} (\{\omega \mid X(\omega )&lt;-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})+\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}"></span></dd></dl> Das letzte Gleichheitszeichen folgt, da die Verteilungsfunktion von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/062f285db773e329f6c270cb6b65fa076996c941" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.127ex; height:2.509ex;" alt="{\displaystyle F_{X}}"></span> als stetig vorausgesetzt ist, woraus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {P} (X=-{\sqrt {y}})=\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {P} (X=-{\sqrt {y}})=\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7be8b7a973cb5bcbb06ef3d501785323f9676557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:43.063ex; height:3.176ex;" alt="{\displaystyle \operatorname {P} (X=-{\sqrt {y}})=\operatorname {P} (\{\omega \mid X(\omega )=-{\sqrt {y}}\})=0}"></span> folgt.<br /> Typischerweise werden solche Berechnungen in der Statistik mit etwas Übung ohne expliziten Rückgriff auf die zugrundeliegende Ergebnismenge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span> und damit den zugrundeliegenden Wahrscheinlichkeitsraum durchgeführt, z. B. für den Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/130e8795bc869a5b823133c5a0972693605c00bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y\geq 0}"></span> in der Form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (-{\sqrt {y}}\leq X\leq {\sqrt {y}})\\&amp;=\operatorname {P} (X\leq {\sqrt {y}})-\operatorname {P} (X\leq -{\sqrt {y}})+\operatorname {P} (X=-{\sqrt {y}})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (-{\sqrt {y}}\leq X\leq {\sqrt {y}})\\&amp;=\operatorname {P} (X\leq {\sqrt {y}})-\operatorname {P} (X\leq -{\sqrt {y}})+\operatorname {P} (X=-{\sqrt {y}})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1e427bf0cf760026fd649d3ba15e851adc449a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:58.53ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {P} (X^{2}\leq y)&amp;=\operatorname {P} (-{\sqrt {y}}\leq X\leq {\sqrt {y}})\\&amp;=\operatorname {P} (X\leq {\sqrt {y}})-\operatorname {P} (X\leq -{\sqrt {y}})+\operatorname {P} (X=-{\sqrt {y}})\\&amp;=F_{X}({\sqrt {y}})-F_{X}(-{\sqrt {y}})\;.\end{aligned}}}"></span></dd></dl> </span></li> <li id="cite_note-30"><span class="mw-cite-backlink"><a href="#cite_ref-30">↑</a></span> <span class="reference-text">Günter Mühlbach&#58; <cite style="font-style:italic">Repetitorium Stochastik: Ein Zugang über Beispiele</cite>. 1. Auflage. Carl Hanser Verlag GmbH &amp; Co. KG, 2011, <a href="/wiki/Spezial:ISBN-Suche/9783446475977" class="internal mw-magiclink-isbn">ISBN 978-3-446-47597-7</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>53</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=G%C3%BCnter+M%C3%BChlbach&amp;rft.btitle=Repetitorium+Stochastik%3A+Ein+Zugang+%C3%BCber+Beispiele&amp;rft.date=2011&amp;rft.edition=1.&amp;rft.genre=book&amp;rft.isbn=9783446475977&amp;rft.pages=53&amp;rft.pub=Carl+Hanser+Verlag+GmbH+%26+Co.+KG" style="display:none">&#160;</span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text">Matthias Vierkötter&#58; <cite style="font-style:italic">Grundlagen der modernen Finanzmathematik</cite>. 2021, <a href="/wiki/Spezial:ISBN-Suche/9783662630624" class="internal mw-magiclink-isbn">ISBN 978-3-662-63062-4</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>16–17</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Zufallsvariable&amp;rft.au=Matthias+Vierk%C3%B6tter&amp;rft.btitle=Grundlagen+der+modernen+Finanzmathematik&amp;rft.date=2021&amp;rft.genre=book&amp;rft.isbn=9783662630624&amp;rft.pages=16-17" style="display:none">&#160;</span></span> </li> </ol> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable normdaten-typ-s" style="border-style: solid; border-width: 1px; clear: left; margin-bottom:1em; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="normdaten"> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div> Normdaten&#160;(Sachbegriff): <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4129514-6">4129514-6</a></span> <span class="noprint">(<a rel="nofollow" class="external text" href="https://lobid.org/gnd/4129514-6">lobid</a>, <a rel="nofollow" class="external text" href="https://swb.bsz-bw.de/DB=2.104/SET=1/TTL=1/CMD?retrace=0&amp;trm_old=&amp;ACT=SRCHA&amp;IKT=2999&amp;SRT=RLV&amp;TRM=4129514-6">OGND</a><span class="metadata">, <a rel="nofollow" class="external text" href="https://prometheus.lmu.de/gnd/4129514-6">AKS</a></span>)</span> <span class="metadata"></span></div> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Zufallsvariable&amp;oldid=247549682">https://de.wikipedia.org/w/index.php?title=Zufallsvariable&amp;oldid=247549682</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Stochastik" title="Kategorie:Stochastik">Stochastik</a></li><li><a href="/wiki/Kategorie:Statistischer_Grundbegriff" title="Kategorie:Statistischer Grundbegriff">Statistischer Grundbegriff</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Zufallsvariable" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Zufallsvariable" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Zufallsvariable" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Zufallsvariable" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Zufallsvariable"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Zufallsvariable" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Zufallsvariable" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;oldid=247549682" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Zufallsvariable&amp;id=247549682&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FZufallsvariable"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FZufallsvariable"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Zufallsvariable&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Zufallsvariable&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Random_variable" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176623" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Ewekansige_veranderlike" title="Ewekansige veranderlike – Afrikaans" lang="af" hreflang="af" data-title="Ewekansige veranderlike" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AA%D8%BA%D9%8A%D8%B1_%D8%B9%D8%B4%D9%88%D8%A7%D8%A6%D9%8A" title="متغير عشوائي – Arabisch" lang="ar" hreflang="ar" data-title="متغير عشوائي" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Variable_aleatoria" title="Variable aleatoria – Asturisch" lang="ast" hreflang="ast" data-title="Variable aleatoria" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C9%99sad%C3%BCfi_k%C9%99miyy%C9%99t" title="Təsadüfi kəmiyyət – Aserbaidschanisch" lang="az" hreflang="az" data-title="Təsadüfi kəmiyyət" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9E%D1%81%D1%80%D0%B0%D2%A1%D0%BB%D1%8B_%D0%B4%D3%99%D2%AF%D0%BC%D3%99%D0%BB" title="Осраҡлы дәүмәл – Baschkirisch" lang="ba" hreflang="ba" data-title="Осраҡлы дәүмәл" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D1%96%D1%87%D1%8B%D0%BD%D1%8F" title="Выпадковая велічыня – Belarussisch" lang="be" hreflang="be" data-title="Выпадковая велічыня" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0" title="Случайна величина – Bulgarisch" lang="bg" hreflang="bg" data-title="Случайна величина" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A6%E0%A7%88%E0%A6%AC_%E0%A6%9A%E0%A6%B2%E0%A6%95" title="দৈব চলক – Bengalisch" lang="bn" hreflang="bn" data-title="দৈব চলক" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Variable_aleat%C3%B2ria" title="Variable aleatòria – Katalanisch" lang="ca" hreflang="ca" data-title="Variable aleatòria" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-crh mw-list-item"><a href="https://crh.wikipedia.org/wiki/Tesad%C3%BCfiy_deger" title="Tesadüfiy deger – Krimtatarisch" lang="crh" hreflang="crh" data-title="Tesadüfiy deger" data-language-autonym="Qırımtatarca" data-language-local-name="Krimtatarisch" class="interlanguage-link-target"><span>Qırımtatarca</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/N%C3%A1hodn%C3%A1_veli%C4%8Dina" title="Náhodná veličina – Tschechisch" lang="cs" hreflang="cs" data-title="Náhodná veličina" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%C4%82%D0%BD%D1%81%C4%83%D1%80%D1%82_%D0%BA%D0%B0%D0%BF" title="Ăнсăрт кап – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Ăнсăрт кап" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Hapnewidyn" title="Hapnewidyn – Walisisch" lang="cy" hreflang="cy" data-title="Hapnewidyn" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Stokastisk_variabel" title="Stokastisk variabel – Dänisch" lang="da" hreflang="da" data-title="Stokastisk variabel" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CF%85%CF%87%CE%B1%CE%AF%CE%B1_%CE%BC%CE%B5%CF%84%CE%B1%CE%B2%CE%BB%CE%B7%CF%84%CE%AE" title="Τυχαία μεταβλητή – Griechisch" lang="el" hreflang="el" data-title="Τυχαία μεταβλητή" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Random_variable" title="Random variable – Englisch" lang="en" hreflang="en" data-title="Random variable" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Hazarda_variablo" title="Hazarda variablo – Esperanto" lang="eo" hreflang="eo" data-title="Hazarda variablo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Variable_aleatoria" title="Variable aleatoria – Spanisch" lang="es" hreflang="es" data-title="Variable aleatoria" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Juhuslik_suurus" title="Juhuslik suurus – Estnisch" lang="et" hreflang="et" data-title="Juhuslik suurus" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zorizko_aldagai" title="Zorizko aldagai – Baskisch" lang="eu" hreflang="eu" data-title="Zorizko aldagai" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AA%D8%BA%DB%8C%D8%B1_%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%DB%8C" title="متغیر تصادفی – Persisch" lang="fa" hreflang="fa" data-title="متغیر تصادفی" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Satunnaismuuttuja" title="Satunnaismuuttuja – Finnisch" lang="fi" hreflang="fi" data-title="Satunnaismuuttuja" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Variable_al%C3%A9atoire" title="Variable aléatoire – Französisch" lang="fr" hreflang="fr" data-title="Variable aléatoire" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Athr%C3%B3g_randamach" title="Athróg randamach – Irisch" lang="ga" hreflang="ga" data-title="Athróg randamach" data-language-autonym="Gaeilge" data-language-local-name="Irisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Variable_aleatoria" title="Variable aleatoria – Galicisch" lang="gl" hreflang="gl" data-title="Variable aleatoria" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%AA%D7%A0%D7%94_%D7%9E%D7%A7%D7%A8%D7%99" title="משתנה מקרי – Hebräisch" lang="he" hreflang="he" data-title="משתנה מקרי" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Val%C3%B3sz%C3%ADn%C5%B1s%C3%A9gi_v%C3%A1ltoz%C3%B3" title="Valószínűségi változó – Ungarisch" lang="hu" hreflang="hu" data-title="Valószínűségi változó" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Variabel_acak" title="Variabel acak – Indonesisch" lang="id" hreflang="id" data-title="Variabel acak" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Slembibreyta" title="Slembibreyta – Isländisch" lang="is" hreflang="is" data-title="Slembibreyta" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Variabile_casuale" title="Variabile casuale – Italienisch" lang="it" hreflang="it" data-title="Variabile casuale" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E5%A4%89%E6%95%B0" title="確率変数 – Japanisch" lang="ja" hreflang="ja" data-title="確率変数" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A8%E1%83%94%E1%83%9B%E1%83%97%E1%83%AE%E1%83%95%E1%83%94%E1%83%95%E1%83%98%E1%83%97%E1%83%98_%E1%83%A1%E1%83%98%E1%83%93%E1%83%98%E1%83%93%E1%83%94" title="შემთხვევითი სიდიდე – Georgisch" lang="ka" hreflang="ka" data-title="შემთხვევითი სიდიდე" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B5%D0%B7%D0%B4%D0%B5%D0%B9%D1%81%D0%BE%D2%9B_%D1%88%D0%B0%D0%BC%D0%B0" title="Кездейсоқ шама – Kasachisch" lang="kk" hreflang="kk" data-title="Кездейсоқ шама" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%95%EB%A5%A0_%EB%B3%80%EC%88%98" title="확률 변수 – Koreanisch" lang="ko" hreflang="ko" data-title="확률 변수" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Gad%C4%ABjuma_lielums" title="Gadījuma lielums – Lettisch" lang="lv" hreflang="lv" data-title="Gadījuma lielums" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D1%98%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%BB%D0%B8%D0%B2%D0%B0" title="Случајна променлива – Mazedonisch" lang="mk" hreflang="mk" data-title="Случајна променлива" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Pemboleh_ubah_rawak" title="Pemboleh ubah rawak – Malaiisch" lang="ms" hreflang="ms" data-title="Pemboleh ubah rawak" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Stochastische_variabele" title="Stochastische variabele – Niederländisch" lang="nl" hreflang="nl" data-title="Stochastische variabele" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Stokastisk_variabel" title="Stokastisk variabel – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Stokastisk variabel" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zmienna_losowa" title="Zmienna losowa – Polnisch" lang="pl" hreflang="pl" data-title="Zmienna losowa" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://pt.wikipedia.org/wiki/Vari%C3%A1vel_aleat%C3%B3ria" title="Variável aleatória – Portugiesisch" lang="pt" hreflang="pt" data-title="Variável aleatória" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Variabil%C4%83_aleatorie" title="Variabilă aleatorie – Rumänisch" lang="ro" hreflang="ro" data-title="Variabilă aleatorie" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0" title="Случайная величина – Russisch" lang="ru" hreflang="ru" data-title="Случайная величина" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Vari%C3%A0bbili_aliatoria" title="Variàbbili aliatoria – Sizilianisch" lang="scn" hreflang="scn" data-title="Variàbbili aliatoria" data-language-autonym="Sicilianu" data-language-local-name="Sizilianisch" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Slu%C4%8Dajna_varijabla" title="Slučajna varijabla – Serbokroatisch" lang="sh" hreflang="sh" data-title="Slučajna varijabla" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbokroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Random_variable" title="Random variable – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Random variable" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Slu%C4%8Dajna_spremenljivka" title="Slučajna spremenljivka – Slowenisch" lang="sl" hreflang="sl" data-title="Slučajna spremenljivka" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ndryshorja_e_rastit" title="Ndryshorja e rastit – Albanisch" lang="sq" hreflang="sq" data-title="Ndryshorja e rastit" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D1%98%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D1%99%D0%B8%D0%B2%D0%B0" title="Случајна променљива – Serbisch" lang="sr" hreflang="sr" data-title="Случајна променљива" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Variabel_acak" title="Variabel acak – Sundanesisch" lang="su" hreflang="su" data-title="Variabel acak" data-language-autonym="Sunda" data-language-local-name="Sundanesisch" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Stokastisk_variabel" title="Stokastisk variabel – Schwedisch" lang="sv" hreflang="sv" data-title="Stokastisk variabel" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%AE%E0%AE%B5%E0%AE%BE%E0%AE%AF%E0%AF%8D%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81_%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AE%BF" title="சமவாய்ப்பு மாறி – Tamil" lang="ta" hreflang="ta" data-title="சமவாய்ப்பு மாறி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AF%E0%B0%BE%E0%B0%A6%E0%B1%83%E0%B0%9A%E0%B1%8D%E0%B0%9B%E0%B0%BF%E0%B0%95_%E0%B0%9A%E0%B0%B2%E0%B0%B0%E0%B0%BE%E0%B0%B6%E0%B1%81%E0%B0%B2%E0%B1%81" title="యాదృచ్ఛిక చలరాశులు – Telugu" lang="te" hreflang="te" data-title="యాదృచ్ఛిక చలరాశులు" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%95%E0%B8%B1%E0%B8%A7%E0%B9%81%E0%B8%9B%E0%B8%A3%E0%B8%AA%E0%B8%B8%E0%B9%88%E0%B8%A1" title="ตัวแปรสุ่ม – Thailändisch" lang="th" hreflang="th" data-title="ตัวแปรสุ่ม" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Random_variable" title="Random variable – Tagalog" lang="tl" hreflang="tl" data-title="Random variable" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Rassal_de%C4%9Fi%C5%9Fken" title="Rassal değişken – Türkisch" lang="tr" hreflang="tr" data-title="Rassal değişken" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B8%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0" title="Випадкова величина – Ukrainisch" lang="uk" hreflang="uk" data-title="Випадкова величина" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%DB%8C_%D9%85%D8%AA%D8%BA%DB%8C%D8%B1" title="تصادفی متغیر – Urdu" lang="ur" hreflang="ur" data-title="تصادفی متغیر" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Bi%E1%BA%BFn_ng%E1%BA%ABu_nhi%C3%AAn" title="Biến ngẫu nhiên – Vietnamesisch" lang="vi" hreflang="vi" data-title="Biến ngẫu nhiên" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9A%8F%E6%9C%BA%E5%8F%98%E9%87%8F" title="随机变量 – Chinesisch" lang="zh" hreflang="zh" data-title="随机变量" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E8%AE%8A%E6%95%B8" title="隨機變數 – Kantonesisch" lang="yue" hreflang="yue" data-title="隨機變數" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176623#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 9. August 2024 um 21:54 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Zufallsvariable&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Zufallsvariable?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Zufallsvariable&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-vrgw7","wgBackendResponseTime":153,"wgPageParseReport":{"limitreport":{"cputime":"0.636","walltime":"0.871","ppvisitednodes":{"value":3026,"limit":1000000},"postexpandincludesize":{"value":47791,"limit":2097152},"templateargumentsize":{"value":1924,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":40114,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 356.989 1 -total"," 47.91% 171.048 23 Vorlage:Literatur"," 14.49% 51.736 1 Vorlage:Commonscat"," 11.76% 41.973 2 Vorlage:Wikidata-Registrierung"," 10.50% 37.491 1 Vorlage:EnS"," 4.79% 17.113 8 Vorlage:Hauptartikel"," 4.03% 14.397 2 Vorlage:Wikibooks"," 3.63% 12.973 1 Vorlage:Normdaten"," 3.45% 12.333 1 Vorlage:Google_Buch"," 1.89% 6.739 1 Vorlage:Str_left"]},"scribunto":{"limitreport-timeusage":{"value":"0.166","limit":"10.000"},"limitreport-memusage":{"value":6332756,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8cb5f4d85-2rbxp","timestamp":"20241126194524","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Zufallsvariable","url":"https:\/\/de.wikipedia.org\/wiki\/Zufallsvariable","sameAs":"http:\/\/www.wikidata.org\/entity\/Q176623","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q176623","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-10-03T11:37:19Z","headline":"Begriff aus der Stochastik: Gr\u00f6\u00dfe, deren Wert vom Zufall abh\u00e4ngt"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10