CINXE.COM
Search results for: highly ionizing particles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: highly ionizing particles</title> <meta name="description" content="Search results for: highly ionizing particles"> <meta name="keywords" content="highly ionizing particles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="highly ionizing particles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="highly ionizing particles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6161</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: highly ionizing particles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6161</span> The MoEDAL-MAPP* Experiment - Expanding the Discovery Horizon of the Large Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Pinfold">James Pinfold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MoEDAL (Monopole and Exotics Detector at the LHC) experiment deployed at IP8 on the Large Hadron Collider ring was the first dedicated search experiment to take data at the Large Hadron Collider (LHC) in 2010. It was designed to search for Highly Ionizing Particle (HIP) avatars of new physics such as magnetic monopoles, dyons, Q-balls, multiply charged particles, massive, slowly moving charged particles and long-lived massive charge SUSY particles. We shall report on our search at LHC’s Run-2 for Magnetic monopoles and dyons produced in p-p and photon-fusion. In more detail, we will report our most recent result in this arena: the search for magnetic monopoles via the Schwinger Mechanism in Pb-Pb collisions. The MoEDAL detector, originally the first dedicated search detector at the LHC, is being reinstalled for LHC’s Run-3 to continue the search for electrically and magnetically charged HIPs with enhanced instantaneous luminosity, detector efficiency and a factor of ten lower thresholds for HIPs. As part of this effort, we will search for massive l long-lived, singly and multiply charged particles from various scenarios for which MoEDAL has a competitive sensitivity. An upgrade to MoEDAL, the MoEDAL Apparatus for Penetrating Particles (MAPP), is now the LHC’s newest detector. The MAPP detector, positioned in UA83, expands the physics reach of MoEDAL to include sensitivity to feebly-charged particles with charge, or effective charge, as low as 10-3 e (where e is the electron charge). Also, In conjunction with MoEDAL’s trapping detector, the MAPP detector gives us a unique sensitivity to extremely long-lived charged particles. MAPP also has some sensitivity to long-lived neutral particles. The addition of an Outrigger detector for MAPP-1 to increase its acceptance for more massive milli-charged particles is currently in the Technical Proposal stage. Additionally, we will briefly report on the plans for the MAPP-2 upgrade to the MoEDAL-MAPP experiment for the High Luminosity LHC (HL-LHC). This experiment phase is designed to maximize MoEDAL-MAPP’s sensitivity to very long-lived neutral messengers of physics beyond the Standard Model. We envisage this detector being deployed in the UGC1 gallery near IP8. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LHC" title="LHC">LHC</a>, <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title=" beyond the standard model"> beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=dedicated%20search%20experiment" title=" dedicated search experiment"> dedicated search experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles" title=" highly ionizing particles"> highly ionizing particles</a>, <a href="https://publications.waset.org/abstracts/search?q=long-lived%20particles" title=" long-lived particles"> long-lived particles</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-charged%20particles" title=" milli-charged particles"> milli-charged particles</a> </p> <a href="https://publications.waset.org/abstracts/167524/the-moedal-mapp-experiment-expanding-the-discovery-horizon-of-the-large-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6160</span> Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Barilla">J. Barilla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lokaj%C3%AD%C4%8Dek"> M. Lokajíček</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pisakov%C3%A1"> H. Pisaková</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Simr"> P. Simr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiobiological%20mechanism" title="radiobiological mechanism">radiobiological mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20phase" title=" chemical phase"> chemical phase</a>, <a href="https://publications.waset.org/abstracts/search?q=DSB%20formation" title=" DSB formation"> DSB formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20nets" title=" Petri nets"> Petri nets</a> </p> <a href="https://publications.waset.org/abstracts/2417/modeling-of-processes-running-in-radical-clusters-formed-by-ionizing-radiation-with-the-help-of-continuous-petri-nets-and-oxygen-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6159</span> Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Belal%20Uudin%20Rabbi">Md. Belal Uudin Rabbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakib%20Al%20Montasir"> Sakib Al Montasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Saifur%20Rahman"> Saifur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20Nahid"> Niger Nahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmail%20Hossain%20Emon"> Esmail Hossain Emon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20shielding%20materials" title="radiation shielding materials">radiation shielding materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tungsten%20oxide" title=" Tungsten oxide"> Tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a> </p> <a href="https://publications.waset.org/abstracts/161275/alternative-of-lead-based-ionization-radiation-shielding-property-epoxy-based-composite-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6158</span> Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleem">Mohammad Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujahid%20Kamran"> Mujahid Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causality" title="causality">causality</a>, <a href="https://publications.waset.org/abstracts/search?q=gauge%20particles" title=" gauge particles"> gauge particles</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20particles" title=" material particles"> material particles</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20relativity" title=" special relativity"> special relativity</a> </p> <a href="https://publications.waset.org/abstracts/31503/causality-special-relativity-and-non-existence-of-material-particles-of-zero-rest-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6157</span> Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kalmakhelidze">Sophio Kalmakhelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Eka%20Shekiladze"> Eka Shekiladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Sanikidze"> Tamar Sanikidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikheil%20Gogebashvili"> Mikheil Gogebashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazi%20Ivanishvili"> Nazi Ivanishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20impairments" title=" cognitive impairments"> cognitive impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampus" title=" hippocampus"> hippocampus</a>, <a href="https://publications.waset.org/abstracts/search?q=limbic%20system" title=" limbic system"> limbic system</a>, <a href="https://publications.waset.org/abstracts/search?q=Herniarin" title=" Herniarin"> Herniarin</a> </p> <a href="https://publications.waset.org/abstracts/176790/protective-effect-of-herniarin-on-ionizing-radiation-induced-impairments-in-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6156</span> Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqian%20Li">Liqian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Liu"> Yu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Colins"> Karen Colins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEPROM" title="EEPROM">EEPROM</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20effects%20on%20electronics" title=" radiation effects on electronics"> radiation effects on electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20ionizing%20dose" title=" total ionizing dose"> total ionizing dose</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/77107/investigation-of-factors-affecting-the-total-ionizing-dose-threshold-of-electrically-erasable-read-only-memories-for-use-in-dose-rate-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6155</span> Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayanti%20Gyawali">Jayanti Gyawali</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Adhikari"> Deepak Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Mallik"> Mukesh Mallik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Sah"> Sanjay Sah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technicians" title="technicians">technicians</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/44864/awareness-regarding-radiation-protection-among-the-technicians-practicing-in-bharatpur-chitwan-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6154</span> Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Em%C3%ADlia%20Szab%C3%B3">Rita Emília Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%B3bert%20Polanek"> Róbert Polanek</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCnde%20T%C5%91k%C3%A9s"> Tünde Tőkés</a>, <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Szab%C3%B3"> Zoltán Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=Szabolcs%20Czifrus"> Szabolcs Czifrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Hidegh%C3%A9ty"> Katalin Hideghéty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title="ionizing radiation">ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=LD50" title=" LD50"> LD50</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20biological%20effectiveness" title=" relative biological effectiveness"> relative biological effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryo" title=" zebrafish embryo"> zebrafish embryo</a> </p> <a href="https://publications.waset.org/abstracts/42445/vertebrate-model-to-examine-the-biological-effectiveness-of-different-radiation-qualities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6153</span> Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khosravi">Mohammad Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kiani"> Ali Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Behroz%20Dastar"> Behroz Dastar</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Showrang"> Parvin Showrang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antitrypsin" title="antitrypsin">antitrypsin</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20anti-nutritional%20components" title=" gamma anti-nutritional components"> gamma anti-nutritional components</a>, <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title=" phytic acid"> phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/58193/radiation-usage-impact-of-on-anti-nutritional-compounds-antitrypsin-and-phytic-acid-of-livestock-and-poultry-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6152</span> Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogale%20Tadesse">Bogale Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Krutik%20Parikh"> Krutik Parikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndagha%20Mkandawire"> Ndagha Mkandawire</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Albijanic"> Boris Albijanic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimal%20Subasinghe"> Nimal Subasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroflotation" title="electroflotation">electroflotation</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bubbles" title=" fine bubbles"> fine bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20particles" title=" ultrafine particles"> ultrafine particles</a> </p> <a href="https://publications.waset.org/abstracts/51923/enhancing-the-flotation-of-fine-and-ultrafine-pyrite-particles-using-electrolytically-generated-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6151</span> Mutagenesis, Oxidative Stress Induction and Blood Cytokine Profile in First Generation Male Rats Whose Parents Were Exposed to Radiation and Hexavalent Chromium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yerbolat%20Iztleuov">Yerbolat Iztleuov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic effects, which are currently largely associated with exposure to ionizing radiation or a combination of ionizing radiation with other chemical, physical, and biological agents, are expressed in the form of various mutations. In the first stage of the study, rats of both sexes were divided into 3 groups. 1st - control group, animals of the 2nd group were exposed to gamma radiation at a dose of 0.2 Gy. The third group received hexavalent chromium in a dose of 180 mg/ l with drinking water for a month before irradiation and a day after the end of chromium consumption and was subjected to total gamma irradiation at a dose of 0.2 Gy. The second stage of the experiment. After 3 days, the males were mated with the females. The obtained offspring were studied for peroxidation, cytokine profile and micronucleus in the nuclei. This study shows that 5-month-old offspring whose parents were exposed to combined exposure to chromium and γ-irradiation exhibit hereditary instability of the genome, decreased activity of antioxidant enzymes and sulfhydryl blood groups, and increased levels of lipid peroxidation. There is also an increase in the level of inflammatory markers (IL-6 and TNF) in the blood plasma against the background of a decrease in anti-inflammatory cytokine (IL-10). Thus, the combined effect of hexavalent chromium and ionizing radiation can lead to the development of an oncological process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hexavalent%20chromium" title="hexavalent chromium">hexavalent chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20generation" title=" first generation"> first generation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagenesis" title=" mutagenesis"> mutagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/190168/mutagenesis-oxidative-stress-induction-and-blood-cytokine-profile-in-first-generation-male-rats-whose-parents-were-exposed-to-radiation-and-hexavalent-chromium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6150</span> Microscopic Visualization of the Ice Slurry Ice Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Jos%C3%A9%20Mil%C3%B3n%20Guzm%C3%A1n">Juan José Milón Guzmán</a>, <a href="https://publications.waset.org/abstracts/search?q=Herbert%20Jes%C3%BAs%20Del%20Carpio%20Beltr%C3%A1n"> Herbert Jesús Del Carpio Beltrán</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Leal%20Braga"> Sergio Leal Braga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visualizations of ice particles of ice slurry are performed. The form and size of ice particles is investigated by optical microscopy. It permits to evaluate statistically the geometrical shapes of the ice crystals. The observed particle size corresponds with the different solutes (sugar, salt, propylene glycol). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20slurry" title="ice slurry">ice slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20particles" title=" ice particles"> ice particles</a>, <a href="https://publications.waset.org/abstracts/search?q=solutes" title=" solutes"> solutes</a> </p> <a href="https://publications.waset.org/abstracts/58865/microscopic-visualization-of-the-ice-slurry-ice-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6149</span> Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejay%20Nsugbe">Ejay Nsugbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Starr"> Andrew Starr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Jennions"> Ian Jennions</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristobal%20Ruiz-Carcel"> Cristobal Ruiz-Carcel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emissions" title="acoustic emissions">acoustic emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20sizing" title=" particle sizing"> particle sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20monitoring" title=" process monitoring"> process monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/68042/particle-size-distribution-estimation-of-a-mixture-of-regular-and-irregular-sized-particles-using-acoustic-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6148</span> Self-Assembled Tin Particles Made by Plasma-Induced Dewetting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Joo%20Choe">Han Joo Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ho%20Kwon"> Soon-Ho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Joong%20Lee"> Jung-Joong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin particles of various size and distribution were self-assembled by plasma treating tin film deposited on silicon oxide substrates. Plasma treatment was conducted using an inductively coupled plasma (ICP) source. A range of ICP power and topographic templated substrates were evaluated to observe changes in particle size and particle distribution. Scanning electron microscopy images of the particles were analyzed using computer software. The evolution of tin film dewetting into particles initiated from the hole nucleation in grain boundaries. Increasing ICP power during plasma treatment produced larger number of particles per area and smaller particle size and particle-size distribution. Topographic templates were also effective in positioning and controlling the size of the particles. By combining the effects of ICP power and topographic templates, particles of similar size and well-ordered distribution were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=particles" title=" particles"> particles</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=tin" title=" tin "> tin </a> </p> <a href="https://publications.waset.org/abstracts/39207/self-assembled-tin-particles-made-by-plasma-induced-dewetting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6147</span> Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.J.%20Kim">I.J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.C.%20Kim"> B.C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.H.%20Kim"> J.H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-Y.%20Yi"> C.-Y. Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20calorimeter" title="graphite calorimeter">graphite calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-adiabatic%20mode" title=" quasi-adiabatic mode "> quasi-adiabatic mode </a> </p> <a href="https://publications.waset.org/abstracts/24560/thermal-analysis-of-a-graphite-calorimeter-for-the-measurement-of-absorbed-dose-for-therapeutic-x-ray-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6146</span> A Review of Fractal Dimension Computing Methods Applied to Wear Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Thakur">Manish Kumar Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Kumar%20Ghosh"> Subrata Kumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title="fractal dimension">fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20analysis" title=" morphological analysis"> morphological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20particles" title=" wear particles"> wear particles</a> </p> <a href="https://publications.waset.org/abstracts/48239/a-review-of-fractal-dimension-computing-methods-applied-to-wear-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6145</span> The Fate of Plastic Debris and Microplastic Particles in Mangroves in the Sultanate of Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Al-Tarshi">Muna Al-Tarshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution and accumulation dynamics of anthropogenic marine debris (AMD) and microplastic particles in mangrove habitats in the region are poorly understood. The abundance, sorting, and diversity aspects of AMD and microplastics were investigated in three types of mangroves creeks ( Natural mangrove, afforested mangrove, and non-planted). Abundance, concentration, and particles form of microplastics have been illustrated in three substrate in mangrove habitats e.g. sediment, water, and aquatic organisms. Density separation method by using highly saturated solution was implemented to extract the plastic particles from the sediment samples. The average size of particles in each transect was done using image software, and the polymer type was determined via FTIR. There was variability in abundance of microplastics and marine debris between the habitats and within the substrates in the habitats.Biomonitoring program was developed to detect the pollution of microplastics in mangrove habitats in Sultanate of Oman. Sediment dwelling species were the best choice. Testing whether the zooplankton (Artemia) eating the microplastics via FlowCam technique have been studied. The zooplanktons (Artemia) were eating the microplastics as mistaken food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20debris" title=" marine debris"> marine debris</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcam" title=" flowcam"> flowcam</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=artemia" title=" artemia"> artemia</a> </p> <a href="https://publications.waset.org/abstracts/151004/the-fate-of-plastic-debris-and-microplastic-particles-in-mangroves-in-the-sultanate-of-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6144</span> Study of Radiation Response in Lactobacillus Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Arora">Kanika Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Bala"> Madhu Bala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dysbiosis" title="dysbiosis">dysbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/84937/study-of-radiation-response-in-lactobacillus-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6143</span> Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifigeneia%20V.%20Mavragani">Ifigeneia V. Mavragani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zacharenia%20Nikitaki"> Zacharenia Nikitaki</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kalantzis"> George Kalantzis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Iliakis"> George Iliakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20G.%20Georgakilas"> Alexandros G. Georgakilas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20DNA%20damage" title="complex DNA damage">complex DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20simulation" title=" DNA damage simulation"> DNA damage simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=protons" title=" protons"> protons</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a> </p> <a href="https://publications.waset.org/abstracts/60953/comparison-of-monte-carlo-simulations-and-experimental-results-for-the-measurement-of-complex-dna-damage-induced-by-ionizing-radiations-of-different-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6142</span> Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiji%20Komatsu">Keiji Komatsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayato%20Maruyama"> Hayato Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariyuki%20Kato"> Ariyuki Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Nakamura"> Atsushi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Ohshio"> Shigeo Ohshio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Akasaka"> Hiroki Akasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saitoh"> Hidetoshi Saitoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20luminescence%20spectroscopy" title="low temperature luminescence spectroscopy">low temperature luminescence spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20identification" title=" material identification"> material identification</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20aluminates%20phosphor" title=" strontium aluminates phosphor"> strontium aluminates phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20properties" title=" emission properties "> emission properties </a> </p> <a href="https://publications.waset.org/abstracts/10329/low-temperature-luminescence-spectroscopy-of-violet-sr-al-oeu2-phosphor-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6141</span> Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20alloy" title="base alloy">base alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal%20MMCs" title=" base metal MMCs "> base metal MMCs </a> </p> <a href="https://publications.waset.org/abstracts/11123/preparation-of-alumina-al2o3-particles-and-mmcs-of-al-7-si-045-mg-alloy-using-vortex-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6140</span> Boiling Heat Transfer Enhancement Using Hydrophilic Millimeter Copper Free Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Abouei%20Mehrizi">Abbasali Abouei Mehrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Leping%20Zhou"> Leping Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modification of surface wettability is one of the conventional approaches to manipulate the boiling heat transfer. Instead of direct surface modification, in the present study, the surface is decorated with free copper particles with different hydrophobicity. We used millimeter-sized copper particles with two different hydrophobicity. The surface is covered with untreated, hydrophilic, and a combination of hydrophobic and hydrophilic copper particles separately, and the heat flux and wall superheat temperature was measured experimentally and compared with the bare polished copper surface. The results show that the untreated copper particles can slightly improve the boiling heat transfer when the hydrophilic copper particles have better performance. Combining hydrophilic and hydrophobic copper particles reduces boiling heat transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling%20heat%20transfer" title="boiling heat transfer">boiling heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20balls" title=" copper balls"> copper balls</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a> </p> <a href="https://publications.waset.org/abstracts/163360/boiling-heat-transfer-enhancement-using-hydrophilic-millimeter-copper-free-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6139</span> On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kurudzirayi%20Robson%20Musikavanhu">Kurudzirayi Robson Musikavanhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20solar%20system" title="electromagnetic solar system">electromagnetic solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-material" title=" nano-material"> nano-material</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20pharmacology" title=" nano pharmacology"> nano pharmacology</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacovigilance" title=" pharmacovigilance"> pharmacovigilance</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20theory" title=" quantum theory"> quantum theory</a> </p> <a href="https://publications.waset.org/abstracts/43516/on-the-quantum-behavior-of-nanoparticles-quantum-theory-and-nano-pharmacology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6138</span> Effect of Bi-Dispersity on Particle Clustering in Sedimentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abbas%20Zaidi">Ali Abbas Zaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20in%20bi-disperse%20settling%20particles" title="dispersion in bi-disperse settling particles">dispersion in bi-disperse settling particles</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20microstructures%20in%20bi-disperse%20suspensions" title=" particle microstructures in bi-disperse suspensions"> particle microstructures in bi-disperse suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20resolved%20direct%20numerical%20simulations" title=" particle resolved direct numerical simulations"> particle resolved direct numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=settling%20of%20bi-disperse%20particles" title=" settling of bi-disperse particles"> settling of bi-disperse particles</a> </p> <a href="https://publications.waset.org/abstracts/86250/effect-of-bi-dispersity-on-particle-clustering-in-sedimentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6137</span> Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjela%20Koblischka-Veneva">Anjela Koblischka-Veneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20R.%20Koblischka"> Michael R. Koblischka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bulk%20superconductors" title="Bulk superconductors">Bulk superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=Strain" title=" Strain"> Strain</a>, <a href="https://publications.waset.org/abstracts/search?q=YBa2Cu3Oy" title=" YBa2Cu3Oy"> YBa2Cu3Oy</a> </p> <a href="https://publications.waset.org/abstracts/122638/residual-stress-around-embedded-particles-in-bulk-yba2cu3oy-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6136</span> Percolation Transition in an Agglomeration of Spherical Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20system" title="binary system">binary system</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20cluster%20size" title=" maximum cluster size"> maximum cluster size</a>, <a href="https://publications.waset.org/abstracts/search?q=percolation" title=" percolation"> percolation</a>, <a href="https://publications.waset.org/abstracts/search?q=polydisperse" title=" polydisperse"> polydisperse</a> </p> <a href="https://publications.waset.org/abstracts/182302/percolation-transition-in-an-agglomeration-of-spherical-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6135</span> Limestone Briquette Production and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20R.%20Barros"> Mariana R. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas.%20Y.%20Marinho"> Douglas. Y. Marinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20F.%20Lopes"> Diego F. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Sousa"> Débora N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20S.%20Tom%C3%A1z"> Raphael S. Tomáz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=briquetting" title=" briquetting"> briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20acidity%20correction" title=" soil acidity correction"> soil acidity correction</a> </p> <a href="https://publications.waset.org/abstracts/50898/limestone-briquette-production-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6134</span> Assessment of Nuclear Medicine Radiation Protection Practices Among Radiographers and Nurses at a Small Nuclear Medicine Department in a Tertiary Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyathi%20Mpumelelo%3B%20Moeng%20Thabiso%20Maria">Nyathi Mpumelelo; Moeng Thabiso Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND AND OBJECTIVES: Radiopharmaceuticals are used for diagnosis, treatment, staging and follow up of various diseases. However, there is concern that the ionizing radiation (gamma rays, α and ß particles) emitted by radiopharmaceuticals may result in exposure of radiographers and nurses with limited knowledge of the principles of radiation protection and safety, raising the risk of cancer induction. This study aimed at investigation radiation safety awareness levels among radiographers and nurses at a small tertiary hospital in South Africa. METHODS: An analytical cross-sectional study. A validated two-part questionnaire was implemented to consenting radiographers and nurses working in a Nuclear Medicine Department. Part 1 gathered demographic information (age, gender, work experience, attendance to/or passing ionizing radiation protection courses). Part 2 covered questions related to knowledge and awareness of radiation protection principles. RESULTS: Six radiographers and five nurses participated (27% males and 73% females). The mean age was 45 years (age range 20-60 years). The study revealed that neither professional development courses nor radiation protection courses are offered at the Nuclear Medicine Department understudy. However, 6/6 (100%) radiographers exhibited a high level of awareness of radiation safety principles on handling and working with radiopharmaceuticals which correlated to their years of experience. As for nurses, 4/5 (80%) showed limited knowledge and awareness of radiation protection principles irrespective of the number of years in the profession. CONCLUSION: Despite their major role of caring for patients undergoing diagnostic and therapeutic treatments, the nurses showed limited knowledge of ionizing radiation and associated side effects. This was not surprising since they never received any formal basic radiation safety course. These findings were not unique to this Centre. A study conducted in a Kuwaiti Radiology Department also established that the vast majority of nurses did not understand the risks of working with ionizing radiation. Similarly, nurses in an Australian hospital exhibited knowledge limitations. However, nursing managers did provide the necessary radiation safety training when requested. In Guatemala and Saudi Arabia, where there was shortage of professional radiographers, nurses underwent radiography training, a course that equipped them with basic radiation safety principles. The radiographers in the Centre understudy unlike others in various parts of the world demonstrated substantial knowledge and awareness on radiation protection. Radiations safety courses attended when an opportunity arose played a critical role in their awareness. The knowledge and awareness levels of these radiographers were comparable to their counterparts in Sudan. However, it was much more above that of their counterparts in Jordan, Nigeria, Nepal and Iran who were found to have limited awareness and inadequate knowledge on radiation dose. Formal radiation safety and awareness courses and workshops can play a crucial role in raising the awareness of nurses and radiographers on radiation safety for their personal benefit and that of their patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20safety" title="radiation safety">radiation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20awareness" title=" radiation awareness"> radiation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a> </p> <a href="https://publications.waset.org/abstracts/170681/assessment-of-nuclear-medicine-radiation-protection-practices-among-radiographers-and-nurses-at-a-small-nuclear-medicine-department-in-a-tertiary-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6133</span> Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Ju%20Chuang">Feng Ju Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wen%20Wang"> Yu Wen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai%20Jung%20Hsieh"> Tai Jung Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh%20Ming%20Kuo"> Shyh Ming Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen%20synthesis" title="collagen synthesis">collagen synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage" title=" macrophage"> macrophage</a>, <a href="https://publications.waset.org/abstracts/search?q=NIH3T3%20cells" title=" NIH3T3 cells"> NIH3T3 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid%20particles" title=" polylactic acid particles"> polylactic acid particles</a> </p> <a href="https://publications.waset.org/abstracts/156614/evaluation-of-collagen-synthesis-in-macrophagesfibroblasts-co-culture-using-polylactic-acid-particles-as-stimulants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6132</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=205">205</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=206">206</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>