CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 354 results for author: <span class="mathjax">Huang, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Huang%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14867">arXiv:2502.14867</a> <span> [<a href="https://arxiv.org/pdf/2502.14867">pdf</a>, <a href="https://arxiv.org/format/2502.14867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Fermi's Golden Rule in the Probing of a Quantum Many-Body System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Tsidilkovski%2C+A">Alan Tsidilkovski</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14867v1-abstract-short" style="display: inline;"> Fermi's Golden Rule (FGR) is one of the most impactful formulas in quantum mechanics, providing a link between easy-to-measure observables - such as transition rates - and fundamental microscopic properties - such as density of states or spectral functions. Its validity relies on three key assumptions: the existence of a continuum, an appropriate time window, and a weak coupling. Understanding the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14867v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14867v1-abstract-full" style="display: none;"> Fermi's Golden Rule (FGR) is one of the most impactful formulas in quantum mechanics, providing a link between easy-to-measure observables - such as transition rates - and fundamental microscopic properties - such as density of states or spectral functions. Its validity relies on three key assumptions: the existence of a continuum, an appropriate time window, and a weak coupling. Understanding the regime of validity of FGR is critical for the proper interpretation of most spectroscopic experiments. While the assumptions underlying FGR are straightforward to analyze in simple models, their applicability is significantly more complex in quantum many-body systems. Here, we observe the emergence and breakdown of FGR, using a strongly interacting homogeneous spin-$1/2$ Fermi gas coupled to a radio-frequency (rf) field. Measuring the transition probability into an outcoupled internal state, we map the system's dynamical response diagram versus the rf-pulse duration $t$ and Rabi frequency $惟_0$. For weak drives, we identify three regimes: an early-time regime where the transition probability takes off as $t^2$, an intermediate-time FGR regime, and a long-time non-perturbative regime. Beyond a threshold Rabi frequency, Rabi oscillations appear. Our results provide a blueprint for the applicability of linear response theory to the spectroscopy of quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14867v1-abstract-full').style.display = 'none'; document.getElementById('2502.14867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10730">arXiv:2502.10730</a> <span> [<a href="https://arxiv.org/pdf/2502.10730">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Semiconducting behaviors at epitaxial Ca0.5TaO3 interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Nie%2C+G">Guangdong Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+G">Guanghui Han</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Huiyin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+D">Deshun Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kangxi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">Hao Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+F">Fangdong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+L">Licong Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Dashuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Young Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changjiang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+D">Deshun Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10730v1-abstract-short" style="display: inline;"> Emergent phenomena take place in symmetry-breaking systems, notably the recently discovered two-dimensional electron gas and its tunable superconductivities near the KTaO3 interfaces. Here, we synthesized perovskite Ca0.5TaO3 films along both [001] and [111] orientations. Different from the KTaO3 system, Ca0.5TaO3 films show semiconducting behaviors when capped with LaAlO3 films in both [001] and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10730v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10730v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10730v1-abstract-full" style="display: none;"> Emergent phenomena take place in symmetry-breaking systems, notably the recently discovered two-dimensional electron gas and its tunable superconductivities near the KTaO3 interfaces. Here, we synthesized perovskite Ca0.5TaO3 films along both [001] and [111] orientations. Different from the KTaO3 system, Ca0.5TaO3 films show semiconducting behaviors when capped with LaAlO3 films in both [001] and [111] orientations. By growing films at higher temperatures, more oxygen vacancies can be introduced, and the carrier density can be tuned from ~ 1014 cm-2 to ~ 1016 cm-2. Another difference is that the superconducting transition temperature Tc in KTaO3 (111) increases linearly along with its carrier density, while the Ca0.5TaO3 (111) remains semiconducting when carrier density ranges from ~ 1014 cm-2 to ~ 1016 cm-2. Based on the density function theory calculation, Ca0.5TaO3 and KTaO3 show similar electronic band structures. According to the energy-dispersive X-ray spectroscopy, we found heavy Sr diffusion from the substrate to the Ca0.5TaO3 layer, which may destroy the interfacial conductivity. Our work demonstrates that besides the oxygen vacancies, electronic transport is sensitive to the atomic intermixing near the interface in tantulates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10730v1-abstract-full').style.display = 'none'; document.getElementById('2502.10730v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09882">arXiv:2502.09882</a> <span> [<a href="https://arxiv.org/pdf/2502.09882">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.054421">10.1103/PhysRevB.111.054421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Spin Nernst Effect in Ni70Cu30 Alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wen-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+C">Chia-Hsi Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+G">Guang-Yu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Ssu-Yen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Qu%2C+D">Danru Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09882v1-abstract-short" style="display: inline;"> The interplay among heat, spin, and charge is the central focus in spin caloritronic research. While the longitudinal heat-to-spin conversion via the spin Seebeck effect has been intensively studied, the transverse heat-to-spin conversion via the spin Nernst effect (SNE) has not been equally explored. One major challenge is the minuscule signals generated by the SNE, which are often mixed with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09882v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09882v1-abstract-full" style="display: none;"> The interplay among heat, spin, and charge is the central focus in spin caloritronic research. While the longitudinal heat-to-spin conversion via the spin Seebeck effect has been intensively studied, the transverse heat-to-spin conversion via the spin Nernst effect (SNE) has not been equally explored. One major challenge is the minuscule signals generated by the SNE, which are often mixed with the background noises. In this work, we overcome this difficulty by studying the thin films of Ni70Cu30 alloy with not only a sizable spin Hall angle but also a large Seebeck coefficient. We observe in the Ni70Cu30 alloy a large spin Nernst effect with an estimated spin Nernst angle ranging from -28% to -72%. In comparison, the spin Nernst angle for Pt is -8.2%. Our ab initio calculation reveals that the large spin Nernst conductivity in Ni70Cu30 is caused by the Fermi energy shift to the steepest slope of the spin Hall conductivity curve due to electron doping from 30% Cu. Our study provides critical directions in searching for materials with a large spin Nernst effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09882v1-abstract-full').style.display = 'none'; document.getElementById('2502.09882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, 054421 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01955">arXiv:2502.01955</a> <span> [<a href="https://arxiv.org/pdf/2502.01955">pdf</a>, <a href="https://arxiv.org/format/2502.01955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced structural and superconducting transitions in black arsenic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y+Y">Y. Y. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+L">L. Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y+L">Y. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+D+Z">D. Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+K">K. Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+Y">S. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+C">S. C. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">J. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H+G">H. G. Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01955v1-abstract-short" style="display: inline;"> We report high-pressure Raman spectra and resistance measurements of black arsenic (b-As) up to 58 GPa, along with phonon density of states (DOS) and enthalpy calculations for four reported arsenic phases up to 50 GPa. It is found that metastable b-As transforms into gray arsenic (g-As) phase at a critical pressure of 1.51 GPa, followed by subsequent transitions to simple cubic arsenic (c-As) and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01955v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01955v1-abstract-full" style="display: none;"> We report high-pressure Raman spectra and resistance measurements of black arsenic (b-As) up to 58 GPa, along with phonon density of states (DOS) and enthalpy calculations for four reported arsenic phases up to 50 GPa. It is found that metastable b-As transforms into gray arsenic (g-As) phase at a critical pressure of 1.51 GPa, followed by subsequent transitions to simple cubic arsenic (c-As) and incommensurate host-guest arsenic (hg-As) phases at 25.9 and 44.8 GPa, respectively. Superconductivity emerges above 25 GPa in the c-As phase, with the superconducting transition temperature ($T$$\rm_c$) remaining nearly a constant of 3 K. Upon further compression, $T$$\rm_c$ steeply increases to a higher value around 4.5 K in the incommensurate hg-As phase above 43 GPa. We use our results to update the structural and superconducting phase diagrams under pressure for the novel semiconductor, black arsenic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01955v1-abstract-full').style.display = 'none'; document.getElementById('2502.01955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00998">arXiv:2502.00998</a> <span> [<a href="https://arxiv.org/pdf/2502.00998">pdf</a>, <a href="https://arxiv.org/format/2502.00998">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Generating logical magic states with the aid of non-Abelian topological order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sheng-Jie Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yanzhu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00998v1-abstract-short" style="display: inline;"> In fault-tolerant quantum computing with the surface code, non-Clifford gates are crucial for universal computation. However, implementing these gates using methods like magic state distillation and code switching requires significant resources. In this work, we propose a new protocol that combines magic state preparation and code switching to realize logical non-Clifford operations with the poten… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00998v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00998v1-abstract-full" style="display: none;"> In fault-tolerant quantum computing with the surface code, non-Clifford gates are crucial for universal computation. However, implementing these gates using methods like magic state distillation and code switching requires significant resources. In this work, we propose a new protocol that combines magic state preparation and code switching to realize logical non-Clifford operations with the potential for fault tolerance. Our approach begins with a special logical state in the $\mathbb{Z}_4$ surface code. By applying a sequence of transformations, the system goes through different topological codes, including the non-Abelian $D_4$ quantum double model. This process ultimately produces a magic state in a condensed $\mathbb{Z}_2$ surface code, which enables the implementation of a logical $T$ gate in the standard $\mathbb{Z}_2$ surface code. In our analysis, we employ a framework where the topological codes are represented by their topological orders and all the transformations are considered as topological manipulations such as gauging symmetries and condensing anyons. This perspective is particularly useful for understanding code switching between topological codes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00998v1-abstract-full').style.display = 'none'; document.getElementById('2502.00998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28+7 pages, 9 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17993">arXiv:2501.17993</a> <span> [<a href="https://arxiv.org/pdf/2501.17993">pdf</a>, <a href="https://arxiv.org/format/2501.17993">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Bridging statistical mechanics and thermodynamics away from equilibrium: a data-driven approach for learning internal variables and their dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+W">Weilun Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shenglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Reina%2C+C">Celia Reina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17993v1-abstract-short" style="display: inline;"> Thermodynamics with internal variables is a common approach in continuum mechanics to model inelastic (i.e., non-equilibrium) material behavior. While this approach is computationally and theoretically attractive, it currently lacks a well-established statistical mechanics foundation. As a result, internal variables are typically chosen phenomenologically and lack a direct link to the underlying p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17993v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17993v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17993v1-abstract-full" style="display: none;"> Thermodynamics with internal variables is a common approach in continuum mechanics to model inelastic (i.e., non-equilibrium) material behavior. While this approach is computationally and theoretically attractive, it currently lacks a well-established statistical mechanics foundation. As a result, internal variables are typically chosen phenomenologically and lack a direct link to the underlying physics which hinders the predictability of the theory. To address these challenges, we propose a machine learning approach that is consistent with the principles of statistical mechanics and thermodynamics. The proposed approach leverages the following techniques (i) the information bottleneck (IB) method to ensure that the learned internal variables are functions of the microstates and are capable of capturing the salient feature of the microscopic distribution; (ii) conditional normalizing flows to represent arbitrary probability distributions of the microscopic states as functions of the state variables; and (iii) Variational Onsager Neural Networks (VONNs) to guarantee thermodynamic consistency and Markovianity of the learned evolution equations. The resulting framework, called IB-VONNs, is tested on two problems of colloidal systems, governed at the microscale by overdamped Langevin dynamics. The first one is a prototypical model for a colloidal particle in an optical trap, which can be solved analytically, and thus ideal to verify the framework. The second problem is a one-dimensional phase-transforming system, whose macroscopic description still lacks a statistical mechanics foundation under general conditions. The results in both cases indicate that the proposed machine learning strategy can indeed bridge statistical mechanics and thermodynamics with internal variables away from equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17993v1-abstract-full').style.display = 'none'; document.getElementById('2501.17993v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08327">arXiv:2501.08327</a> <span> [<a href="https://arxiv.org/pdf/2501.08327">pdf</a>, <a href="https://arxiv.org/format/2501.08327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Two-Peak Heat Capacity Accounts for $R\ln(2)$ Entropy and Ground State Access in the Dipole-Octupole Pyrochlore Ce$_2$Hf$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&query=Fitterman%2C+A">A. Fitterman</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%A4fer%2C+R">R. Sch盲fer</a>, <a href="/search/cond-mat?searchtype=author&query=Placke%2C+B">B. Placke</a>, <a href="/search/cond-mat?searchtype=author&query=Woods%2C+A">A. Woods</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S">S. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+H+-">S. H. -Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+S">S. Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Beare%2C+J">J. Beare</a>, <a href="/search/cond-mat?searchtype=author&query=Chatterjee%2C+D">D. Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&query=Balz%2C+C">C. Balz</a>, <a href="/search/cond-mat?searchtype=author&query=Stone%2C+M+B">M. B. Stone</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A+I">A. I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A+R">A. R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Kermarrec%2C+E">E. Kermarrec</a>, <a href="/search/cond-mat?searchtype=author&query=Luke%2C+G+M">G. M. Luke</a>, <a href="/search/cond-mat?searchtype=author&query=Benton%2C+O">O. Benton</a>, <a href="/search/cond-mat?searchtype=author&query=Moessner%2C+R">R. Moessner</a>, <a href="/search/cond-mat?searchtype=author&query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&query=Bianchi%2C+A+D">A. D. Bianchi</a>, <a href="/search/cond-mat?searchtype=author&query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08327v2-abstract-short" style="display: inline;"> We report new magnetic heat capacity measurements of a high quality single crystal of the dipole-octupole pyrochlore Ce$_2$Hf$_2$O$_7$ down to a temperature of $T = 0.02$ K, a factor of three lower than those previously reported. These show a two-peaked structure, with a Schottky-like peak at $T_1 \sim 0.065$ K, similar to what is observed in its sister Ce-pyrochlores Ce$_2$Zr$_2$O$_7$ and Ce$_2$S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08327v2-abstract-full').style.display = 'inline'; document.getElementById('2501.08327v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08327v2-abstract-full" style="display: none;"> We report new magnetic heat capacity measurements of a high quality single crystal of the dipole-octupole pyrochlore Ce$_2$Hf$_2$O$_7$ down to a temperature of $T = 0.02$ K, a factor of three lower than those previously reported. These show a two-peaked structure, with a Schottky-like peak at $T_1 \sim 0.065$ K, similar to what is observed in its sister Ce-pyrochlores Ce$_2$Zr$_2$O$_7$ and Ce$_2$Sn$_2$O$_7$. However a second, sharper peak is observed at $T_2 \sim 0.025$ K, which signifies the entrance to its ground state, as even the most abrupt low-temperature extrapolation to $C_P=0$ at $T = 0$ K gives a full accounting of $R\ln(2)$ in entropy, associated with the well isolated pseudospin-1/2 doublet for Ce$^{3+}$ in this environment. The ground state could be conventionally ordered, although theory predicts a much larger anomaly in $C_P$, at much higher temperatures than the measured $T_2$, for expectations from an all-in all-out ground state of the nearest-neighbor XYZ Hamiltonian for Ce$_2$Hf$_2$O$_7$. The sharp low-temperature peak could also signify a cross-over from a classical to a quantum spin liquid regime. The diffuse magnetic neutron scattering observed from Ce$_2$Hf$_2$O$_7$ at low temperatures between $T_2$ and $T_1$ resembles that observed from Ce$_2$Zr$_2$O$_7$, which is well established as a $蟺$-flux quantum spin ice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08327v2-abstract-full').style.display = 'none'; document.getElementById('2501.08327v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text (7 pages, 4 figures), Supplemental Material (15 pages, 17 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06754">arXiv:2501.06754</a> <span> [<a href="https://arxiv.org/pdf/2501.06754">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fatigue-free ferroelectricity in Hf0.5Zr0.5O2 ultrathin films via interfacial design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yanpeng Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+L">Liyang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Y">Yangyang Si</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hailin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sizhe Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jingxuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y">Yunlong Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zuhuang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06754v1-abstract-short" style="display: inline;"> Due to traits of CMOS compatibility and scalability, HfO2-based ferroelectrics are promising candidates for next-generation memory devices. However, their commercialization has been greatly hindered by reliability issues, with fatigue being a major impediment. We report the fatigue-free behavior in interface-designed Hf0.5Zr0.5O2-based heterostructures. A coherent CeO2-x/Hf0.5Zr0.5O2 heterointerfa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06754v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06754v1-abstract-full" style="display: none;"> Due to traits of CMOS compatibility and scalability, HfO2-based ferroelectrics are promising candidates for next-generation memory devices. However, their commercialization has been greatly hindered by reliability issues, with fatigue being a major impediment. We report the fatigue-free behavior in interface-designed Hf0.5Zr0.5O2-based heterostructures. A coherent CeO2-x/Hf0.5Zr0.5O2 heterointerface is constructed, wherein CeO2-x acts as an oxygen sponge, capable of reversibly accepting and releasing oxygen vacancies. This design effectively alleviates defect aggregation at the electrode-ferroelectric interface, enabling improved switching characteristics. Further, a symmetric capacitor architecture is designed to minimize the imprint, thereby suppressing the cycling-induced oriented defect drift. The two-pronged technique mitigates oxygen-voltammetry-generated chemical/energy fluctuations, suppressing the formation of paraelectric phase and polarization degradation. The design ensures a fatigue-free feature exceeding 10^11 switching cycles and an endurance lifetime surpassing 10^12 cycles for Hf0.5Zr0.5O2-based capacitors, along with excellent temperature stability and retention. These findings pave the way for developing ultra-stable hafnia-based ferroelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06754v1-abstract-full').style.display = 'none'; document.getElementById('2501.06754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20046">arXiv:2412.20046</a> <span> [<a href="https://arxiv.org/pdf/2412.20046">pdf</a>, <a href="https://arxiv.org/format/2412.20046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring Grassmann manifolds in topological systems via quantum distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Giataganas%2C+D">Dimitrios Giataganas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20046v1-abstract-short" style="display: inline;"> Quantum states defined over a parameter space form a Grassmann manifold. To capture the geometry of the associated gauge structure, gauge-invariant quantities are essential. We employ the projector of a multilevel system to quantify the quantum distance between states. Using the multidimensional scaling method, we transform the quantum distance into a reconstructed manifold embedded in Euclidean s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20046v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20046v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20046v1-abstract-full" style="display: none;"> Quantum states defined over a parameter space form a Grassmann manifold. To capture the geometry of the associated gauge structure, gauge-invariant quantities are essential. We employ the projector of a multilevel system to quantify the quantum distance between states. Using the multidimensional scaling method, we transform the quantum distance into a reconstructed manifold embedded in Euclidean space. This approach is demonstrated with examples of topological systems, showcasing their topological features within these manifolds. Our method provides a comprehensive view of the manifold, rather than focusing on local properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20046v1-abstract-full').style.display = 'none'; document.getElementById('2412.20046v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15003">arXiv:2412.15003</a> <span> [<a href="https://arxiv.org/pdf/2412.15003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Possible High temperature Superconductivity above 200K mediated by Bose Einstein Condensation of exciton </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shisheng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shaoqi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Minhui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+H">Hongjia Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+K">Kangchen Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15003v1-abstract-short" style="display: inline;"> Exciton mediated superconductor is a fascinating quantum phase of matter that occurs when excitons become the dominant excitation in materials, which is also very promising for high temperature superconductor. However, there is no experimental report of exciton mediated superconductivity. Herein, we realize exciton mediated superconductivity from exciton insulator, where the onset transition tempe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15003v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15003v1-abstract-full" style="display: none;"> Exciton mediated superconductor is a fascinating quantum phase of matter that occurs when excitons become the dominant excitation in materials, which is also very promising for high temperature superconductor. However, there is no experimental report of exciton mediated superconductivity. Herein, we realize exciton mediated superconductivity from exciton insulator, where the onset transition temperature can reach larger than 200 K. More profoundly, Bose-Einstein condensation (BEC) of exciton can facilitate the formation of exciton insulator and a transition happened from extremely high resistivity of 107 惟 at 153.5 K to 100 惟 at 125 K, indicating a superconducting transition. The resistance of exciton mediated superconductivity can not be absolutely reach zero possibly as a result of drag effect between electrons/holes and excitons. We reveal one rule for exciton mediated superconductivity is that the resistivity is an inverse linear function of the current through the BEC superfluid state, which should be ascribed to the Andreev-Bashkin effect, which reflects the coupling between the BEC state of exciton and Cooper pairs mediated by excitons. Furthermore, a record transition temperature above 200 K has been found for one superconducting sample, which shows the Josephson oscillation dominated by a pendulum-like equation caused by the quantum coupling between superconductor and BEC superfluid of exciton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15003v1-abstract-full').style.display = 'none'; document.getElementById('2412.15003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08450">arXiv:2412.08450</a> <span> [<a href="https://arxiv.org/pdf/2412.08450">pdf</a>, <a href="https://arxiv.org/format/2412.08450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Evidence for multiband gapless superconductivity in the topological superconductor candidate 4Hb-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hanru Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+Y">Yihan Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+F">Fanyu Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+D">Dongzhe Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+C">Chengpeng Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+C">Chengcheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+L">Lu Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sicheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08450v1-abstract-short" style="display: inline;"> We present the ultralow-temperature thermal conductivity measurements on single crystals of transition-metal dichalcogenide material 4Hb-TaS$_{2}$, which has recently been proposed as a topological superconductor candidate. In zero field, a small residual linear term $魏_{0}/T$ is observed, indicating the existence of a residual density of states in the superconducting state. The slow field depende… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08450v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08450v1-abstract-full" style="display: none;"> We present the ultralow-temperature thermal conductivity measurements on single crystals of transition-metal dichalcogenide material 4Hb-TaS$_{2}$, which has recently been proposed as a topological superconductor candidate. In zero field, a small residual linear term $魏_{0}/T$ is observed, indicating the existence of a residual density of states in the superconducting state. The slow field dependence of $魏_{0}/T$ at low fields rules out the presence of nodes in the superconducting gap, and the S-shaped field dependence across the full field range suggests multiple superconducting gaps in 4Hb-TaS$_{2}$. Our results provide evidence for multiband gapless superconductivity in 4Hb-TaS$_{2}$, and the residual density of states come from certain gapless Fermi surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08450v1-abstract-full').style.display = 'none'; document.getElementById('2412.08450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05970">arXiv:2412.05970</a> <span> [<a href="https://arxiv.org/pdf/2412.05970">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust magnetoelectric coupling in altermagnetic-ferroelectric type-III multiferroics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C">Changhong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaotian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhenxiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05970v1-abstract-short" style="display: inline;"> Multiferroic materials, characterized by the coexisting of ferroelectric polarization (breaking spatial inversion symmetry) and magnetism (breaking time-reversal symmetry), with strong magnetoelectric coupling, are highly sought after for advanced technological applications. Novel altermagnets, distinct from conventional magnets, have recently been revealed to exhibit unique spin polarization prot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05970v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05970v1-abstract-full" style="display: none;"> Multiferroic materials, characterized by the coexisting of ferroelectric polarization (breaking spatial inversion symmetry) and magnetism (breaking time-reversal symmetry), with strong magnetoelectric coupling, are highly sought after for advanced technological applications. Novel altermagnets, distinct from conventional magnets, have recently been revealed to exhibit unique spin polarization protected by crystal symmetry, which naturally overcomes the isolation of magnetism from ferroelectrics associated with spatial symmetry. In this study, we propose a novel class of type-III multiferroics, where ferroelectricity and altermagnetism are inherently interlocked by crystal symmetry, setting them apart from conventional multiferroics. Through first-principles calculations, ferroelectric switching is shown to fully invert the spin polarization of altermagnets, equivalent to a 180掳 reversal of magnetic spin. This strong magnetoelectric coupling is further supported by the magneto-optical Kerr effect, revealing a new class of multiferroics with robust, symmetry-driven magnetoelectric coupling and providing a theoretical foundation for the design of next-generation spintronic devices leveraging altermagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05970v1-abstract-full').style.display = 'none'; document.getElementById('2412.05970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03686">arXiv:2412.03686</a> <span> [<a href="https://arxiv.org/pdf/2412.03686">pdf</a>, <a href="https://arxiv.org/format/2412.03686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The Role of Chalcogen Vacancies in Single Photon Emission from Monolayer Tungsten Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gavin%2C+S+C">S. Carin Gavin</a>, <a href="/search/cond-mat?searchtype=author&query=Zeman%2C+C+J">Charles J. Zeman IV</a>, <a href="/search/cond-mat?searchtype=author&query=Dasgupta%2C+A">Anushka Dasgupta</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yiying Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenjing Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengxi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Marks%2C+T+J">Tobin J. Marks</a>, <a href="/search/cond-mat?searchtype=author&query=Hersam%2C+M+C">Mark C. Hersam</a>, <a href="/search/cond-mat?searchtype=author&query=Schatz%2C+G+C">George C. Schatz</a>, <a href="/search/cond-mat?searchtype=author&query=Stern%2C+N+P">Nathaniel P. Stern</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03686v1-abstract-short" style="display: inline;"> Understanding the mechanism of single photon emission (SPE) in two-dimensional (2D) materials is an unsolved problem important for quantum optical materials and the development of quantum information applications. In 2D transition metal dichalcogenides (TMDs) such as tungsten diselenide (WSe$_2$), quantum emission has been broadly attributed to exciton localization from atomic point defects, yet t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03686v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03686v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03686v1-abstract-full" style="display: none;"> Understanding the mechanism of single photon emission (SPE) in two-dimensional (2D) materials is an unsolved problem important for quantum optical materials and the development of quantum information applications. In 2D transition metal dichalcogenides (TMDs) such as tungsten diselenide (WSe$_2$), quantum emission has been broadly attributed to exciton localization from atomic point defects, yet the precise microscopic picture is not fully understood. This work presents a new framework, supported by both computational and experimental evidence, to explain both the origins of facile SPE in WSe2 and the relative scarcity of SPE in the related 2D TMD, tungsten disulfide (WS$_2$). A vertical divacancy configuration of selenium creates a defect-centered, direct energy gap in the band structure of WSe2, giving rise to highly localized, radiative transitions. This configuration is shown to be energetically preferred in the monolayer lattice, which is reflected in the abundant experimental observation of SPE in WSe2 both from the literature and this work. In contrast, the same vertical divacancy configuration in WS2 does not create direct localized transitions, consistent with scarce observations of SPE in that material. By revealing a single mechanism in tungsten-based TMDs that addresses the prevalence of SPE and is consistent between theory and experiment, these results provide a framework for better understanding the rules governing the atomic origins of single photon emission in TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03686v1-abstract-full').style.display = 'none'; document.getElementById('2412.03686v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02966">arXiv:2412.02966</a> <span> [<a href="https://arxiv.org/pdf/2412.02966">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient Spin Transfer in WTe2/Fe3GeTe2 van der Waals Heterostructure Enabled by Direct Interlayer p-Orbital Hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ning%2C+H+L">H. L. Ning</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J+S">J. S. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+B">B. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+M+Q">M. Q. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhi-Xin Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02966v1-abstract-short" style="display: inline;"> Recent experiments have demonstrated efficient spin transfer across layers in the van der Waals heterostructure composed of WTe2 and Fe3GeTe2, signaling a potential breakthrough in developing all-van der Waals spin-orbit torque devices. However, the reasons behind the unusually high interlayer spin transparency observed, despite the weak van der Waals interactions between layers, remain unclear. I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02966v1-abstract-full" style="display: none;"> Recent experiments have demonstrated efficient spin transfer across layers in the van der Waals heterostructure composed of WTe2 and Fe3GeTe2, signaling a potential breakthrough in developing all-van der Waals spin-orbit torque devices. However, the reasons behind the unusually high interlayer spin transparency observed, despite the weak van der Waals interactions between layers, remain unclear. In this study, we employ density functional theory and the non-equilibrium Green's function method to explore this phenomenon. We find that the efficient cross-layer spin transfer arises from direct hybridization of p-orbitals between tellurium atoms at the interface. This interlayer orbital hybridization lowers the electronic potential barrier and significantly modifies the spin-polarized electronic structure of Fe3GeTe2. Consequently, an effective channel for spin-polarized transport is established between WTe2 and Fe3GeTe2, leading to high interlayer spin transparency. Combining this enhanced spin transparency with the large spin Hall angle of WTe2 explains the high spin-orbit torque efficiency observed experimentally. Furthermore, we predict that applying a gate voltage can further increase this efficiency. Our findings offer a pathway for designing high-performance, all-van der Waals spin-orbit torque devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02966v1-abstract-full').style.display = 'none'; document.getElementById('2412.02966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04830">arXiv:2411.04830</a> <span> [<a href="https://arxiv.org/pdf/2411.04830">pdf</a>, <a href="https://arxiv.org/format/2411.04830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging of electrically controlled van der Waals layer stacking in 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Burri%2C+C">Corinna Burri</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+F">Dario Ferreira Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Wenxiang Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Bell%2C+H+G">Henry G. Bell</a>, <a href="/search/cond-mat?searchtype=author&query=Venturini%2C+R">Rok Venturini</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=McConnell%2C+A+G">Aidan G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&query=Dizdarevic%2C+F">Faris Dizdarevic</a>, <a href="/search/cond-mat?searchtype=author&query=Mraz%2C+A">Anze Mraz</a>, <a href="/search/cond-mat?searchtype=author&query=Svetin%2C+D">Damjan Svetin</a>, <a href="/search/cond-mat?searchtype=author&query=Lipovsek%2C+B">Benjamin Lipovsek</a>, <a href="/search/cond-mat?searchtype=author&query=Topic%2C+M">Marko Topic</a>, <a href="/search/cond-mat?searchtype=author&query=Kazazis%2C+D">Dimitrios Kazazis</a>, <a href="/search/cond-mat?searchtype=author&query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&query=Grolimund%2C+D">Daniel Grolimund</a>, <a href="/search/cond-mat?searchtype=author&query=Ekinci%2C+Y">Yasin Ekinci</a>, <a href="/search/cond-mat?searchtype=author&query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&query=Gerber%2C+S">Simon Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04830v2-abstract-short" style="display: inline;"> Van der Waals (vdW) materials exhibit a variety of states that can be switched with low power at low temperatures, offering a viable cryogenic "flash memory" required for the classical control electronics for solid-state quantum information processing. In 1T-TaS2, a non-volatile metallic 'hidden' state can be induced from an insulating equilibrium charge-density wave ground state using either opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v2-abstract-full').style.display = 'inline'; document.getElementById('2411.04830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04830v2-abstract-full" style="display: none;"> Van der Waals (vdW) materials exhibit a variety of states that can be switched with low power at low temperatures, offering a viable cryogenic "flash memory" required for the classical control electronics for solid-state quantum information processing. In 1T-TaS2, a non-volatile metallic 'hidden' state can be induced from an insulating equilibrium charge-density wave ground state using either optical or electrical pulses. Given that conventional memristors form localized, filamentary channels which support the current, a key question for design concerns the geometry of the conduction region in highly energy-efficient 1T-TaS2 devices. Here, we report in operando micro-beam X-ray diffraction, fluorescence, and concurrent transport measurements, allowing us to spatially image the non-thermal hidden state induced by electrical switching of 1T-TaS2. Our results reveal a long-range ordered, non-filamentary switched state that extends well below the electrodes, implying that the self-organized, collective growth of the hidden phase is driven by a combination of charge flow and lattice strain. Our unique combination of techniques showcases the potential of non-destructive, three-dimensional X-ray imaging to study bulk switching properties in microscopic detail, namely electrical control of the vdW layer stacking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04830v2-abstract-full').style.display = 'none'; document.getElementById('2411.04830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01905">arXiv:2411.01905</a> <span> [<a href="https://arxiv.org/pdf/2411.01905">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adq2977">10.1126/science.adq2977 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bright dipolar excitons in twisted black phosphorus homostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+B">Boyang Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yixuan Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+C">Chenghao Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Junwei Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Y">Yaozhenghang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Ke Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Hua Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+Y">Yuchen Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+Q">Qiaoxia Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+L">Lei Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiasheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mou%2C+Y">Yanlin Mou</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hugen Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01905v1-abstract-short" style="display: inline;"> Bright dipolar excitons, which contain electrical dipoles and have high oscillator strength, are an ideal platform for studying correlated quantum phenomena. They usually rely on carrier tunneling between two quantum wells or two layers to hybridize with nondipolar excitons to gain oscillator strength. In this work, we uncovered a new type of bright infrared dipolar exciton by stacking 90掳-twisted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01905v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01905v1-abstract-full" style="display: none;"> Bright dipolar excitons, which contain electrical dipoles and have high oscillator strength, are an ideal platform for studying correlated quantum phenomena. They usually rely on carrier tunneling between two quantum wells or two layers to hybridize with nondipolar excitons to gain oscillator strength. In this work, we uncovered a new type of bright infrared dipolar exciton by stacking 90掳-twisted black phosphorus (BP) structures. These excitons, inherent to the reconstructed band structure, exhibit high oscillator strength. Most importantly, they inherit the linear polarization from BP, which allows light polarization to be used to select the dipole direction. Moreover, the dipole moment and resonance energy can be widely tuned by the thickness of the BP. Our results demonstrate a useful platform for exploring tunable correlated dipolar excitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01905v1-abstract-full').style.display = 'none'; document.getElementById('2411.01905v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science386,526-531(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01747">arXiv:2410.01747</a> <span> [<a href="https://arxiv.org/pdf/2410.01747">pdf</a>, <a href="https://arxiv.org/format/2410.01747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hysteresis design of non-stoichiometric Fe2P-type alloys with giant magnetocaloric Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ghorai%2C+S">Sagar Ghorai</a>, <a href="/search/cond-mat?searchtype=author&query=Clulow%2C+R">Rebecca Clulow</a>, <a href="/search/cond-mat?searchtype=author&query=Cedervall%2C+J">Johan Cedervall</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shuo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ericsson%2C+T">Tore Ericsson</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%A4ggstr%C3%B6m%2C+L">Lennart H盲ggstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Skini%2C+R">Ridha Skini</a>, <a href="/search/cond-mat?searchtype=author&query=Shtender%2C+V">Vitalii Shtender</a>, <a href="/search/cond-mat?searchtype=author&query=Vitos%2C+L">Levente Vitos</a>, <a href="/search/cond-mat?searchtype=author&query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/cond-mat?searchtype=author&query=Scheibel%2C+F">Franziska Scheibel</a>, <a href="/search/cond-mat?searchtype=author&query=Gutfleisch%2C+O">Oliver Gutfleisch</a>, <a href="/search/cond-mat?searchtype=author&query=Sahlberg%2C+M">Martin Sahlberg</a>, <a href="/search/cond-mat?searchtype=author&query=Svedlindh%2C+P">Peter Svedlindh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01747v1-abstract-short" style="display: inline;"> The non-stoichiometric Fe$_2$P-type (FeMnP$_{0.5}$Si$_{0.5}$)$_{1-x}$(FeV)$_{x}$ alloys ( $x=0, 0.01$, $0.02$, and $0.03$) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration, $x$, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01747v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01747v1-abstract-full" style="display: none;"> The non-stoichiometric Fe$_2$P-type (FeMnP$_{0.5}$Si$_{0.5}$)$_{1-x}$(FeV)$_{x}$ alloys ( $x=0, 0.01$, $0.02$, and $0.03$) have been investigated as potential candidates for magnetic refrigeration near room temperature. The magnetic ordering temperature decreases with increasing FeV concentration, $x$, which can be ascribed to decreased ferromagnetic coupling strength between the magnetic atoms. The strong magnetoelastic coupling in these alloys results in large values of the isothermal entropy change ($螖S_M$); $15.7$ J/kgK, at $2$ T magnetic field for the $x = 0$ alloy. $螖S_M$ decreases with increasing $x$. Results from M{枚}ssbauer spectroscopy reveal that the average hyperfine field (in the ferromagnetic state) and average center shift (in the paramagnetic state) have the same decreasing trend as $螖S_M$. The thermal hysteresis ($螖T_{hyst}$) of the magnetic phase transition decreases with increasing $x$, while the mechanical stability of the alloys improves due to the reduced lattice volume change across the magnetoelastic phase transition. The adiabatic temperature change $螖T_{ad}$, which highly depends on $螖T_{hyst}$, is $1.7$ K at $1.9$ T applied field for the $x = 0.02$ alloy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01747v1-abstract-full').style.display = 'none'; document.getElementById('2410.01747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00119">arXiv:2410.00119</a> <span> [<a href="https://arxiv.org/pdf/2410.00119">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant and Tunable Bosonic Quantum Interference Induced by Two-Dimensional Metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Maniyara%2C+R+A">Rinu Abraham Maniyara</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanxi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jain%2C+A">Arpit Jain</a>, <a href="/search/cond-mat?searchtype=author&query=Wetherington%2C+M+T">Maxwell T. Wetherington</a>, <a href="/search/cond-mat?searchtype=author&query=Mai%2C+T+T">Thuc T. Mai</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">Chengye Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Bowen%2C+T">Timothy Bowen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Rotkin%2C+S+V">Slava V. Rotkin</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+A+R+H">Angela R. Hight Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Crespi%2C+V+H">Vincent H. Crespi</a>, <a href="/search/cond-mat?searchtype=author&query=Robinson%2C+J">Joshua Robinson</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengxi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00119v1-abstract-short" style="display: inline;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00119v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00119v1-abstract-full" style="display: none;"> Harnessing quantum interference among bosons provides significant opportunities as bosons often carry longer coherence time than fermions. As an example of quantum interference, Fano resonance involving phonons or photons describes the coupling between discrete and continuous states, signified by an asymmetric spectral lineshape. Utilizing photon-based Fano resonance, molecule sensing with ultra-high sensitivity and ultrafast optical switching has been realized. However, phonon-based Fano resonance, which would expand the application space to a vaster regime, has been less exploited because of the weak coupling between discrete phonons with continuous states such as electronic continuum. In this work, we report the discovery of giant phonon-based Fano resonance in a graphene/2D Ag/SiC heterostructure. The Fano asymmetry, being proportional to the coupling strength, exceeds prior reports by two orders of magnitude. This Fano asymmetry arises from simultaneous frequency and lifetime matching between discrete and continuous phonons of SiC. The introduction of 2D Ag layers restructures SiC at the interface and facilitates resonant scattering to further enhance the Fano asymmetry, which is not achievable with conventional Ag thin films. With these unique properties, we demonstrated that the phonon-based Fano resonance can be used for ultrasensitive molecule detection at the single-molecule level. Our work highlights strong Fano resonance in the phononic system, opening avenues for engineering quantum interference based on bosons. Further, our findings provide opportunities for advancing phonon-related applications, including biochemical sensing, quantum transduction, and superconductor-based quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00119v1-abstract-full').style.display = 'none'; document.getElementById('2410.00119v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10099">arXiv:2409.10099</a> <span> [<a href="https://arxiv.org/pdf/2409.10099">pdf</a>, <a href="https://arxiv.org/format/2409.10099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Dispersion of first sound in a weakly interacting ultracold Fermi liquid: an exact calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Repplinger%2C+T">Thomas Repplinger</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a>, <a href="/search/cond-mat?searchtype=author&query=Kurkjian%2C+H">Hadrien Kurkjian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10099v2-abstract-short" style="display: inline;"> At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the cleanest realizations of a Fermi liquid. It is described by Landau's theory, where no phenomenological parameters are needed as the quasiparticle interaction function can be computed perturbatively in powers of the scattering length $a$, the sole parameter of the short-range interparticle interactions. Obtaining an accura… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10099v2-abstract-full').style.display = 'inline'; document.getElementById('2409.10099v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10099v2-abstract-full" style="display: none;"> At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the cleanest realizations of a Fermi liquid. It is described by Landau's theory, where no phenomenological parameters are needed as the quasiparticle interaction function can be computed perturbatively in powers of the scattering length $a$, the sole parameter of the short-range interparticle interactions. Obtaining an accurate solution of the transport equation nevertheless requires a careful treatment of the collision kernel, as the uncontrolled error made by the relaxation time approximations increases when the temperature $T$ drops below the Fermi temperature. Here, we study sound waves in the hydrodynamic regime up to second order in the Chapman-Enskog's expansion. We find that the frequency $蠅_q$ of the sound wave is shifted above its linear depart as $蠅_q=c_1 q(1+伪q^2蟿^2)$ where $c_1$ and $q$ are the speed and wavenumber of the wave and the typical collision time $蟿$ scales as $1/a^2T^2$. Besides the shear viscosity, the coefficient $伪$ is described by a single second-order collision time which we compute exactly from an analytical solution of the transport equation, resulting in a positive dispersion $伪>0$. Our results suggest that ultracold atomic Fermi gases are an ideal experimental system for quantitative tests of second order hydrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10099v2-abstract-full').style.display = 'none'; document.getElementById('2409.10099v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08458">arXiv:2409.08458</a> <span> [<a href="https://arxiv.org/pdf/2409.08458">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Thickness-Dependent Polaron Crossover in Tellurene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+K">Kunyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+C">Chuliang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Kelly%2C+S">Shelly Kelly</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+L">Liangbo Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Kang%2C+S">Seoung-Hun Kang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J">Jing Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruifang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yixiu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+G">Gang Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Siriviboon%2C+P">Phum Siriviboon</a>, <a href="/search/cond-mat?searchtype=author&query=Yoon%2C+M">Mina Yoon</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+P">Peide Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Mingda Li</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengxi Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08458v1-abstract-short" style="display: inline;"> Polarons, quasiparticles arising from electron-phonon coupling, are crucial in understanding material properties such as high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have been performed to investigate the formation of polarons in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08458v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08458v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08458v1-abstract-full" style="display: none;"> Polarons, quasiparticles arising from electron-phonon coupling, are crucial in understanding material properties such as high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have been performed to investigate the formation of polarons in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene that are composed of chiral chains of tellurium atoms. The frequency and linewidth of the A1 phonon, which becomes increasingly polar for thinner tellurene, exhibit an abrupt change when the thickness of tellurene is below 10 nm. Meanwhile, the field effect mobility of tellurene drops rapidly as the thickness is smaller than 10 nm. These phonon and transport signatures, combined with the calculated phonon polarity and band structure, suggest a crossover from large polarons for bulk tellurium to small polarons for few-layer tellurene. Effective field theory considers the phonon renormalization in the strong coupling (small polaron) regime, and semi-quantitatively reproduces the observed phonon hardening and broadening effects in few-layer tellurene. This polaron crossover stems from the quasi-1D nature of tellurene where modulation of the interchain distance reduces the dielectric screening and promotes electron-phonon coupling. Our work provides valuable insights into the influence of polarons on phononic, electronic, and structural properties in low-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08458v1-abstract-full').style.display = 'none'; document.getElementById('2409.08458v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06686">arXiv:2409.06686</a> <span> [<a href="https://arxiv.org/pdf/2409.06686">pdf</a>, <a href="https://arxiv.org/format/2409.06686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.L041301">10.1103/PhysRevB.111.L041301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stabilization of a two-dimensional quantum electron solid in perpendicular magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D+G">D. G. Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06686v2-abstract-short" style="display: inline;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06686v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06686v2-abstract-full" style="display: none;"> We find that the double-threshold voltage-current characteristics in the insulating regime in the ultra-clean two-valley two-dimensional electron system in SiGe/Si/SiGe quantum wells are promoted by perpendicular magnetic fields, persisting to an order of magnitude lower voltages and considerably higher electron densities compared to the zero-field case. This observation indicates the perpendicular-magnetic-field stabilization of the quantum electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06686v2-abstract-full').style.display = 'none'; document.getElementById('2409.06686v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">As published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 111, L041301 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04505">arXiv:2409.04505</a> <span> [<a href="https://arxiv.org/pdf/2409.04505">pdf</a>, <a href="https://arxiv.org/format/2409.04505">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cavity-mediated superthermal phonon correlations in the ultrastrong coupling regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dasom Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+J">Jin Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+G">Geon Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Agrawal%2C+A">Ayush Agrawal</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+S">Sunghwan Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+D">Di Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Wenjing Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tay%2C+F">Fuyang Tay</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengxi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chia%2C+E+E+M">Elbert E. M. Chia</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Dai-Sik Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+M">Minah Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Mohite%2C+A+D">Aditya D. Mohite</a>, <a href="/search/cond-mat?searchtype=author&query=Hagenm%C3%BCller%2C+D">David Hagenm眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04505v1-abstract-short" style="display: inline;"> Phonons, or vibrational quanta, are behind some of the most fundamental physical phenomena in solids, including superconductivity, Raman processes, and broken-symmetry phases. It is therefore of fundamental importance to find ways to harness phonons for controlling these phenomena and developing novel quantum technologies. However, the majority of current phonon control techniques rely on the use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04505v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04505v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04505v1-abstract-full" style="display: none;"> Phonons, or vibrational quanta, are behind some of the most fundamental physical phenomena in solids, including superconductivity, Raman processes, and broken-symmetry phases. It is therefore of fundamental importance to find ways to harness phonons for controlling these phenomena and developing novel quantum technologies. However, the majority of current phonon control techniques rely on the use of intense external driving fields or strong anharmonicities, which restricts their range of applications. Here, we present a scheme for controlling the intensity fluctuations in phonon emission at room temperature based on multimode ultrastrong light--matter coupling. The multimode ultrastrong coupling regime is achieved by coupling two optical phonon modes in lead halide perovskites to an array of nanoslots, which operates as a single-mode cavity. The extremely small mode volume of the nanoslots enables unprecedented coupling strengths in a cavity phonon-polariton system. In the far-detuned, low-cavity-frequency regime, we demonstrate that the nanoslot resonator mediates an effective coupling between the phonon modes, resulting in superthermal phonon bunching in thermal equilibrium, both within the same mode and between different modes. Experimental results are in good agreement with a multimode Hopfield model. Our work paves the way for the tailoring of phonons to modify charge and energy transport in perovskite materials, with potential applications in light-collecting or emitting devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04505v1-abstract-full').style.display = 'none'; document.getElementById('2409.04505v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10050">arXiv:2408.10050</a> <span> [<a href="https://arxiv.org/pdf/2408.10050">pdf</a>, <a href="https://arxiv.org/format/2408.10050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Imaging ultrafast electronic domain fluctuations with X-ray speckle visibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hua%2C+N">N. Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Rao%2C+P">P. Rao</a>, <a href="/search/cond-mat?searchtype=author&query=Hagstr%C3%B6m%2C+N+Z">N. Zhou Hagstr枚m</a>, <a href="/search/cond-mat?searchtype=author&query=Stoychev%2C+B+K">B. K. Stoychev</a>, <a href="/search/cond-mat?searchtype=author&query=Lamb%2C+E+S">E. S. Lamb</a>, <a href="/search/cond-mat?searchtype=author&query=Madhavi%2C+M">M. Madhavi</a>, <a href="/search/cond-mat?searchtype=author&query=Botu%2C+S+T">S. T. Botu</a>, <a href="/search/cond-mat?searchtype=author&query=Jeppson%2C+S">S. Jeppson</a>, <a href="/search/cond-mat?searchtype=author&query=Cl%C3%A9mence%2C+M">M. Cl茅mence</a>, <a href="/search/cond-mat?searchtype=author&query=McConnell%2C+A+G">A. G. McConnell</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zerdane%2C+S">S. Zerdane</a>, <a href="/search/cond-mat?searchtype=author&query=Mankowsky%2C+R">R. Mankowsky</a>, <a href="/search/cond-mat?searchtype=author&query=Lemke%2C+H+T">H. T. Lemke</a>, <a href="/search/cond-mat?searchtype=author&query=Sander%2C+M">M. Sander</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">V. Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Kramer%2C+P">P. Kramer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+T">T. Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E+E">E. E. Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Shpyrko%2C+O+G">O. G. Shpyrko</a>, <a href="/search/cond-mat?searchtype=author&query=Kukreja%2C+R">R. Kukreja</a>, <a href="/search/cond-mat?searchtype=author&query=Gerber%2C+S">S. Gerber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10050v1-abstract-short" style="display: inline;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection du… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10050v1-abstract-full" style="display: none;"> Speckle patterns manifesting from the interaction of coherent X-rays with matter offer a glimpse into the dynamics of nanoscale domains that underpin many emergent phenomena in quantum materials. While the dynamics of the average structure can be followed with time-resolved X-ray diffraction, the ultrafast evolution of local structures in nonequilibrium conditions have thus far eluded detection due to experimental limitations, such as insufficient X-ray coherent flux. Here we demonstrate a nonequilibrium speckle visibility experiment using a split-and-delay setup at an X-ray free-electron laser. Photoinduced electronic domain fluctuations of the magnetic model material Fe$_{3}$O$_{4}$ reveal changes of the trimeron network configuration due to charge dynamics that exhibit liquid-like fluctuations, analogous to a supercooled liquid phase. This suggests that ultrafast dynamics of electronic heterogeneities under optical stimuli are fundamentally different from thermally-driven ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10050v1-abstract-full').style.display = 'none'; document.getElementById('2408.10050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09608">arXiv:2408.09608</a> <span> [<a href="https://arxiv.org/pdf/2408.09608">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.23.L011002">10.1103/PhysRevApplied.23.L011002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging ferroelectric domains with soft X-ray ptychography at the oxygen K-edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+S">Shih-Chao Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Beinik%2C+I">Igor Beinik</a>, <a href="/search/cond-mat?searchtype=author&query=Th%C3%A5nell%2C+K">Karina Th氓nell</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Raabe%2C+J">J枚rg Raabe</a>, <a href="/search/cond-mat?searchtype=author&query=Finizio%2C+S">Simone Finizio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09608v2-abstract-short" style="display: inline;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The microscopy images thus obtain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v2-abstract-full').style.display = 'inline'; document.getElementById('2408.09608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09608v2-abstract-full" style="display: none;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The microscopy images thus obtained complement the ptychographic imaging of the antiferromagnetic contribution at the Fe L$_3$-edge. The approach can be extended to the separation of different ferroic contributions in other multiferroic oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v2-abstract-full').style.display = 'none'; document.getElementById('2408.09608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied 23, L011002 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07179">arXiv:2408.07179</a> <span> [<a href="https://arxiv.org/pdf/2408.07179">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0198953">10.1063/5.0198953 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetomagnetism of chirality and its applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+C+F">Sang-Wook Cheongand Fei-Ting Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07179v1-abstract-short" style="display: inline;"> Chiral functionalities exhibited by systems lacking any mirror symmetry encompass natural optical activity, magnetochiral effect, diagonal current-induced magnetization, chirality-selective spin-polarized current of charged electrons or neutral neutrons, self-inductance, and chiral phonons. These phenomena are unified under the hypothesis of kinetomagnetism of chirality, which posits that any movi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07179v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07179v1-abstract-full" style="display: none;"> Chiral functionalities exhibited by systems lacking any mirror symmetry encompass natural optical activity, magnetochiral effect, diagonal current-induced magnetization, chirality-selective spin-polarized current of charged electrons or neutral neutrons, self-inductance, and chiral phonons. These phenomena are unified under the hypothesis of kinetomagnetism of chirality, which posits that any moving (charged or neutral) object in chiral systems induces magnetization in its direction of motion, consequently imparting chirality to the object due to this induced magnetization. We also found conjugate relationships among the kinetomagnetism of chirality, linear magnetoelectricity, and electric field induced directional nonreciprocity, highlighting their interconnections with magnetic, electric, and toroidal orders. The concept of the kinetomagnetism of chirality will be an essential basis for the theoretical understanding of known chiral phenomena such as natural optical activity or chiral phonons, and also the discovery of unexplored chiral functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07179v1-abstract-full').style.display = 'none'; document.getElementById('2408.07179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 060501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05946">arXiv:2408.05946</a> <span> [<a href="https://arxiv.org/pdf/2408.05946">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exciton diffusion in two-dimensional chiral perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Terres%2C+S">Sophia Terres</a>, <a href="/search/cond-mat?searchtype=author&query=Scalon%2C+L">Lucas Scalon</a>, <a href="/search/cond-mat?searchtype=author&query=Brunner%2C+J">Julius Brunner</a>, <a href="/search/cond-mat?searchtype=author&query=Horneber%2C+D">Dominik Horneber</a>, <a href="/search/cond-mat?searchtype=author&query=Dureth%2C+J">Johannes Dureth</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shiyu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Nogueira%2C+A+F">Ana Flavia Nogueira</a>, <a href="/search/cond-mat?searchtype=author&query=Hoefling%2C+S">Sven Hoefling</a>, <a href="/search/cond-mat?searchtype=author&query=Klembt%2C+S">Sebastian Klembt</a>, <a href="/search/cond-mat?searchtype=author&query=Vaynzof%2C+Y">Yana Vaynzof</a>, <a href="/search/cond-mat?searchtype=author&query=Chernikov%2C+A">Alexey Chernikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05946v2-abstract-short" style="display: inline;"> Two-dimensional (2D) organic-inorganic hybrid perovskites emerged as a versatile platform for light-emitting and photovol-taic applications due to their unique structural design and chemical flexibility. Their properties depend heavily on both the choice of the inorganic lead halide framework and the surrounding organic layers. Recently, the introduction of chiral cations into 2D perovskites has a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05946v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05946v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05946v2-abstract-full" style="display: none;"> Two-dimensional (2D) organic-inorganic hybrid perovskites emerged as a versatile platform for light-emitting and photovol-taic applications due to their unique structural design and chemical flexibility. Their properties depend heavily on both the choice of the inorganic lead halide framework and the surrounding organic layers. Recently, the introduction of chiral cations into 2D perovskites has attracted major interest due to their potential for introducing chirality and tuning the chiro-optical response. Importantly, the optical properties in these materials are dominated by tightly bound excitons that also serve as primary carriers for the energy transport. The mobility of photoinjected excitons is thus important from the perspectives of fundamental material properties and optoelectronic applications, yet remains an open question. Here, we demonstrate exciton propagation in a 2D chiral perovskite methylbenzylammonium lead iodide (MBA2PbI4) using transient photoluminescence microscopy and reveal density-dependent transport over more than 100 nanometers at room temperature with diffusion coeffi-cients as high as 2 cm2/s. We observe two distinct regimes of initially rapid diffusive propagation and subsequent localiza-tion. Moreover, perovskites with enantiomer pure cations are found to exhibit faster exciton diffusion compared to the race-mic mixture, correlated with the impact of the material composition on disorder. Altogether, the observations of efficient exciton diffusion at room temperature highlight the potential of 2D chiral perovskites to merge chiro-optical properties with strong light-matter interaction and efficient energy transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05946v2-abstract-full').style.display = 'none'; document.getElementById('2408.05946v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05413">arXiv:2408.05413</a> <span> [<a href="https://arxiv.org/pdf/2408.05413">pdf</a>, <a href="https://arxiv.org/format/2408.05413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L121118">10.1103/PhysRevB.110.L121118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controllable Weyl Nodes and Fermi Arcs from Floquet Engineering Triple Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Dong-Hui Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05413v3-abstract-short" style="display: inline;"> Floquet engineering with periodic driving as a powerful tool for designing desirable topological states has been the subject of intense recent studies. Here, we present the application of Floquet engineering to investigate evolution of topological triple fermions under irradiation of circularly polarized light (CPL), a phenomenon that currently remains a mystery. By using first-principles calculat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05413v3-abstract-full').style.display = 'inline'; document.getElementById('2408.05413v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05413v3-abstract-full" style="display: none;"> Floquet engineering with periodic driving as a powerful tool for designing desirable topological states has been the subject of intense recent studies. Here, we present the application of Floquet engineering to investigate evolution of topological triple fermions under irradiation of circularly polarized light (CPL), a phenomenon that currently remains a mystery. By using first-principles calculations and Floquet theorem, we demonstrate that WC-type TiO and its analogues are promising candidates for Floquet engineering of triple fermions. The symmetry analysis reveals that the electric field of CPL can break the specific symmetries, such as the time-reversal symmetry and its combination of spatial symmetries, inducing a transition to a flexibly controllable Weyl semimetallic phase. The survived spatial symmetry, controlled by light, guarantees that the Weyl nodes are located along the high-symmetry line or in high-symmetry planes in momentum space. Our findings focusing on Floquet engineering in realistic materials featured by triple fermions would facilitate both theoretical and experimental interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05413v3-abstract-full').style.display = 'none'; document.getElementById('2408.05413v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L121118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13769">arXiv:2407.13769</a> <span> [<a href="https://arxiv.org/pdf/2407.13769">pdf</a>, <a href="https://arxiv.org/format/2407.13769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Sound in a Tunable Fermi Fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Songtao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yunpeng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Repplinger%2C+T">Thomas Repplinger</a>, <a href="/search/cond-mat?searchtype=author&query=Assump%C3%A7%C3%A3o%2C+G+G+T">Gabriel G. T. Assump莽茫o</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jianyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+G+L">Grant L. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Vivanco%2C+F+J">Franklin J. Vivanco</a>, <a href="/search/cond-mat?searchtype=author&query=Kurkjian%2C+H">Hadrien Kurkjian</a>, <a href="/search/cond-mat?searchtype=author&query=Navon%2C+N">Nir Navon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13769v1-abstract-short" style="display: inline;"> Landau's Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau's theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13769v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13769v1-abstract-full" style="display: none;"> Landau's Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau's theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound, and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we observe the shape of the quasiparticle excitations directly from momentum-space tomography and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau's theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13769v1-abstract-full').style.display = 'none'; document.getElementById('2407.13769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18229">arXiv:2405.18229</a> <span> [<a href="https://arxiv.org/pdf/2405.18229">pdf</a>, <a href="https://arxiv.org/format/2405.18229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0233154">10.1063/5.0233154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple-top-gate technique for studying the strongly interacting 2D electron systems in heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Melnikov%2C+M+Y">M. Yu. Melnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Shashkin%2C+A+A">A. A. Shashkin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+-">S. -H. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C+W">C. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kravchenko%2C+S+V">S. V. Kravchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18229v2-abstract-short" style="display: inline;"> We have developed a technique that dramatically reduces the contact resistances and depletes a shunting channel between the contacts outside the Hall bar in ultra-high mobility SiGe/Si/SiGe heterostructures. It involves the creation of three overlapping independent gates deposited on top of the structure and allows transport measurements to be performed at millikelvin temperatures in the strongly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18229v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18229v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18229v2-abstract-full" style="display: none;"> We have developed a technique that dramatically reduces the contact resistances and depletes a shunting channel between the contacts outside the Hall bar in ultra-high mobility SiGe/Si/SiGe heterostructures. It involves the creation of three overlapping independent gates deposited on top of the structure and allows transport measurements to be performed at millikelvin temperatures in the strongly interacting limit at low electron densities, where the energy of the electron-electron interactions dominates all other energy scales. This design allows one to observe the two-threshold voltage-current characteristics that are a signature for the collective depinning and sliding of the electron solid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18229v2-abstract-full').style.display = 'none'; document.getElementById('2405.18229v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 153102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09611">arXiv:2405.09611</a> <span> [<a href="https://arxiv.org/pdf/2405.09611">pdf</a>, <a href="https://arxiv.org/format/2405.09611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Fermionic quantum criticality through the lens of topological holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sheng-Jie Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09611v2-abstract-short" style="display: inline;"> We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09611v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09611v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09611v2-abstract-full" style="display: none;"> We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for $(1+1)d$ fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT and establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with $\mathbb{Z}_{2}^{F}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}^{F}$, $\mathbb{Z}_{4}^{F}$, and the fermionic version of the non-invertible $\text{Rep}(S_{3})$ symmetry. Our work uncovers many exotic fermionic quantum critical points and gapless phases, including two kinds of fermionic symmetry enriched quantum critical points, a fermionic gapless symmetry protected topological (SPT) phase, and a fermionic gapless spontaneous symmetry breaking (SSB) phase that breaks the fermionic non-invertible symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09611v2-abstract-full').style.display = 'none'; document.getElementById('2405.09611v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 7 figures, 6 tables; v2: minor changes, references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04768">arXiv:2405.04768</a> <span> [<a href="https://arxiv.org/pdf/2405.04768">pdf</a>, <a href="https://arxiv.org/format/2405.04768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Circularly polarized light irradiated ferromagnetic MnBi$_2$Te$_4$: the long-sought ideal Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+S">Shuai Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shengpu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+X">Xian-Yong Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04768v1-abstract-short" style="display: inline;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04768v1-abstract-full" style="display: none;"> The interaction between light and non-trivial energy band topology allows for the precise manipulation of topological quantum states, which has attracted intensive interest in condensed matter physics. In this work, using first-principles calculations, we studied the topological transition of ferromagnetic (FM) MnBi$_2$Te$_4$ upon irradiation with circularly polarized light (CPL). We revealed that the MnBi$_2$Te$_4$ can be driven from an FM insulator to a Weyl semimetal with a minimum number of Weyl points, i.e., two Weyl points in systems without time-reversal symmetry. More importantly, in FM MnBi$_2$Te$_4$ with out-of-plane easy magnetization axis, we found that the band dispersion of the WP evolves from Type-II to Type-III and finally to Type-I when the light intensity increases. Moreover, we show that the profile of the characteristic Fermi arc of Weyl semimetal phase is sensitive to changes in light intensity, which enables efficient manipulation of the Fermi arc length of FM MnBi$_2$Te$_4$ in experiments. In addition, for FM MnBi$_2$Te$_4$ with in-plane easy magnetization axis, the system becomes a type I Weyl semimetal under CPL irradiation. With controllable band dispersion, length of Fermi arc, and minimum number of WPs, our results indicate that CPL-irradiated FM MnBi$_2$Te$_4$ is an ideal platform to study novel transport phenomena in Weyl semimetals with distinct band dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04768v1-abstract-full').style.display = 'none'; document.getElementById('2405.04768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03771">arXiv:2405.03771</a> <span> [<a href="https://arxiv.org/pdf/2405.03771">pdf</a>, <a href="https://arxiv.org/format/2405.03771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.165122">10.1103/PhysRevB.110.165122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically thin obstructed atomic insulators with robust edge modes and quantized spin Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Verma%2C+R">Rahul Verma</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03771v2-abstract-short" style="display: inline;"> Symmetry-protected edge states serve as direct evidence of nontrivial electronic topology in atomically thin materials. Finding these states in experimentally realizable single-phase materials presents a substantial challenge for their use in fundamental studies and developing functional nanoscale devices. Here, we show the presence of robust edge states in phosphorene and group-Va monolayers with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03771v2-abstract-full').style.display = 'inline'; document.getElementById('2405.03771v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03771v2-abstract-full" style="display: none;"> Symmetry-protected edge states serve as direct evidence of nontrivial electronic topology in atomically thin materials. Finding these states in experimentally realizable single-phase materials presents a substantial challenge for their use in fundamental studies and developing functional nanoscale devices. Here, we show the presence of robust edge states in phosphorene and group-Va monolayers with puckered lattice structures. By carefully analyzing the symmetry of the atomic sites and edge mode properties, we demonstrate that these atomically thin monolayers realize recently introduced obstructed atomic insulator states with partially occupied edge modes. The obstructed edge modes attain a Rashba-type spin splitting with Rashba parameter ($伪$) of 1.52 eV 脜 for arsenene. Under strain or doping effects, these obstructed insulators transition to a phase with substantial spin-Berry curvature, yielding a double quantum spin Hall state with a spin Hall conductivity $\approx 4 \frac{e^2}{h}$. The experimental availability of phosphorene and other group-Va monolayers could enable verification of obstructed atomic states and enhanced spin-Berry curvature effects discussed in this study, offering the potential for applications in topological electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03771v2-abstract-full').style.display = 'none'; document.getElementById('2405.03771v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18491">arXiv:2404.18491</a> <span> [<a href="https://arxiv.org/pdf/2404.18491">pdf</a>, <a href="https://arxiv.org/format/2404.18491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Emergent Non-Abelian Thouless Pumping Induced by the Quasiperiodic Disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yan-Qing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18491v1-abstract-short" style="display: inline;"> We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside the topological region… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18491v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18491v1-abstract-full" style="display: none;"> We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside the topological region can be driven into the topological region due to the introduction of quasiperiodic disorder. Moreover, since the corresponding monopole will turn into a nodal line to spread beyond the boundaries of the topological region, the system with large disorder strength will result in the disappearance of non-Abelian Thouless pumping. Furthermore, we numerically simulate the Thouless pumping of non-Abelian systems, and the evolution results of center of mass' displacement are consistent with the Chern number. Finally, we discuss the localization properties of the system and find that, similar to [PRL 130, 206401(2023)], the inverse Anderson transition does not occur in the system with the increase of quasiperiodic strength, while the system still maintains the coexistence of localized and extended states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18491v1-abstract-full').style.display = 'none'; document.getElementById('2404.18491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13086">arXiv:2404.13086</a> <span> [<a href="https://arxiv.org/pdf/2404.13086">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Band Structure Engineering in Highly Crystalline Organic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shu-Jen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hutsch%2C+S">Sebastian Hutsch</a>, <a href="/search/cond-mat?searchtype=author&query=Talnack%2C+F">Felix Talnack</a>, <a href="/search/cond-mat?searchtype=author&query=Deconinck%2C+M">Marielle Deconinck</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shiyu Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zongbao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kleemann%2C+H">Hans Kleemann</a>, <a href="/search/cond-mat?searchtype=author&query=Vaynzof%2C+Y">Yana Vaynzof</a>, <a href="/search/cond-mat?searchtype=author&query=Mannsfeld%2C+S+C+B">Stefan C. B. Mannsfeld</a>, <a href="/search/cond-mat?searchtype=author&query=Ortmann%2C+F">Frank Ortmann</a>, <a href="/search/cond-mat?searchtype=author&query=Leo%2C+K">Karl Leo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13086v1-abstract-short" style="display: inline;"> Blending of semiconductors for controlling the energy levels (band structure engineering) is an important technique, in particular, for optoelectronic applications. The underlying physics is the delocalized Bloch states, which average over the potential landscape of the blend. For organic semiconductors, it has been shown that two quite different effects, the dielectric constant and electrostatic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13086v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13086v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13086v1-abstract-full" style="display: none;"> Blending of semiconductors for controlling the energy levels (band structure engineering) is an important technique, in particular, for optoelectronic applications. The underlying physics is the delocalized Bloch states, which average over the potential landscape of the blend. For organic semiconductors, it has been shown that two quite different effects, the dielectric constant and electrostatic interaction between molecules, can be used to tune the energy gap and ionization energy of disordered and weakly crystalline organic semiconductor blends. It is so far not known whether the electronic delocalization in organic crystals with large bandwidths can contribute to the energy structure engineering of the blend in a way similar to that in inorganic semiconductors. Here, we investigate the growth of highly ordered organic thin-film blends with a similar chemical structure and show the effect of band structure engineering by spectroscopic methods. We rationalize the experimental results with comprehensive theoretical simulations, showing that the delocalization is a significant effect. Our work paves the way for engineering the band structure of highly ordered organic semiconductor thin films that can be tailored for the desired optoelectronic device application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13086v1-abstract-full').style.display = 'none'; document.getElementById('2404.13086v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06823">arXiv:2404.06823</a> <span> [<a href="https://arxiv.org/pdf/2404.06823">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07435-8">10.1038/s41586-024-07435-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of proton transport and hydrogenation in double-gated graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tong%2C+J">J. Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Y">Y. Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Domaretskiy%2C+D">D. Domaretskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Della+Pia%2C+F">F. Della Pia</a>, <a href="/search/cond-mat?searchtype=author&query=Dagar%2C+P">P. Dagar</a>, <a href="/search/cond-mat?searchtype=author&query=Powell%2C+L">L. Powell</a>, <a href="/search/cond-mat?searchtype=author&query=Bahamon%2C+D">D. Bahamon</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">S. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xin%2C+B">B. Xin</a>, <a href="/search/cond-mat?searchtype=author&query=Filho%2C+R+N+C">R. N. Costa Filho</a>, <a href="/search/cond-mat?searchtype=author&query=Vega%2C+L+F">L. F. Vega</a>, <a href="/search/cond-mat?searchtype=author&query=Grigorieva%2C+I+V">I. V. Grigorieva</a>, <a href="/search/cond-mat?searchtype=author&query=Peeters%2C+F+M">F. M. Peeters</a>, <a href="/search/cond-mat?searchtype=author&query=Michaelides%2C+A">A. Michaelides</a>, <a href="/search/cond-mat?searchtype=author&query=Lozada-Hidalgo%2C+M">M. Lozada-Hidalgo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06823v3-abstract-short" style="display: inline;"> The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices. However,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06823v3-abstract-full').style.display = 'inline'; document.getElementById('2404.06823v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06823v3-abstract-full" style="display: none;"> The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriers and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metals or chemically functionalizing the lattice. However, these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field, E, at around 1 V nm-1, and charge-carrier density, n, at around 1 x 10^14 cm-2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on-off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode-electrolyte interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06823v3-abstract-full').style.display = 'none'; document.getElementById('2404.06823v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 630, pages619--624 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03339">arXiv:2404.03339</a> <span> [<a href="https://arxiv.org/pdf/2404.03339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Significantly Enhanced Vacancy Diffusion in Mn-containing Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guan%2C+H">Huaqing Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+H">Hanwen Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+N">Ning Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Kuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Siqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sui%2C+Y">Yanfei Sui</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+F">Fuyang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shuai Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengfei Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C">Chenyang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Q">Qiu Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Vitos%2C+L">Levente Vitos</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shaosong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03339v1-abstract-short" style="display: inline;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03339v1-abstract-full" style="display: none;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defect dynamic changes and intrinsic macro-properties is robustly validated through the first-principles theory and well-designed experiments. The physical origin stems from Mn's exceptionally large effective intra-elemental 3d electron interactions, surpassing the Coulomb attraction induced by vacancy and disrupting the electron screening effect. Given the ubiquitous nature of vacancies and their recognition as the most crucial defects influencing nearly all physical and mechanical properties of crystalline materials, this outcome may drive advances in a broad domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'none'; document.getElementById('2404.03339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02963">arXiv:2404.02963</a> <span> [<a href="https://arxiv.org/pdf/2404.02963">pdf</a>, <a href="https://arxiv.org/format/2404.02963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the Mn $L_3$-edge RIXS spectrum of lightly manganese doped Sr$_{3}$Ru$_{2}$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wei-Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jenn-Min Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+Y">Yu-Cheng Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Freelon%2C+B">Byron Freelon</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Datta%2C+T">Trinanjan Datta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02963v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) experiment was performed at the Mn $L_3$ edge. A 10 $\%$ Mn-doped Sr$_{3}$Ru$_{2}$O$_{7}$ compound, where the Mn$^{3+}$ ions are in the 3$d^4$ state, were probed for $dd$ excitations. The dilute doping concentration allows one to treat the dopant Mn$^{3+}$ ions as effectively free in the host ruthenium compound. The local nature of $dd$ RIXS spectroscopy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02963v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02963v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) experiment was performed at the Mn $L_3$ edge. A 10 $\%$ Mn-doped Sr$_{3}$Ru$_{2}$O$_{7}$ compound, where the Mn$^{3+}$ ions are in the 3$d^4$ state, were probed for $dd$ excitations. The dilute doping concentration allows one to treat the dopant Mn$^{3+}$ ions as effectively free in the host ruthenium compound. The local nature of $dd$ RIXS spectroscopy permits one to use a single-site model to simulate the experimental spectra. The simulated spectra reproduces the in-plane [100] experimental RIXS spectrum. We also predict the intensity for the in-plane [110] direction and the out-of-plane spin orientation configuration [001]. Based on our single-ion model we were able to fit the experimental data to obtain the crystal field parameters, the 10Dq value, and the intra-orbital spin-flip energy 2$\mathcal{J}$(or $3J_{H}$, where $J_{H}$ is the Hund's energy) of the Mn$^{3+}$ ion. Utilizing our computed RIXS quantum transition amplitudes between the various $d$ orbitals of the Mn$^{3+}$ ion, the expression for the Kramers-Heisenberg cross section, and a self-consistent fitting procedure we also identify the energy boundaries of the non-spin-flip and spin-flip $dd$ excitations present in the experimental data. From our fitting procedure we obtain $2\mathcal{J} (3J_{H})=2.06$ eV, a value which is in excellent agreement with that computed from the free ion Racah parameters. We also identified the charge transfer boundary. In addition to predicting the microscopic parameters, we find a quantum spin-flip transition in the non-cross ($蟽_{in}-蟽_{out}$, $蟺_{in}-蟺_{out}$) x-ray polarization channels of the $dd$ RIXS spectra. A similar transition, was previously predicted to occur in the $蟺-蟺$ channel of the magnon spectrum in the non-collinear non-coplanar Kagome compound composed of Cu$^{2+}$ 3d$^{9}$ ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02963v1-abstract-full').style.display = 'none'; document.getElementById('2404.02963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, see PDF text for full abstract info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18577">arXiv:2403.18577</a> <span> [<a href="https://arxiv.org/pdf/2403.18577">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Octahedral and polar phase transitions in freestanding films of SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Leroy%2C+L">Ludmila Leroy</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&query=D%C3%B6ssegger%2C+J">Janine D枚ssegger</a>, <a href="/search/cond-mat?searchtype=author&query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&query=Abreu%2C+E">Elsa Abreu</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18577v1-abstract-short" style="display: inline;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18577v1-abstract-full" style="display: none;"> From extreme strain to bending, the possibilities in the manipulation of freestanding films of oxide perovskites bring a novel landscape to their properties and brings them one step closer to their application. It is therefore of great importance to fully understand the inherent properties of such films, in which dimensionality and surface effects can play a major role in defining the properties of the materials ground state. This paper reports the properties of freestanding (FS) films of the canonical oxide, SrTiO3 (STO) with thicknesses 20, 30, 40 and 80 nm. We show that the relaxed ultrathin STO FS films become polar at temperatures as high as 85 K, in contrast to the quantum paraelectric behavior of bulk. Our findings are based on the softening of the ferroelectric mode towards the ferroelectric transition temperature Tc and its consecutive hardening below Tc with further decreasing temperature, probed with THz time domain spectroscopy in transmission mode. We find almost no thickness dependence in Tc. Moreover, we characterize the antiferrodistortive (AFD) phase transition in STO FS by X-ray diffraction (XRD) probing superlattice reflections characteristic for the rotation of the TiO6 octahedra. Our results point to a higher phase transition temperature in comparison to bulk STO, as well as an unbalanced domain population favoring the rotation axis to be in plane. X-ray linear dichroism results further show a preferential Ti xz/yz orbital occupancy at the surface, but with a complete degeneracy in the t2g states in the inner part of the film indicating that the AFD distortion does not strongly affect the t2g splitting. These findings demonstrate that STO FS films have clearly different properties than bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18577v1-abstract-full').style.display = 'none'; document.getElementById('2403.18577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00910">arXiv:2403.00910</a> <span> [<a href="https://arxiv.org/pdf/2403.00910">pdf</a>, <a href="https://arxiv.org/format/2403.00910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Computational supremacy in quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=King%2C+A+D">Andrew D. King</a>, <a href="/search/cond-mat?searchtype=author&query=Nocera%2C+A">Alberto Nocera</a>, <a href="/search/cond-mat?searchtype=author&query=Rams%2C+M+M">Marek M. Rams</a>, <a href="/search/cond-mat?searchtype=author&query=Dziarmaga%2C+J">Jacek Dziarmaga</a>, <a href="/search/cond-mat?searchtype=author&query=Wiersema%2C+R">Roeland Wiersema</a>, <a href="/search/cond-mat?searchtype=author&query=Bernoudy%2C+W">William Bernoudy</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+J">Jack Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Kaushal%2C+N">Nitin Kaushal</a>, <a href="/search/cond-mat?searchtype=author&query=Heinsdorf%2C+N">Niclas Heinsdorf</a>, <a href="/search/cond-mat?searchtype=author&query=Harris%2C+R">Richard Harris</a>, <a href="/search/cond-mat?searchtype=author&query=Boothby%2C+K">Kelly Boothby</a>, <a href="/search/cond-mat?searchtype=author&query=Altomare%2C+F">Fabio Altomare</a>, <a href="/search/cond-mat?searchtype=author&query=Berkley%2C+A+J">Andrew J. Berkley</a>, <a href="/search/cond-mat?searchtype=author&query=Boschnak%2C+M">Martin Boschnak</a>, <a href="/search/cond-mat?searchtype=author&query=Chern%2C+K">Kevin Chern</a>, <a href="/search/cond-mat?searchtype=author&query=Christiani%2C+H">Holly Christiani</a>, <a href="/search/cond-mat?searchtype=author&query=Cibere%2C+S">Samantha Cibere</a>, <a href="/search/cond-mat?searchtype=author&query=Connor%2C+J">Jake Connor</a>, <a href="/search/cond-mat?searchtype=author&query=Dehn%2C+M+H">Martin H. Dehn</a>, <a href="/search/cond-mat?searchtype=author&query=Deshpande%2C+R">Rahul Deshpande</a>, <a href="/search/cond-mat?searchtype=author&query=Ejtemaee%2C+S">Sara Ejtemaee</a>, <a href="/search/cond-mat?searchtype=author&query=Farr%C3%A9%2C+P">Pau Farr茅</a>, <a href="/search/cond-mat?searchtype=author&query=Hamer%2C+K">Kelsey Hamer</a>, <a href="/search/cond-mat?searchtype=author&query=Hoskinson%2C+E">Emile Hoskinson</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shuiyuan Huang</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00910v1-abstract-short" style="display: inline;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations dem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00910v1-abstract-full" style="display: none;"> Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations demand resources that grow exponentially with system size. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schr枚dinger equation. We demonstrate area-law scaling of entanglement in the model quench in two-, three- and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for classical approaches. We assess approximate methods based on tensor networks and neural networks and conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe. Thus quantum annealers can answer questions of practical importance that classical computers cannot. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00910v1-abstract-full').style.display = 'none'; document.getElementById('2403.00910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18943">arXiv:2402.18943</a> <span> [<a href="https://arxiv.org/pdf/2402.18943">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Three-dimensional atomic interface between metal and oxide in Zr-ZrO2 nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zezhou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+X">Xing Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Z">Zhiheng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Siwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yue-E Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ke%2C+H">Hai-Bo Ke</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wei-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jihan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18943v1-abstract-short" style="display: inline;"> Metal-oxide interfaces with poor coherency have unique properties comparing to the bulk materials and offer broad applications in the fields of heterogeneous catalysis, battery, and electronics. However, current understanding of the three-dimensional (3D) atomic metal-oxide interfaces remains limited because of their inherent structural complexity and limitations of conventional two-dimensional im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18943v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18943v1-abstract-full" style="display: none;"> Metal-oxide interfaces with poor coherency have unique properties comparing to the bulk materials and offer broad applications in the fields of heterogeneous catalysis, battery, and electronics. However, current understanding of the three-dimensional (3D) atomic metal-oxide interfaces remains limited because of their inherent structural complexity and limitations of conventional two-dimensional imaging techniques. Here, we determine the 3D atomic structure of metal-oxide interfaces in zirconium-zirconia nanoparticles using atomic-resolution electron tomography. We quantitatively analyze the atomic concentration and the degree of oxidation, and find the coherency and translational symmetry of the interfaces are broken. Moreover, we observe porous structures such as Zr vacancies and nano-pores and investigate their distribution. Our findings provide a clear 3D atomic picture of metal-oxide interface with direct experimental evidence. We anticipate this work could encourage future studies on fundamental problems of oxides such as interfacial structures in semiconductor and atomic motion during oxidation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18943v1-abstract-full').style.display = 'none'; document.getElementById('2402.18943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 4 main figures, 17 Supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12196">arXiv:2401.12196</a> <span> [<a href="https://arxiv.org/pdf/2401.12196">pdf</a>, <a href="https://arxiv.org/format/2401.12196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXLife.2.043010">10.1103/PRXLife.2.043010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Learning Dynamics from Multicellular Graphs with Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Haiqian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Meyer%2C+F">Florian Meyer</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shaoxun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lungu%2C+C">Cristiana Lungu</a>, <a href="/search/cond-mat?searchtype=author&query=Olayioye%2C+M+A">Monilola A. Olayioye</a>, <a href="/search/cond-mat?searchtype=author&query=Buehler%2C+M+J">Markus J. Buehler</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+M">Ming Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12196v3-abstract-short" style="display: inline;"> Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of struct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12196v3-abstract-full').style.display = 'inline'; document.getElementById('2401.12196v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12196v3-abstract-full" style="display: none;"> Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of structural features that can indicate multicellular motion has been difficult, and existing metrics largely rely on physical instincts. Here we show that using a graph neural network (GNN), the motion of multicellular collectives can be inferred from a static snapshot of cell positions, in both experimental and synthetic datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12196v3-abstract-full').style.display = 'none'; document.getElementById('2401.12196v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at PRX Life</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11091">arXiv:2401.11091</a> <span> [<a href="https://arxiv.org/pdf/2401.11091">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A family of rare-earth Quasi-One-Dimensional spin-chain compounds K2RENb5O15 (RE=Ce,Pr,Nd,Sm,Gd-Ho) with large interchain distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+M">Maofeng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ruan%2C+S">Shaoheng Ruan</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jingxin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ling%2C+L">Langsheng Ling</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+W">Wei Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shuai Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+A">Andi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J">Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Z">Zhengcai Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Z">Zhaoming Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11091v1-abstract-short" style="display: inline;"> One-dimensional spin chain systems have received special attention to discover the novel magnetic ground states and emergent phenomena, while the magnetic studies on rare-earth (RE)-based 1D spin chain materials are still rare. Here, we report the synthesis, structure and magnetic behaviors on a family of tetragonal tungsten-bronze structure K2RENb5O15 (RE = Ce, Pr, Nd, Sm, Gd-Ho) compounds, which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11091v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11091v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11091v1-abstract-full" style="display: none;"> One-dimensional spin chain systems have received special attention to discover the novel magnetic ground states and emergent phenomena, while the magnetic studies on rare-earth (RE)-based 1D spin chain materials are still rare. Here, we report the synthesis, structure and magnetic behaviors on a family of tetragonal tungsten-bronze structure K2RENb5O15 (RE = Ce, Pr, Nd, Sm, Gd-Ho) compounds, which consist of 1D linear spin-chain structure built by RE3+ ions along the c-axis and well spatially separated by the nonmagnetic K/Nb-O polyhedrons with large interchain distances of ~ 8.80-8.88 脜 in the ab-plane. The low temperature magnetic measurements reveal the absence of long-range magnetic order down to 1.8 K for all serial K2RENb5O15 compounds and the dominant ferromagnetic interactions for RE=Ce,Dy and antiferromagnetic interactions for other members. Among them, K2GdNb5O15 with spin only magnetic moment S=7/2, exhibits a long-range magnetic order with TN~0.31 K and strong spin fluctuations at low temperatures due to its low-dimension characteristics. Moreover, a large magnetocaloric effect under low field change of 0-2 T is realized at temperatures below 1 K for K2GdNb5O15, letting it as an ideal candidate for adiabatic magnetic refrigeration applications at sub-kelvin temperatures. The K2RENb5O15 become a rare family of insulting RE-based magnets to explore the novel 1D spin chain physics beyond the 3d TM-based counterparts, in terms of its combination of low dimension, strong spin-orbital coupling and the rich diversity of RE ions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11091v1-abstract-full').style.display = 'none'; document.getElementById('2401.11091v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04541">arXiv:2401.04541</a> <span> [<a href="https://arxiv.org/pdf/2401.04541">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Flexomagnetoelectric effect in Sr2IrO4 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+T">Ting Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xueli Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+B">Biao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zongwei Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+P">Peng Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jialu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Jing Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jiawang Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+Z">Zhigao Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chenglong Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Kan%2C+E">Erjun Kan</a>, <a href="/search/cond-mat?searchtype=author&query=Nan%2C+C">Ce-Wen Nan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jinxing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04541v1-abstract-short" style="display: inline;"> Symmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr2IrO4, the space-inversion symmetry is broken accompanying a non-equivalent O p-Ir d orbital hybr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04541v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04541v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04541v1-abstract-full" style="display: none;"> Symmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr2IrO4, the space-inversion symmetry is broken accompanying a non-equivalent O p-Ir d orbital hybridization along z axis. Thus, emergent polar phase and out-of-plane magnetic moment have been simultaneously observed in these asymmetric Sr2IrO4 thin films, which both are absent in its ground state. Furthermore, upon the application of magnetic field, such polarization can be controlled by modifying the occupied d orbitals through spin-orbit interaction, giving rise to a flexomagnetoelectric effect. This work provides a general strategy to artificially design multiple symmetries and ferroic orderings in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04541v1-abstract-full').style.display = 'none'; document.getElementById('2401.04541v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05810">arXiv:2312.05810</a> <span> [<a href="https://arxiv.org/pdf/2312.05810">pdf</a>, <a href="https://arxiv.org/format/2312.05810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Statistical-Physics-Informed Neural Networks (Stat-PINNs): A Machine Learning Strategy for Coarse-graining Dissipative Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shenglin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Z">Zequn He</a>, <a href="/search/cond-mat?searchtype=author&query=Dirr%2C+N">Nicolas Dirr</a>, <a href="/search/cond-mat?searchtype=author&query=Zimmer%2C+J">Johannes Zimmer</a>, <a href="/search/cond-mat?searchtype=author&query=Reina%2C+C">Celia Reina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05810v1-abstract-short" style="display: inline;"> Machine learning, with its remarkable ability for retrieving information and identifying patterns from data, has emerged as a powerful tool for discovering governing equations. It has been increasingly informed by physics, and more recently by thermodynamics, to further uncover the thermodynamic structure underlying the evolution equations, i.e., the thermodynamic potentials driving the system and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05810v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05810v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05810v1-abstract-full" style="display: none;"> Machine learning, with its remarkable ability for retrieving information and identifying patterns from data, has emerged as a powerful tool for discovering governing equations. It has been increasingly informed by physics, and more recently by thermodynamics, to further uncover the thermodynamic structure underlying the evolution equations, i.e., the thermodynamic potentials driving the system and the operators governing the kinetics. However, despite its great success, the inverse problem of thermodynamic model discovery from macroscopic data is in many cases non-unique, meaning that multiple pairs of potentials and operators can give rise to the same macroscopic dynamics, which significantly hinders the physical interpretability of the learned models. In this work, we propose a machine learning framework, named as Statistical-Physics-Informed Neural Networks (Stat-PINNs), which further encodes knowledge from statistical mechanics and resolves this non-uniqueness issue for the first time. The framework is here developed for purely dissipative isothermal systems. It only uses data from short-time particle simulations to learn the thermodynamic structure, which can be used to predict long-time macroscopic evolutions. We demonstrate the approach for particle systems with Arrhenius-type interactions, common to a wide range of phenomena, such as defect diffusion in solids, surface absorption and chemical reactions. Stat-PINNs can successfully recover the known analytic solution for the case with long-range interaction and discover the hitherto unknown potential and operator governing the short-range interaction cases. We compare our results with an analogous approach that solely excludes statistical mechanics, and observe that, in addition to recovering the unique thermodynamic structure, statistical mechanics relations can increase the robustness and predictability of the learning strategy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05810v1-abstract-full').style.display = 'none'; document.getElementById('2312.05810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16727">arXiv:2311.16727</a> <span> [<a href="https://arxiv.org/pdf/2311.16727">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Sluggish and Chemically-Biased Interstitial Diffusion in Concentrated Solid Solution Alloys: Mechanisms and Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+B">Biao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+H">Haijun Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shasha Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+S">Shihua Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Y">Yaoxu Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+X">Xuepeng Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+W">Wenyu Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Kai%2C+J">Ji-Jung Kai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+S">Shijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16727v1-abstract-short" style="display: inline;"> Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16727v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16727v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16727v1-abstract-full" style="display: none;"> Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the migration energy barriers on-the-fly. The ML-kMC reproduces the diffusivity that was reported by molecular dynamics results at high temperatures. With this powerful tool, we find that the observed sluggish diffusion and the "Ni-Ni-Ni"-biased diffusion in Fe-Ni alloys are ascribed to a unique "Barrier Lock" mechanism, whereas the "Fe-Fe-Fe"-biased diffusion is influenced by a "Component Dominance" mechanism. Inspired by the mentioned mechanisms, a practical AvgS-kMC method is proposed for conveniently and swiftly determining interstitial-mediated diffusivity by only relying on the mean energy barriers of migration patterns. Combining the AvgS-kMC with the differential evolutionary algorithm, an inverse design strategy for optimizing sluggish diffusion properties is applied to emphasize the crucial role of favorable migration patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16727v1-abstract-full').style.display = 'none'; document.getElementById('2311.16727v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages,9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14559">arXiv:2311.14559</a> <span> [<a href="https://arxiv.org/pdf/2311.14559">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layer-dependent superconductivity in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+K">Ke Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Baizhuo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+X">Xiangming Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Sicheng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xiaofan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yiyuan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+J">Jiaying Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14559v1-abstract-short" style="display: inline;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14559v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14559v1-abstract-full" style="display: none;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+未 (Bi-2212), the Tc of the monolayer is almost identical to that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here we successfully fabricate ultrathin flakes of CsCa2Fe4As4F2, a highly anisotropic iron-based high-Tc superconductor, down to monolayer. The monolayer flake exhibits the highest Tc of 24 K (after tuning to the optimal doping by ionic liquid gating), which is about 20% lower than that of the bulk crystal. We also fabricate ultrathin flakes of CaKFe4As4, another iron-based superconductor with much smaller anisotropy. The Tc of the 3-layer flake decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors. From this, the Tc of a new monolayer superconductor can be extrapolated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'none'; document.getElementById('2311.14559v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10286">arXiv:2311.10286</a> <span> [<a href="https://arxiv.org/pdf/2311.10286">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dephasing of Strong-Field-Driven Floquet States Revealed by Time- and Spectrum-Resolved Quantum-Path Interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yaxin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+B">Bingbing Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Shicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shenyang Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+M">Mingyan Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hugen Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuanbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+R">Ruifeng Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+Z">Zhensheng Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10286v2-abstract-short" style="display: inline;"> Floquet engineering, while a powerful tool for ultrafast quantum-state manipulation, faces challenges under strong-field conditions, as recent high harmonic generation studies unveil exceptionally short dephasing times. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitons. Our results reveal a dramatic in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10286v2-abstract-full').style.display = 'inline'; document.getElementById('2311.10286v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10286v2-abstract-full" style="display: none;"> Floquet engineering, while a powerful tool for ultrafast quantum-state manipulation, faces challenges under strong-field conditions, as recent high harmonic generation studies unveil exceptionally short dephasing times. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitons. Our results reveal a dramatic increase in exciton dephasing rate beyond a threshold field strength, indicating exciton dissociation as the primary dephasing mechanism. Importantly, we demonstrate long dephasing times of strong-field-dressed excitons, supporting coherent strong-field manipulation of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10286v2-abstract-full').style.display = 'none'; document.getElementById('2311.10286v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06072">arXiv:2311.06072</a> <span> [<a href="https://arxiv.org/pdf/2311.06072">pdf</a>, <a href="https://arxiv.org/format/2311.06072">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Provoking topology by octahedral tilting in strained SrNbO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&query=Rosendal%2C+V">Victor Rosendal</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&query=Plumb%2C+N+C">Nicholas Clark Plumb</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Petersen%2C+D+H">Dirch Hjorth Petersen</a>, <a href="/search/cond-mat?searchtype=author&query=Brandbyge%2C+M">Mads Brandbyge</a>, <a href="/search/cond-mat?searchtype=author&query=Brito%2C+W+H">Walber Hugo Brito</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Scagnoli%2C+V">Valerio Scagnoli</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+J">Jike Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Skoropata%2C+E">Elizabeth Skoropata</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">Urs Staub</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Baumberger%2C+F">Felix Baumberger</a>, <a href="/search/cond-mat?searchtype=author&query=Pryds%2C+N">Nini Pryds</a>, <a href="/search/cond-mat?searchtype=author&query=Radovic%2C+M">Milan Radovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06072v1-abstract-short" style="display: inline;"> Transition metal oxides with a wide variety of electronic and magnetic properties offer an extraordinary possibility to be a platform for developing future electronics based on unconventional quantum phenomena, for instance, the topology. The formation of topologically non-trivial states is related to crystalline symmetry, spin-orbit coupling, and magnetic ordering. Here, we demonstrate how lattic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06072v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06072v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06072v1-abstract-full" style="display: none;"> Transition metal oxides with a wide variety of electronic and magnetic properties offer an extraordinary possibility to be a platform for developing future electronics based on unconventional quantum phenomena, for instance, the topology. The formation of topologically non-trivial states is related to crystalline symmetry, spin-orbit coupling, and magnetic ordering. Here, we demonstrate how lattice distortions and octahedral rotation in SrNbO$_3$ films induce the band topology. By employing angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we verify the presence of in-phase $a^0a^0c^+$ octahedral rotation in ultra-thin SrNbO$_3$ films, which causes the formation of topologically-protected Dirac band crossings. Our study illustrates that octahedral engineering can be effectively exploited for implanting and controlling quantum topological phases in transition metal oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06072v1-abstract-full').style.display = 'none'; document.getElementById('2311.06072v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18644">arXiv:2310.18644</a> <span> [<a href="https://arxiv.org/pdf/2310.18644">pdf</a>, <a href="https://arxiv.org/format/2310.18644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic properties of $尾$-Li$_2$IrO$_3$ after grazing-angle focused ion beam thinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hua%2C+N">Nelson Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Breitner%2C+F">Franziska Breitner</a>, <a href="/search/cond-mat?searchtype=author&query=Jesche%2C+A">Anton Jesche</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Christian R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Gegenwart%2C+P">Philipp Gegenwart</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18644v1-abstract-short" style="display: inline;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18644v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18644v1-abstract-full" style="display: none;"> Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials exist as single crystals that are often difficult to manipulate, thereby limiting their studies to a certain subset of experimental techniques. One particular class of these materials are the lithium and sodium iridates that are promising candidates for hosting a Kitaev quantum spin liquid state. Here we present a controlled method of using a focused ion beam at grazing incidence to reduce the size of a $尾$-Li$_2$IrO$_3$ single crystal to a thickness of 1 $渭m$. Subsequent x-ray diffraction measurements show the lattice remains intact, albeit with a larger mosaic spread. The integrity of the magnetic order is also preserved as the temperature dependent magnetic diffraction peak follows the same trend as its bulk counterpart with a transition temperature at TN = 37.5 K. Our study demonstrates a technique that opens up the possibility of nonequilibrium experiments where submicron thin samples are often essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18644v1-abstract-full').style.display = 'none'; document.getElementById('2310.18644v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18218">arXiv:2310.18218</a> <span> [<a href="https://arxiv.org/pdf/2310.18218">pdf</a>, <a href="https://arxiv.org/format/2310.18218">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Random Fields from Quenched Disorder in an Archetype for Correlated Electrons: the Parallel Spin Stripe Phase of La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ at the 1/8 Anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Q">Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S+H+-">S. H. -Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Q. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+E+M">E. M. Smith</a>, <a href="/search/cond-mat?searchtype=author&query=Sharron%2C+H">H. Sharron</a>, <a href="/search/cond-mat?searchtype=author&query=Aczel%2C+A+A">A. A. Aczel</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+W">W. Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Gaulin%2C+B+D">B. D. Gaulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18218v1-abstract-short" style="display: inline;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18218v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18218v1-abstract-full" style="display: none;"> The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) with $x$ = 0.125 in single crystal form, well below the percolation threshold of $\sim$ 41% for two-dimensional (2D) square lattice. Elastic neutron scattering measurements on these crystals show clear magnetic quasi-Bragg peaks at all Zn dopings. While all the Zn-doped crystals display order parameters that merge into each other and the background at $\sim$ 68 K, the temperature dependence of the order parameter as a function of Zn concentration is drastically different. This result is consistent with meandering charge stripes within the parallel stripe phase, which are pinned in the presence of quenched magnetic vacancies. In turn it implies vacancies that preferentially occupy sites within the charge stripes, and hence that can be very effective at disrupting superconductivity in Nd-LSCO ($x$ = 0.125), and, by extension, in all systems exhibiting parallel stripes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18218v1-abstract-full').style.display = 'none'; document.getElementById('2310.18218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Huang%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Huang%2C+S&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>