CINXE.COM

Polymers | Topical Collection : Polymers in Tissue Engineering

<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Polymers | Topical Collection : Polymers in Tissue Engineering</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732286508"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732286508" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732286508"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732286508"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732286508"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732286508"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732286508"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732286508"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732286508"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content="&nbsp;"/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="32x32" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="96x96" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="16x16" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="192x192" href="https://pub.mdpi-res.com/img/journals/polymers-logo-sq.png?8600e93ff98dbf14"> <meta name="title" content="Polymers"> <meta name="description" content="Polymers, an international, peer-reviewed Open Access journal." /> <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/polymers-logo.png?8600e93ff98dbf14" /> <meta property="og:title" content="Polymers" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.mdpi.com/journal/polymers/topical_collections/polymers_tissue_engineering_TC" /> <meta property="og:description" content="Polymers, an international, peer-reviewed Open Access journal." /> <meta property="og:image" content="https://pub.mdpi-res.com/img/journals/polymers-logo-social.png?8600e93ff98dbf14" /> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(58,20,91,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(58,20,91,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(58,20,91,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(58,20,91,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(58,20,91,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <meta property="og:title" content="Polymers in Tissue Engineering" /> <meta property="og:description" content="Special Issue in journal Polymers: Polymers in Tissue Engineering" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Polymers - Latest Articles" href="/rss/journal/polymers"> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { availableFonts: ["TeX"], preferredFonts: "TeX", webFont:"TeX", imageFont:"TeX", undefinedFamily:"'Arial Unicode MS',serif", scale: 80, linebreaks: { automatic: true, width: "container" } }, "TeX": { extensions: ["noErrors.js"], noErrors: { inlineDelimiters: ["",""], multiLine: true, style: { "font-size": "90%", "text-align": "left", "color": "black", "padding": "1px 3px", "border": "1px solid" } } } }); MathJax.Hub.Register.StartupHook("End",function () { $(".art-abstract").css("display", "block"); }); </script> <script type="text/javascript" src="https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732286508"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732286508"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=polymers " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider">&nbsp;</div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label">&nbsp;</div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks &amp; Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences &amp; Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical &amp; Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer&#039;s Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access &amp; Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" selected='selected'> Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label">&nbsp;</div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label">&nbsp;</div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label">&nbsp;</div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label">&nbsp;</div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider">&nbsp;</div> <div class="breadcrumb row full-row"> <div style="position: absolute; right: 40px; z-index: 10; top: 5px;"> <div class="iflogo1"> <a href="https://www.scopus.com/sourceid/54222" target="_blank" rel="noopener noreferrer" style="text-decoration: none;"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/CS_no_number.svg?62107aae53c39662?1732286508" class="iflogo2"> <div class="iflogo1__citescore-number">8.0</div> </a> </div> <div class="iflogo1" style="/*z-index:30;*/"> <a href="https://www.ncbi.nlm.nih.gov/pubmed/?term=2073-4360" target="_blank" rel="noopener noreferrer"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/PM.svg?d6a69b922515dcf5?1732286508" class="iflogo2"> </a> </div> <div class="iflogo1"> <a href="/journal/polymers/stats" target="_blank" rel="noopener noreferrer" style="text-decoration: none;"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/IF_no_number.svg?af8a884fb765d812?1732286508" class="iflogo2"> <div class="iflogo1__if-number">4.7</div> </a> </div> </div> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a class="lean" href="/journal/polymers">Polymers</a> </div> <div class="breadcrumb__element"> <a class="lean" href="/journal/polymers/sections">Sections</a> </div> <div class="breadcrumb__element"> <a href="#">Polymers in Tissue Engineering</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width "> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div id="js-large-main-top-container"> <div id="js-main-top-container" class="content__container"> <a href="/journal/polymers"> <img src="https://pub.mdpi-res.com/img/journals/polymers-logo.png?8600e93ff98dbf14" alt="polymers-logo" title="Polymers" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border" style="position: relative;"> <div class="left-column__fixed"> <a class="button button--color button--color-journal button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_SubmitToSpecialIssue" href="https://susy.mdpi.com/user/manuscripts/upload?form[journal_id]=29&amp;form[special_issue_id]=59858" data-disabledmessage="creating new submissions is not possible."> Submit to Topical Collection </a> <a class="button button--color button--full-width js-journal-active-only-link UC_JournalReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for <em>Polymers</em> </a> </div> </div> <div class="generic-item condensed-small UI_JournalMenu"> <h2 class="show-for-medium-up">Journal Menu</h2> <a href="#" class="bolded-text link-journal-menu show-for-small"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Journal Menu </a> <ul class="accordion__dummy accordion__menu hide-small-down-initially" style="margin-top: 10px;"> <li class="accordion-navigation accordion-navigation__journal"> <ul> <li class="side-menu-li "> <a href="/journal/polymers"><em>Polymers</em> Home </a> </li> <li class="side-menu-li "> <a href="/journal/polymers/about">Aims & Scope</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/editors"> Editorial Board </a> </li> <li class="side-menu-li "> <a href="/journal/polymers/submission_reviewers">Reviewer Board</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/topical_advisory_panel">Topical Advisory Panel</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/instructions">Instructions for Authors</a> </li> <li class="side-menu-li active "> <a href="/journal/polymers/special_issues">Special Issues</a> </li> <li class="side-menu-li"> <a href="/topics?journal=polymers">Topics</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/sections">Sections & Collections</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/apc">Article Processing Charge</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/indexing">Indexing & Archiving</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/editors_choice">Editor’s Choice Articles</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/most_cited">Most Cited & Viewed</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/stats">Journal Statistics</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/history">Journal History</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/awards">Journal Awards</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/societies">Society Collaborations</a> </li> <li class="side-menu-li "> <a href="/journal/polymers/editorial_office">Editorial Office</a> </li> </ul> </li> </ul> </div> <h2 class="show-for-medium-up">Journal Browser</h2> <a href="#" class="bolded-text link-journal-browser show-for-small" style="margin-bottom: 10px;"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Journal Browser </a> <div class="show-for-medium-up"> <div class="generic-item last-item no-border"> <form method="post" action="/journal/polymers" id="qckvi" onsubmit="return !$('#journal-browser-go').hasClass('button--grey');"> <div style="margin-bottom: 10px;" class="UI_JournalBrowser_Volume"> <select id="journal-browser-volume" name="volume" style="width: 100%; margin-bottom: 0;" class="chosen-select"> <option value='' data-id="0">volume</option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="16"> 16 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="15"> 15 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="14"> 14 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="13"> 13 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="12"> 12 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="11"> 11 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="10"> 10 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="9"> 9 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="8"> 8 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="7"> 7 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="6"> 6 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="5"> 5 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="4"> 4 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="3"> 3 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="2"> 2 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="polymers" value="1"> 1 </option> </select> </div> <div style="margin-bottom: 10px;" class="UI_JournalBrowser_Issue"> <select id="journal-browser-issue" name="issue" style="width: 100%; margin-bottom: 0;" class="chosen-select"> <option value='' class="volume-0">issue</option> <option value="1" class="volume-16" style="display: none;"> 1 </option> <option value="2" class="volume-16" style="display: none;"> 2 </option> <option value="3" class="volume-16" style="display: none;"> 3 </option> <option value="4" class="volume-16" style="display: none;"> 4 </option> <option value="5" class="volume-16" style="display: none;"> 5 </option> <option value="6" class="volume-16" style="display: none;"> 6 </option> <option value="7" class="volume-16" style="display: none;"> 7 </option> <option value="8" class="volume-16" style="display: none;"> 8 </option> <option value="9" class="volume-16" style="display: none;"> 9 </option> <option value="10" class="volume-16" style="display: none;"> 10 </option> <option value="11" class="volume-16" style="display: none;"> 11 </option> <option value="12" class="volume-16" style="display: none;"> 12 </option> <option value="13" class="volume-16" style="display: none;"> 13 </option> <option value="14" class="volume-16" style="display: none;"> 14 </option> <option value="15" class="volume-16" style="display: none;"> 15 </option> <option value="16" class="volume-16" style="display: none;"> 16 </option> <option value="17" class="volume-16" style="display: none;"> 17 </option> <option value="18" class="volume-16" style="display: none;"> 18 </option> <option value="19" class="volume-16" style="display: none;"> 19 </option> <option value="20" class="volume-16" style="display: none;"> 20 </option> <option value="21" class="volume-16" style="display: none;"> 21 </option> <option value="22" class="volume-16" style="display: none;"> 22 </option> <option value="23" class="volume-16" style="display: none;"> 23 </option> <option value="1" class="volume-15" style="display: none;"> 1 </option> <option value="2" class="volume-15" style="display: none;"> 2 </option> <option value="3" class="volume-15" style="display: none;"> 3 </option> <option value="4" class="volume-15" style="display: none;"> 4 </option> <option value="5" class="volume-15" style="display: none;"> 5 </option> <option value="6" class="volume-15" style="display: none;"> 6 </option> <option value="7" class="volume-15" style="display: none;"> 7 </option> <option value="8" class="volume-15" style="display: none;"> 8 </option> <option value="9" class="volume-15" style="display: none;"> 9 </option> <option value="10" class="volume-15" style="display: none;"> 10 </option> <option value="11" class="volume-15" style="display: none;"> 11 </option> <option value="12" class="volume-15" style="display: none;"> 12 </option> <option value="13" class="volume-15" style="display: none;"> 13 </option> <option value="14" class="volume-15" style="display: none;"> 14 </option> <option value="15" class="volume-15" style="display: none;"> 15 </option> <option value="16" class="volume-15" style="display: none;"> 16 </option> <option value="17" class="volume-15" style="display: none;"> 17 </option> <option value="18" class="volume-15" style="display: none;"> 18 </option> <option value="19" class="volume-15" style="display: none;"> 19 </option> <option value="20" class="volume-15" style="display: none;"> 20 </option> <option value="21" class="volume-15" style="display: none;"> 21 </option> <option value="22" class="volume-15" style="display: none;"> 22 </option> <option value="23" class="volume-15" style="display: none;"> 23 </option> <option value="24" class="volume-15" style="display: none;"> 24 </option> <option value="1" class="volume-14" style="display: none;"> 1 </option> <option value="2" class="volume-14" style="display: none;"> 2 </option> <option value="3" class="volume-14" style="display: none;"> 3 </option> <option value="4" class="volume-14" style="display: none;"> 4 </option> <option value="5" class="volume-14" style="display: none;"> 5 </option> <option value="6" class="volume-14" style="display: none;"> 6 </option> <option value="7" class="volume-14" style="display: none;"> 7 </option> <option value="8" class="volume-14" style="display: none;"> 8 </option> <option value="9" class="volume-14" style="display: none;"> 9 </option> <option value="10" class="volume-14" style="display: none;"> 10 </option> <option value="11" class="volume-14" style="display: none;"> 11 </option> <option value="12" class="volume-14" style="display: none;"> 12 </option> <option value="13" class="volume-14" style="display: none;"> 13 </option> <option value="14" class="volume-14" style="display: none;"> 14 </option> <option value="15" class="volume-14" style="display: none;"> 15 </option> <option value="16" class="volume-14" style="display: none;"> 16 </option> <option value="17" class="volume-14" style="display: none;"> 17 </option> <option value="18" class="volume-14" style="display: none;"> 18 </option> <option value="19" class="volume-14" style="display: none;"> 19 </option> <option value="20" class="volume-14" style="display: none;"> 20 </option> <option value="21" class="volume-14" style="display: none;"> 21 </option> <option value="22" class="volume-14" style="display: none;"> 22 </option> <option value="23" class="volume-14" style="display: none;"> 23 </option> <option value="24" class="volume-14" style="display: none;"> 24 </option> <option value="1" class="volume-13" style="display: none;"> 1 </option> <option value="2" class="volume-13" style="display: none;"> 2 </option> <option value="3" class="volume-13" style="display: none;"> 3 </option> <option value="4" class="volume-13" style="display: none;"> 4 </option> <option value="5" class="volume-13" style="display: none;"> 5 </option> <option value="6" class="volume-13" style="display: none;"> 6 </option> <option value="7" class="volume-13" style="display: none;"> 7 </option> <option value="8" class="volume-13" style="display: none;"> 8 </option> <option value="9" class="volume-13" style="display: none;"> 9 </option> <option value="10" class="volume-13" style="display: none;"> 10 </option> <option value="11" class="volume-13" style="display: none;"> 11 </option> <option value="12" class="volume-13" style="display: none;"> 12 </option> <option value="13" class="volume-13" style="display: none;"> 13 </option> <option value="14" class="volume-13" style="display: none;"> 14 </option> <option value="15" class="volume-13" style="display: none;"> 15 </option> <option value="16" class="volume-13" style="display: none;"> 16 </option> <option value="17" class="volume-13" style="display: none;"> 17 </option> <option value="18" class="volume-13" style="display: none;"> 18 </option> <option value="19" class="volume-13" style="display: none;"> 19 </option> <option value="20" class="volume-13" style="display: none;"> 20 </option> <option value="21" class="volume-13" style="display: none;"> 21 </option> <option value="22" class="volume-13" style="display: none;"> 22 </option> <option value="23" class="volume-13" style="display: none;"> 23 </option> <option value="24" class="volume-13" style="display: none;"> 24 </option> <option value="1" class="volume-12" style="display: none;"> 1 </option> <option value="2" class="volume-12" style="display: none;"> 2 </option> <option value="3" class="volume-12" style="display: none;"> 3 </option> <option value="4" class="volume-12" style="display: none;"> 4 </option> <option value="5" class="volume-12" style="display: none;"> 5 </option> <option value="6" class="volume-12" style="display: none;"> 6 </option> <option value="7" class="volume-12" style="display: none;"> 7 </option> <option value="8" class="volume-12" style="display: none;"> 8 </option> <option value="9" class="volume-12" style="display: none;"> 9 </option> <option value="10" class="volume-12" style="display: none;"> 10 </option> <option value="11" class="volume-12" style="display: none;"> 11 </option> <option value="12" class="volume-12" style="display: none;"> 12 </option> <option value="1" class="volume-11" style="display: none;"> 1 </option> <option value="2" class="volume-11" style="display: none;"> 2 </option> <option value="3" class="volume-11" style="display: none;"> 3 </option> <option value="4" class="volume-11" style="display: none;"> 4 </option> <option value="5" class="volume-11" style="display: none;"> 5 </option> <option value="6" class="volume-11" style="display: none;"> 6 </option> <option value="7" class="volume-11" style="display: none;"> 7 </option> <option value="8" class="volume-11" style="display: none;"> 8 </option> <option value="9" class="volume-11" style="display: none;"> 9 </option> <option value="10" class="volume-11" style="display: none;"> 10 </option> <option value="11" class="volume-11" style="display: none;"> 11 </option> <option value="12" class="volume-11" style="display: none;"> 12 </option> <option value="1" class="volume-10" style="display: none;"> 1 </option> <option value="2" class="volume-10" style="display: none;"> 2 </option> <option value="3" class="volume-10" style="display: none;"> 3 </option> <option value="4" class="volume-10" style="display: none;"> 4 </option> <option value="5" class="volume-10" style="display: none;"> 5 </option> <option value="6" class="volume-10" style="display: none;"> 6 </option> <option value="7" class="volume-10" style="display: none;"> 7 </option> <option value="8" class="volume-10" style="display: none;"> 8 </option> <option value="9" class="volume-10" style="display: none;"> 9 </option> <option value="10" class="volume-10" style="display: none;"> 10 </option> <option value="11" class="volume-10" style="display: none;"> 11 </option> <option value="12" class="volume-10" style="display: none;"> 12 </option> <option value="1" class="volume-9" style="display: none;"> 1 </option> <option value="2" class="volume-9" style="display: none;"> 2 </option> <option value="3" class="volume-9" style="display: none;"> 3 </option> <option value="4" class="volume-9" style="display: none;"> 4 </option> <option value="5" class="volume-9" style="display: none;"> 5 </option> <option value="6" class="volume-9" style="display: none;"> 6 </option> <option value="7" class="volume-9" style="display: none;"> 7 </option> <option value="8" class="volume-9" style="display: none;"> 8 </option> <option value="9" class="volume-9" style="display: none;"> 9 </option> <option value="10" class="volume-9" style="display: none;"> 10 </option> <option value="11" class="volume-9" style="display: none;"> 11 </option> <option value="12" class="volume-9" style="display: none;"> 12 </option> <option value="1" class="volume-8" style="display: none;"> 1 </option> <option value="2" class="volume-8" style="display: none;"> 2 </option> <option value="3" class="volume-8" style="display: none;"> 3 </option> <option value="4" class="volume-8" style="display: none;"> 4 </option> <option value="5" class="volume-8" style="display: none;"> 5 </option> <option value="6" class="volume-8" style="display: none;"> 6 </option> <option value="7" class="volume-8" style="display: none;"> 7 </option> <option value="8" class="volume-8" style="display: none;"> 8 </option> <option value="9" class="volume-8" style="display: none;"> 9 </option> <option value="10" class="volume-8" style="display: none;"> 10 </option> <option value="11" class="volume-8" style="display: none;"> 11 </option> <option value="12" class="volume-8" style="display: none;"> 12 </option> <option value="1" class="volume-7" style="display: none;"> 1 </option> <option value="2" class="volume-7" style="display: none;"> 2 </option> <option value="3" class="volume-7" style="display: none;"> 3 </option> <option value="4" class="volume-7" style="display: none;"> 4 </option> <option value="5" class="volume-7" style="display: none;"> 5 </option> <option value="6" class="volume-7" style="display: none;"> 6 </option> <option value="7" class="volume-7" style="display: none;"> 7 </option> <option value="8" class="volume-7" style="display: none;"> 8 </option> <option value="9" class="volume-7" style="display: none;"> 9 </option> <option value="10" class="volume-7" style="display: none;"> 10 </option> <option value="11" class="volume-7" style="display: none;"> 11 </option> <option value="12" class="volume-7" style="display: none;"> 12 </option> <option value="1" class="volume-6" style="display: none;"> 1 </option> <option value="2" class="volume-6" style="display: none;"> 2 </option> <option value="3" class="volume-6" style="display: none;"> 3 </option> <option value="4" class="volume-6" style="display: none;"> 4 </option> <option value="5" class="volume-6" style="display: none;"> 5 </option> <option value="6" class="volume-6" style="display: none;"> 6 </option> <option value="7" class="volume-6" style="display: none;"> 7 </option> <option value="8" class="volume-6" style="display: none;"> 8 </option> <option value="9" class="volume-6" style="display: none;"> 9 </option> <option value="10" class="volume-6" style="display: none;"> 10 </option> <option value="11" class="volume-6" style="display: none;"> 11 </option> <option value="12" class="volume-6" style="display: none;"> 12 </option> <option value="1" class="volume-5" style="display: none;"> 1 </option> <option value="2" class="volume-5" style="display: none;"> 2 </option> <option value="3" class="volume-5" style="display: none;"> 3 </option> <option value="4" class="volume-5" style="display: none;"> 4 </option> <option value="1" class="volume-4" style="display: none;"> 1 </option> <option value="2" class="volume-4" style="display: none;"> 2 </option> <option value="3" class="volume-4" style="display: none;"> 3 </option> <option value="4" class="volume-4" style="display: none;"> 4 </option> <option value="1" class="volume-3" style="display: none;"> 1 </option> <option value="2" class="volume-3" style="display: none;"> 2 </option> <option value="3" class="volume-3" style="display: none;"> 3 </option> <option value="4" class="volume-3" style="display: none;"> 4 </option> <option value="1" class="volume-2" style="display: none;"> 1 </option> <option value="2" class="volume-2" style="display: none;"> 2 </option> <option value="3" class="volume-2" style="display: none;"> 3 </option> <option value="4" class="volume-2" style="display: none;"> 4 </option> <option value="1" class="volume-1" style="display: none;"> 1 </option> </select> </div> <input type="hidden" name="_token" value="LS6-nOqQdoO6-t2y4YHtGGHifpKnC6L8XVD9FefGXLs"> <input type="hidden" id="journal-browser-namesystem" name="namesystem" value="polymers"> <input type="hidden" name="getIssueByVI" value="1"> <input type="submit" id="journal-browser-go" value="Go" style="" class="button button--grey button--full-width UI_JournalBrowser_GoButton"> </form> <div style="clear:both;"></div> </div> <div class="generic-item last-item first-item no-border"> <ul class="side-menu-ul"> <li class="side-menu-li side-menu-li__padded"> <a href="/2073-4360/16/23"> <i class="material-icons arrow" style="display: inline-block"> arrow_forward_ios </i> <strong>Forthcoming issue</strong> </a> <br/> <a href="/2073-4360/16/22"> <i class="material-icons arrow" style="display: inline-block"> arrow_forward_ios </i> <strong>Current issue</strong> </a> </li> <div class="show-for-medium-up"> <div class=""> <div class="journal-browser-volumes "> <li class="side-menu-li"> <a href="/2073-4360/16"> Vol.&nbsp;16&nbsp;(2024) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/15"> Vol.&nbsp;15&nbsp;(2023) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/14"> Vol.&nbsp;14&nbsp;(2022) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/13"> Vol.&nbsp;13&nbsp;(2021) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/12"> Vol.&nbsp;12&nbsp;(2020) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/11"> Vol.&nbsp;11&nbsp;(2019) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/10"> Vol.&nbsp;10&nbsp;(2018) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/9"> Vol.&nbsp;9&nbsp;(2017) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/8"> Vol.&nbsp;8&nbsp;(2016) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/7"> Vol.&nbsp;7&nbsp;(2015) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/6"> Vol.&nbsp;6&nbsp;(2014) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/5"> Vol.&nbsp;5&nbsp;(2013) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/4"> Vol.&nbsp;4&nbsp;(2012) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/3"> Vol.&nbsp;3&nbsp;(2011) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/2"> Vol.&nbsp;2&nbsp;(2010) </a> </li> <li class="side-menu-li"> <a href="/2073-4360/1"> Vol.&nbsp;1&nbsp;(2009) </a> </li> </div> </div> </div> </ul> </div> </div> </div> </div> <div class="show-for-medium-up"> <div class="content__container banner-container" style="padding:0px;"> <div> <div class="generic-item1"> <div id="bestAwardPaperAD" style="padding: 0px; width: 100%;"> <div id="banner1" class="adserver-banner" data-zone="4" data-repeat-interval="10" style="width: 100%; padding:0px;margin:0px;"></div> </div> </div> </div> </div> </div> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main ul-spaced"> <div class="content__container content__container--overflow-initial"> <h1> Polymers in Tissue Engineering (Closed) </h1> <div class=" small-12 columns"> <span class="qlst"> <ul> <li><a href="#editors"> Collection Editors </a></li> <li><a href="#info"> Collection Information </a></li> <li><a href="#related">Related Special Issues</a></li> <li><a href="#published">Published Papers</a></li> </ul> </span> <p>A topical collection in <a href="/journal/polymers"><i>Polymers</i></a> (ISSN 2073-4360). This collection belongs to the section "<a href="/journal/polymers/sections/Polymer_Applications">Polymer Applications</a>".<span data-section-id="806"></span></p> Viewed by 30711 </div> <div style="clear: both;"></div> <div class="sharingLinks"> <h2>Share This Topical Collection</h2> <div class="social-media-links" style="text-align: left;"><a href="/cdn-cgi/l/email-protection#675841060a175c1412050d0204135a2115080a4255572a23372e42542642555742555537080b1e0a0215144255570e09425557330e141412024255572209000e090202150e090041161208135c41060a175c0508031e5a341702040e060b4255572e14141202425557330e130b0242542642555737080b1e0a0215144255570e09425557330e141412024255572209000e090202150e0900425726425726300205140e13024254264255570f13131714425426425521425521101010490a03170e4904080a425521140e425521525e5f525f425726425726201202141342555722030e13081542542642572642572629060a02425426425557231549425557371506140f0609130f425557261412150e4257262601010e0b0e06130e08094254264255572302170615130a0209134255570801425557250e080209000e090202150e090042552442555734040f08080b42555708014255572209000e090202150e09004255244255573406091306425557240b06150642555732090e110215140e131e425524425557525757425557220b42555724060a0e09084255573502060b4255244255573406091306425557240b06150642552442555724264255575e52575254425524425557323426425726425726" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Polymers+in+Tissue+Engineering&amp;hashtags=mdpipolymers&amp;url=https%3A%2F%2Fwww.mdpi.com%2Fsi%2F59858&amp;via=Polymers_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2Fsi%2F59858&amp;title=Polymers%20in%20Tissue%20Engineering%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DDear%20Colleagues%2C%0D%0ABiomaterials%20are%20a%20cornerstone%20of%20tissue%20engineering%20and%20are%20designed%20to%20provide%20an%20architectural%20framework%20that%20mimics%20the%20native%20extracellular%20matrix%20to%20support%20cell%20growth%20and%20maturation%20and%20the%20formation%20of%20functional%20tissues.%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/si/59858" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> </div> </div> <h2><a name="editors"></a> Editor</h2> <div class="no-margin"> <div class="generic-item editor-div" data-filter="prashanth asuri biomaterials engineering; hydrogel nanocomposites; in vitro cell culture platforms; protein structure and function"> <div class="editor-div__content smaller-pictures"> <div class='profile-card-drop' data-dropdown='profile-card-drop87087' data-options='is_hover:true, hover_timeout:5000'> <div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/data/editors/editor_87087.png" style= "width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name"> Dr. Prashanth Asuri </span></div></div> </div> <div id="profile-card-drop87087" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"> <div class="profile-card__title "> <div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/data/editors/editor_87087.png" style= "width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name"> Dr. Prashanth Asuri </span></div></div> </div> <div class="profile-card__buttons" style="margin-bottom: 10px;"> <a href="https://sciprofiles.com/profile/416151?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a> <a href="https://scilit.net/scholars?q=Prashanth%20Asuri" class="button button--color-inversed" target="_blank"> Scilit </a> <a href="https://www.preprints.org/search?search1=Prashanth%20Asuri&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a> <a href="https://scholar.google.com/scholar?q=Prashanth%20Asuri" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a> </div> </div> <br class="show-for-small-only" /> <a class="inline-spacer toEncode emailCaptcha" href="" data-editor-id="87087">E-Mail</a> <a class="inline-spacer" href="https://www.scu.edu/engineering/faculty/asuri-prashanth/" target="_blank" rel="noopener noreferrer">Website</a> <br/> <i>Collection Editor</i><br> </div> <div style="clear: both;"></div> <div class="editor-div__content smaller-pictures"> Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA<br> <b>Interests:</b> biomaterials engineering; hydrogel nanocomposites; in vitro cell culture platforms; protein structure and function<br> <a href="#" id="editor_contrib_87087" onclick="div_toggle(this.id); return false;">Special Issues, Collections and Topics in MDPI journals</a> <div id="div_editor_contrib_87087" style="display: none"> Special Issue in <a href="/journal/polymers/special_issues/synthesis_characterization_biomedical_applications_hydrogels"> <i>Polymers</i>: Synthesis, Characterization and Biomedical Applications of Hydrogels</a><br> </div> </div> </div> </div> <h2><a name="info"></a>Topical Collection Information</h2> <div> <p>Dear Colleagues,</p> <p>Biomaterials are a cornerstone of tissue engineering and are designed to provide an architectural framework that mimics the native extracellular matrix to support cell growth and maturation and the formation of functional tissues. The use of polymer-based biomaterials (natural, synthetic or composite) in tissue engineering has increased substantially in the past couple of decades. This growth has partly been supported by the convergence of seemingly unrelated technologies (including surface modification, high-throughput screening, micro- and nanocomposites, additive manufacturing, etc.) that has enabled the development of sophisticated, integrated approaches and toolsets to address complex challenges in tissue engineering. Applications of polymers are no longer limited to the design and development of physical templates; rather, polymeric scaffolds are now being designed to also provide biochemical and biophysical cues to facilitate and modulate cell proliferation, differentiation, and maturation into functional tissues. These advances, alongside the progress made to improve their applicability as drug delivery vehicles, implant materials, and 3D printed constructs, set the stage for polymer-based biomaterials to significantly impact tissue engineering in the years to come.&nbsp;&nbsp;&nbsp;&nbsp;</p> <p>This collection aims to be an interdisciplinary forum for researchers to share developments in the synthesis, engineering, and characterization of polymers for applications in tissue engineering. Original research articles and reviews are welcome, as are commentaries and perspectives on the future trends and challenges in this field.</p> <p>Dr. Prashanth Asuri<br /><em>Collection Editor</em></p> <p><p><strong>Manuscript Submission Information</strong><p> <p>Manuscripts should be submitted online at <a href="https://www.mdpi.com/">www.mdpi.com</a> by <a href="https://www.mdpi.com/user/register/">registering</a> and <a href="https://www.mdpi.com/user/login/">logging in to this website</a>. Once you are registered, <a href="https://susy.mdpi.com/user/manuscripts/upload/?journal=polymers">click here to go to the submission form</a>. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.</p> <p>Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the <a href="https://www.mdpi.com/journal/polymers/instructions">Instructions for Authors</a> page. <a href="https://www.mdpi.com/journal/polymers/"><em>Polymers</em></a> is an international peer-reviewed open access semimonthly journal published by MDPI.</p> <p> Please visit the <a href="https://www.mdpi.com/journal/polymers/instructions">Instructions for Authors</a> page before submitting a manuscript. The <a href="https://www.mdpi.com/about/apc/">Article Processing Charge (APC)</a> for publication in this <a href="https://www.mdpi.com/about/openaccess/">open access</a> journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's <a href="https://www.mdpi.com/authors/english">English editing service</a> prior to publication or during author revisions. </p></p> </div> <h2><a name="related"></a>Related Special Issues</h2> <div> <ul> <li><a href="/journal/polymers/special_issues/synthesis_characterization_biomedical_applications_hydrogels">Synthesis, Characterization and Biomedical Applications of Hydrogels</a> in <em><a href="/journal/polymers">Polymers</a></em> (5 articles - displayed below)</li> <li><a href="/journal/polymers/special_issues/biopolymers_tissue_engineering">Biopolymers for Tissue Engineering</a> in <em><a href="/journal/polymers">Polymers</a></em> (13 articles - displayed below)</li> <li><a href="/journal/polymers/special_issues/cell_engineering">Polymers for Cell Engineering</a> in <em><a href="/journal/polymers">Polymers</a></em> (2 articles - displayed below)</li> <li><a href="/journal/polymers/special_issues/polymers_biomedical_engineering">Polymers in Biomedical Engineering</a> in <em><a href="/journal/polymers">Polymers</a></em> (9 articles - displayed below)</li> <li><a href="/journal/polymers/special_issues/Polymeric_Tissue_Engineering">Advanced Polymeric Biomaterials for Tissue Engineering</a> in <em><a href="/journal/polymers">Polymers</a></em> (9 articles - displayed below)</li> </ul> </div> <div> <div> <h2><a name="published"></a>Published Papers (46 papers) </h2> </div> <div class="download_si" style="text-align: right;"> <a id="js-si-papers-download-access-captcha" href="#" data-target="/download/journal/polymers/special_issues/polymers_tissue_engineering_TC/download" class="accessCaptcha">Download All Papers</a> <div style="display: inline;" class="download_si_separate"></div> </div> </div> <div> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { availableFonts: ["TeX"], preferredFonts: "TeX", webFont:"TeX", imageFont:"TeX", undefinedFamily:"'Arial Unicode MS',serif", scale: 80, linebreaks: { automatic: true, width: "container" } }, "TeX": { extensions: ["noErrors.js"], noErrors: { inlineDelimiters: ["",""], multiLine: true, style: { "font-size": "90%", "text-align": "left", "color": "black", "padding": "1px 3px", "border": "1px solid" } } } }); MathJax.Hub.Register.StartupHook("End",function () { $(".art-abstract").css("display", "block"); }); </script> <script type="text/javascript" src="https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <div class="generic-item type-section" id=2023> <h2>2023</h2> <h3>Jump to: <a href="#2022">2022</a>, <a href="#2021">2021</a>, <a href="#2020">2020</a>, <a href="#2019">2019</a> </h3> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 35 pages, 5683 KiB &nbsp; </span> <a href="/2073-4360/15/10/2341/pdf?version=1684917961" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/15/10/2341">Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Mohammad Hakim Khalili</strong>, </span><span class="inlineblock "><strong>Rujing Zhang</strong>, </span><span class="inlineblock "><strong>Sandra Wilson</strong>, </span><span class="inlineblock "><strong>Saurav Goel</strong>, </span><span class="inlineblock "><strong>Susan A. Impey</strong> and </span><span class="inlineblock "><strong>Adrianus Indrat Aria</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2023</b>, <em>15</em>(10), 2341; <a href="https://doi.org/10.3390/polym15102341">https://doi.org/10.3390/polym15102341</a> - 17 May 2023 </div> <a href="/2073-4360/15/10/2341#metrics">Cited by 20</a> |&nbsp;Viewed by 8974 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/15/10/2341/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices. <a href="/2073-4360/15/10/2341">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/15/10/2341/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1149355"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1149355"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1149355" data-cycle-prev="#prev1149355" data-cycle-progressive="#images1149355" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1149355-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-ag-550.jpg?1684918071" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images1149355" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g001-550.jpg?1684918045'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g002-550.jpg?1684918052'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g003-550.jpg?1684918048'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g004-550.jpg?1684918053'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g005-550.jpg?1684918065'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g006-550.jpg?1684918057'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g007-550.jpg?1684918050'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g008-550.jpg?1684918070'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g009-550.jpg?1684918060'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g010-550.jpg?1684918062'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-1149355-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g011-550.jpg?1684918067'><p>Figure 11</p></div></script></div></div><div id="article-1149355-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-ag-550.jpg?1684918071" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g001-550.jpg?1684918045" title=" <strong>Figure 1</strong><br/> &lt;p&gt;An overview of use of PEG-based hydrogels in biomedical and biological applications.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g002-550.jpg?1684918052" title=" <strong>Figure 2</strong><br/> &lt;p&gt;A schematic showcases PEGDA hydrogel in the field of tissue engineering, covering material cross-linking, fabrication techniques, physicomechanical characteristics, and clinical applications.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g003-550.jpg?1684918048" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) The 3D printing of hydrogels for various biomedical applications [&lt;a href=&quot;#B108-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;108&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B108-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;108&lt;/a&gt;]. Copyright 2022 Elsevier. Schematic of 4 different 3D printing techniques used for 3D PEGDA hydrogel fabrication, (&lt;b&gt;b&lt;/b&gt;) extrusion [&lt;a href=&quot;#B109-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;109&lt;/a&gt;], (&lt;b&gt;c&lt;/b&gt;) inkjet [&lt;a href=&quot;#B109-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;109&lt;/a&gt;], (&lt;b&gt;d&lt;/b&gt;) microfluidic-based 3D printing [&lt;a href=&quot;#B98-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;98&lt;/a&gt;], (&lt;b&gt;e&lt;/b&gt;) SLA/DLP [&lt;a href=&quot;#B109-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;109&lt;/a&gt;]. (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;) Reproduced with permission from ref. [&lt;a href=&quot;#B109-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;109&lt;/a&gt;]. Copyright 2019 Wiley. (&lt;b&gt;d&lt;/b&gt;) Reproduced with permission from ref. [&lt;a href=&quot;#B98-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;98&lt;/a&gt;]. Copyright 2018 Wiley.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g004-550.jpg?1684918053" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) A schematic illustrating the production of free radicals from a photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), and the resulting cross-linking of PEGDA monomers by these free radicals. (&lt;b&gt;b&lt;/b&gt;) A diagram depicting a typical photo-cross-linking process [&lt;a href=&quot;#B119-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;119&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B119-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;119&lt;/a&gt;]; Copyright 2018 America Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g005-550.jpg?1684918065" title=" <strong>Figure 5</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Schematic illustration of synthesis of PEGDA hydrogels using a mould technique [&lt;a href=&quot;#B134-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;134&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B134-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;134&lt;/a&gt;]. Copyright 2016 Elsevier. (&lt;b&gt;b&lt;/b&gt;) SEM photographs illustrate a comparison between a Silicon master mould (&lt;b&gt;left&lt;/b&gt;) and cross-linked PEGDA (&lt;b&gt;right&lt;/b&gt;) in replicating low aspect ratio structures with 50 and 100 µm diameter and 50 µm height. [&lt;a href=&quot;#B121-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;121&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B121-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;121&lt;/a&gt;]. Copyright 2012 Royal Society of Chemistry. (&lt;b&gt;c&lt;/b&gt;) Schematic of the typical 3D printing techniques using a layer-by-layer printing [&lt;a href=&quot;#B135-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;135&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B135-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;135&lt;/a&gt;]. Copyright 2020 Elsevier. (&lt;b&gt;d&lt;/b&gt;) Optical microscopy image of grid shaped PEGDA hydrogel fabricated using 3D printing technique. (&lt;b&gt;e&lt;/b&gt;) Advantages and disadvantages of bulk and 3D fabrication processes.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g006-550.jpg?1684918057" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Swelling behavior of PEGDA hydrogels at different scale and shape complexity. (&lt;b&gt;a&lt;/b&gt;) Side view of swelling of bulk polymerized PEGDA hydrogel in at 37 °C for first 24 h [&lt;a href=&quot;#B162-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;162&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B162-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;162&lt;/a&gt;]. Copyright 2017 American Chemical Society. (&lt;b&gt;b&lt;/b&gt;) Images of a complex brushite/PEGDA hydrogel biocomposite implant that can be implanted into a bone defect and fixed through swelling. The biocomposite is initially placed freely in the dry state (&lt;b&gt;top&lt;/b&gt;), but swells and tightly fills the defect within 30 min by absorbing a red-colored aqueous solution containing an azo dye (&lt;b&gt;bottom&lt;/b&gt;) [&lt;a href=&quot;#B163-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;163&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B163-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;163&lt;/a&gt;]. Copyright 2020 Elsevier. (&lt;b&gt;c&lt;/b&gt;) The 3D-printed samples stored in water for 48 h, showing an increase in inner channel and overall structural dimensions [&lt;a href=&quot;#B164-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;164&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B164-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;164&lt;/a&gt;]. Copyright 2021 Springer Nature.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g007-550.jpg?1684918050" title=" <strong>Figure 7</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Schematic of tensile and compression. Blue arrows illustrate the direction of force [&lt;a href=&quot;#B181-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;181&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B181-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;181&lt;/a&gt;]. Copyright 2017 Elsevier. (&lt;b&gt;b&lt;/b&gt;) Image of PEGDA hydrogel under tensile tension [&lt;a href=&quot;#B116-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;116&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B116-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;116&lt;/a&gt;]. Copyright 2022 De Gruyter. (&lt;b&gt;c&lt;/b&gt;) Image of 3D PEGDA hydrogel under compression. (&lt;b&gt;d&lt;/b&gt;) Compressive moduli of hydrogels with varying PEGDA concentrations. n = 5, * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05. Error bars represent standard deviation [&lt;a href=&quot;#B145-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;145&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B145-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;145&lt;/a&gt;]. Copyright 2018 IOP Publishing. (&lt;b&gt;e&lt;/b&gt;) Mechanical properties of laser-polymerized PEGDA hydrogels were measured for 20% PEGDA hydrogels as a function of molecular weight (0.7, 3.4, 5, and 10 kDa) [&lt;a href=&quot;#B100-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;100&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B100-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;100&lt;/a&gt;]. Copyright 2010 Royal Society of Chemistry.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g008-550.jpg?1684918070" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Localized mechanical properties of PEGDA hydrogels measured using AFM and nanoindentation techniques. (&lt;b&gt;a&lt;/b&gt;) Elastic modulus map of bulk hydrogels showing variations between 18–32 kPa [&lt;a href=&quot;#B193-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;193&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B193-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;193&lt;/a&gt;]. Copyright 2011 Elsevier. (&lt;b&gt;b&lt;/b&gt;) Young’s modulus of a hydrogel with change in PEGDA concentration between 20 to 50 &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;% measured using AFM [&lt;a href=&quot;#B195-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;195&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B195-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;195&lt;/a&gt;]. Copyright 2022 Elsevier. (&lt;b&gt;c&lt;/b&gt;) AFM topographic image of 3D hydrogels produced using DLW using PeakForce QNM mode showing elastic modulus ranging between 6 to 12 MPa in dry state [&lt;a href=&quot;#B196-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;196&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B196-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;196&lt;/a&gt;]. Copyright 2021 Elsevier. (&lt;b&gt;d&lt;/b&gt;) The influence of light intensity on the mechanical properties of hydrogel is examined by AFM, showing an overall positive trend [&lt;a href=&quot;#B195-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;195&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B195-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;195&lt;/a&gt;]. Copyright 2022 Elsevier. (&lt;b&gt;e&lt;/b&gt;) Plots of nanoindentation for 3D printed hydrogel using inkjet printing showing the difference in nanomechanical properties at top and bottom of the hydrogel after postcuring process. The results show that unidirectional postcuring results in heterogeneity in elastic modulus across the sample [&lt;a href=&quot;#B86-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;86&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B86-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;86&lt;/a&gt;]. Copyright 2016 Wiley. (&lt;b&gt;f&lt;/b&gt;) Multilayer hydrogels produced by DLP printer with irradiance intensity (I0), and layer thickness (Z) parameters used to control cure depth (Cd). AFM used for mapping elastic modulus cross-sectioned of hydrogels showing how incorporating a light absorber, can result in exponential decay in light intensity with penetration depth, resulting in a limited thickness of resin that undergoes gelation [&lt;a href=&quot;#B197-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;197&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B197-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;197&lt;/a&gt;]. Copyright 2021 Wiley.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g009-550.jpg?1684918060" title=" <strong>Figure 9</strong><br/> &lt;p&gt;State-of-the-art MTS formation based on the quantification of the deflection of a pair of vertical cantilever PDMS beams (posts) for functional read-out assays. (&lt;b&gt;a&lt;/b&gt;) Schematic of contractile force measurement for STM that is grown in vitro between flexible cantilevers (posts) serving as tendons. Force is quantified by tracking post displacements in response to stimulation and knowing platform mechanics [&lt;a href=&quot;#B213-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;213&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B213-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;213&lt;/a&gt;]. Copyright 2022 eLife. (&lt;b&gt;b&lt;/b&gt;) Molding process was employed to make caps for the posts, using primary mouse myoblasts, tissue strips were created encased in either a collagen/matrigel or fibrin scaffold [&lt;a href=&quot;#B218-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;218&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B218-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;218&lt;/a&gt;]. Copyright 2008 Wiley. (&lt;b&gt;c&lt;/b&gt;) Skeletal muscle bundle of rats myoblasts embedded with matrigel/fibrinogen and collagen I [&lt;a href=&quot;#B219-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;219&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B219-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;219&lt;/a&gt;]. Copyright 2011 Elsevier. (&lt;b&gt;d&lt;/b&gt;) Human engineered cardiac tissues (hECT) created using differentiated human pluripotent stem cells in multi-tissue bioreactor [&lt;a href=&quot;#B220-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;220&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B220-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;220&lt;/a&gt;]. Copyright 2016 JoVE. (&lt;b&gt;e&lt;/b&gt;) Atrial-like engineered heart tissue generated from human induced pluripotent stem cells (hiPSC) [&lt;a href=&quot;#B229-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;229&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B229-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;229&lt;/a&gt;]. Copyright 2016 ICCSR. (&lt;b&gt;f&lt;/b&gt;) Muscle tissue was created by embedding either C2C12 cells or iPSC-derived cardiomyocytes in a fibrin-based scaffold [&lt;a href=&quot;#B230-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;230&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B230-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;230&lt;/a&gt;]. Copyright 2018 Elsevier. (&lt;b&gt;g&lt;/b&gt;) The transformation of the ECM by human myoblasts forming a human muscle micro-tissue held by two posts for a 96-well culture platform [&lt;a href=&quot;#B223-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;223&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B223-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;223&lt;/a&gt;]. Copyright 2020 Nature. (&lt;b&gt;h&lt;/b&gt;) Miniaturized hiPSC-based cardiac tissue formed around micropillars [&lt;a href=&quot;#B224-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;224&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B224-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;224&lt;/a&gt;]. Copyright 2020 IEEE.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g010-550.jpg?1684918062" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Images of 3D printed PEGDA cantilevers using SLA for contractile tissue studies. (&lt;b&gt;a&lt;/b&gt;) Bio-bot 3D printed PEGDA cantilever with cardiac cell sheet seeded on bottom of the cantilever [&lt;a href=&quot;#B231-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;231&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B231-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;231&lt;/a&gt;]. Copyright 2012 Nature. (&lt;b&gt;b&lt;/b&gt;) Multi-material 3D PEGDA cantilever and base with cardiomyocytes seeded on the cantilever. Deflection occurs due to intrinsic stress in the formed tissue [&lt;a href=&quot;#B232-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;232&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B232-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;232&lt;/a&gt;]. Copyright 2012 Nature. (&lt;b&gt;c&lt;/b&gt;) Spinobot from the spinal cord and C2C12 myoblasts with tissue attached to the hydrogel skeleton which causes bending by generating passive tension [&lt;a href=&quot;#B131-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;131&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B131-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;131&lt;/a&gt;]. Copyright 2020 AIP Publishing. (&lt;b&gt;d&lt;/b&gt;) Muscle tissue created by embedding contractile cells of C2C12 hanging on 3D printed PEGDA hydrogels for multi assay platform [&lt;a href=&quot;#B149-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;149&lt;/a&gt;]. Reproduced with permission from ref. [&lt;a href=&quot;#B149-polymers-15-02341&quot; class=&quot;html-bibr&quot;&gt;149&lt;/a&gt;]. Copyright 2019 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-02341/article_deploy/html/images/polymers-15-02341-g011-550.jpg?1684918067" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Roadmap of 3D printing technologies and their role in end of mammal testing and complete 4D organs. Showcasing the identified research gaps in 3D PEGDA hydrogels and ways to bridge the gap towards animal-free contractile tissue studies.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/10/2341'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-1101008" aria-controls="drop-supplementary-1101008" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-1101008" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/15/6/1515/s1?version=1679128608"> Supplementary File 1 (ZIP, 1048 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 3863 KiB &nbsp; </span> <a href="/2073-4360/15/6/1515/pdf?version=1679128607" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Chitosan Grafted with Thermoresponsive Poly(di(ethylene glycol) Methyl Ether Methacrylate) for Cell Culture Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label feature" data-dropdown="drop-article-label-feature" aria-expanded="false">Feature Paper</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/15/6/1515">Chitosan Grafted with Thermoresponsive Poly(di(ethylene glycol) Methyl Ether Methacrylate) for Cell Culture Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Natun Dasgupta</strong>, </span><span class="inlineblock "><strong>Duo Sun</strong>, </span><span class="inlineblock "><strong>Maud Gorbet</strong> and </span><span class="inlineblock "><strong>Mario Gauthier</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2023</b>, <em>15</em>(6), 1515; <a href="https://doi.org/10.3390/polym15061515">https://doi.org/10.3390/polym15061515</a> - 18 Mar 2023 </div> <a href="/2073-4360/15/6/1515#metrics">Cited by 1</a> |&nbsp;Viewed by 1663 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Chitosan is a polysaccharide extracted from animal sources such as crab and shrimp shells. In this work, chitosan films were modified by grafting them with a thermoresponsive polymer, poly(di(ethylene glycol) methyl ether methacrylate) (PMEO<sub>2</sub>MA). The films were modified to introduce functional <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/15/6/1515/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Chitosan is a polysaccharide extracted from animal sources such as crab and shrimp shells. In this work, chitosan films were modified by grafting them with a thermoresponsive polymer, poly(di(ethylene glycol) methyl ether methacrylate) (PMEO<sub>2</sub>MA). The films were modified to introduce functional groups useful as reversible addition&ndash;fragmentation chain transfer (RAFT) agents. PMEO<sub>2</sub>MA chains were then grown from the films via RAFT polymerization, making the chitosan films thermoresponsive. The degree of substitution of the chitosan-based RAFT agent and the amount of monomer added in the grafting reaction were varied to control the length of the grafted PMEO<sub>2</sub>MA chain segments. The chains were cleaved from the film substrates for characterization using <sup>1</sup>H NMR and a gel permeation chromatography analysis. Temperature-dependent contact angle measurements were used to demonstrate that the hydrophilic&ndash;hydrophobic nature of the film surface varied with temperature. Due to the enhanced hydrophobic character of PMEO<sub>2</sub>MA above its lower critical solution temperature (LCST), the ability of PMEO<sub>2</sub>MA-grafted chitosan films to serve as a substrate for cell growth at 37 &deg;C (incubation temperature) was tested. Interactions with cells (fibroblasts, macrophages, and corneal epithelial cells) were assessed. The modified chitosan films supported cell viability and proliferation. As the temperature is lowered to 4 &deg;C (refrigeration temperature, below the LCST), the grafted chitosan films become less hydrophobic, and cell adhesion should decrease, facilitating their removal from the surface. Our results indicated that the cells were detached from the films following a short incubation period at 4 &deg;C, were viable, and retained their ability to proliferate. <a href="/2073-4360/15/6/1515">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/15/6/1515/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1101008"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1101008"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1101008" data-cycle-prev="#prev1101008" data-cycle-progressive="#images1101008" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1101008-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g001-550.jpg?1679128686" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1101008" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g002-550.jpg?1679128677'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g003-550.jpg?1679128676'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g004-550.jpg?1679128688'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g005-550.jpg?1679128679'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g006-550.jpg?1679128682'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g007-550.jpg?1679128680'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g008-550.jpg?1679128684'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1101008-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-sch001-550.jpg?1679128685'><p>Scheme 1</p></div></script></div></div><div id="article-1101008-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g001-550.jpg?1679128686" title=" <strong>Figure 1</strong><br/> &lt;p&gt;ATR–FTIR spectra for unmodified and modified chitosan samples.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g002-550.jpg?1679128677" title=" <strong>Figure 2</strong><br/> &lt;p&gt;&lt;sup&gt;1&lt;/sup&gt;H NMR spectra for (&lt;b&gt;a&lt;/b&gt;) PMEO&lt;sub&gt;2&lt;/sub&gt;MA and (&lt;b&gt;b&lt;/b&gt;) PMEO&lt;sub&gt;2&lt;/sub&gt;MA chains cleaved from Chito-g-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (15 wt %) in DMSO-d&lt;sub&gt;6&lt;/sub&gt; at 25 °C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g003-550.jpg?1679128676" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Contact angle measurements at t = 0 s for different samples at 22 and 40 °C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g004-550.jpg?1679128688" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Water uptake behavior of selected chitosan films (n = 3).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g005-550.jpg?1679128679" title=" <strong>Figure 5</strong><br/> &lt;p&gt;RAW 264.7 macrophages on TCPS, chitosan, and modified chitosan films. (&lt;b&gt;a&lt;/b&gt;) Proliferation of RAW 264.7 cells on modified and unmodified chitosan films, relative absorbance of XTT in arbitrary units (AU). Mean ± SD, n = 4 or 5. (&lt;b&gt;b&lt;/b&gt;) Proliferation of RAW 264.7 cells on chitosan films relative to the control surface (TCPS), as measured by XTT. Mean ± SD, n = 4 or 5; * indicates statistically significant from chitosan, &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001. Note that statistical significance is not reported for day 7 due to the sorption of XTT into the films. (&lt;b&gt;c&lt;/b&gt;) RAW 264.7 cell viability on chitosan, Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (30 wt %), Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (60 wt %), and TCPS (control). Representative live/dead staining of cells on chitosan films and TCPS 1, 3, and 7 days after seeding. Calcein AM stains live cells green and EthD-1 stains dead cells red.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g006-550.jpg?1679128682" title=" <strong>Figure 6</strong><br/> &lt;p&gt;NIH 3T3 fibroblasts on TCPS, chitosan, and modified chitosan films. (&lt;b&gt;a&lt;/b&gt;) Proliferation of NIH 3T3 cells on modified and unmodified chitosan films, relative absorbance of XTT in arbitrary units (AU). Mean ± SD, n = 4 or 5. (&lt;b&gt;b&lt;/b&gt;) Proliferation of 3T3 fibroblasts on chitosan films relative to control surface (TCPS), as measured by XTT. Mean ± SD, n = 4 or 5; * indicates statistically significant from chitosan, &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.025. Note that statistical significance is not reported for day 7 due to the sorption of XTT into the films. (&lt;b&gt;c&lt;/b&gt;) The 3T3 fibroblasts’ viability on chitosan, Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (30 wt %), Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (60 wt %), and TCPS (control). Representative live/dead staining of cells on chitosan films and TCPS 1, 3, and 7 days after seeding. Calcein AM stains live cells green and EthD-1 stains dead cells red.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g007-550.jpg?1679128680" title=" <strong>Figure 7</strong><br/> &lt;p&gt;HCEC viability on chitosan, Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (30 wt %), Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (60 wt %), and TCPS (control). Representative live/dead staining of HCEC on chitosan films and TCPS 1 and 3 days after seeding. Calcein AM stains live cells green and EthD-1 stains dead cells red.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-g008-550.jpg?1679128684" title=" <strong>Figure 8</strong><br/> &lt;p&gt;The 3T3 Fibroblasts and RAW 264.7 macrophages detached by cooling from chitosan, Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (30 wt %), and Chito-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PMEO&lt;sub&gt;2&lt;/sub&gt;MA (60 wt %) after 3 days of culture and seeded on TCPS after the detachment step. Representative live/dead staining of cells on TCPS after 3 days of culture. Calcein AM stains live cells green and EthD-1 stains dead cells red.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-15-01515/article_deploy/html/images/polymers-15-01515-sch001-550.jpg?1679128685" title=" <strong>Scheme 1</strong><br/> &lt;p&gt;Synthesis of the chitosan-based RAFT agent.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/15/6/1515'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item type-section" id=2022> <h2>2022</h2> <h3>Jump to: <a href="#2023">2023</a>, <a href="#2021">2021</a>, <a href="#2020">2020</a>, <a href="#2019">2019</a> </h3> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 4727 KiB &nbsp; </span> <a href="/2073-4360/14/17/3593/pdf?version=1661937205" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Tribological Evaluation of Silica Nanoparticle Enhanced Bilayer Hydrogels as A Candidate for Cartilage Replacement" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/14/17/3593">Tribological Evaluation of Silica Nanoparticle Enhanced Bilayer Hydrogels as A Candidate for Cartilage Replacement</a> <div class="authors"> by <span class="inlineblock "><strong>Mohammad Mostakhdemin</strong>, </span><span class="inlineblock "><strong>Ashveen Nand</strong> and </span><span class="inlineblock "><strong>Maziar Ramezani</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2022</b>, <em>14</em>(17), 3593; <a href="https://doi.org/10.3390/polym14173593">https://doi.org/10.3390/polym14173593</a> - 31 Aug 2022 </div> <a href="/2073-4360/14/17/3593#metrics">Cited by 4</a> |&nbsp;Viewed by 1820 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Polymeric hydrogels can be used as artificial replacement for lesioned cartilage. However, modulating the hydrogel formulation that mimics articular cartilage tissue with respect to mechanical and tribological properties has remained a challenge. This study encompasses the tribological evaluation of a silica nanoparticle (SNP) <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/14/17/3593/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Polymeric hydrogels can be used as artificial replacement for lesioned cartilage. However, modulating the hydrogel formulation that mimics articular cartilage tissue with respect to mechanical and tribological properties has remained a challenge. This study encompasses the tribological evaluation of a silica nanoparticle (SNP) loaded bilayer nanocomposite hydrogel (NCH), synthesized using acrylamide, acrylic acid, and alginate via modulated free-radical polymerization. Multi-factor pin-on-plate sliding wear experiments were carried out with a steel ball counterface using a linear reciprocating tribometer. Tribological properties of NCHs with 0.6 wt% SNPs showed a significant improvement in the wear resistance of the lubricious layer and a low coefficient of friction (CoF). CoF of both non-reinforced hydrogel (NRH) and NCH at maximum contact pressure ranged from 0.006 to 0.008, which is in the order of the CoF of healthy articular cartilage. Interfacial surface energy was analysed according to Johnson, Kendall, and Robert&rsquo;s theory, and NCHs showed superior mechanical properties and surface energy compared to NRHs. Lubrication regimes&rsquo; models were drawn based on the Stribeck chart parameters, and CoF results were highlighted in the elastoviscous transition regime. <a href="/2073-4360/14/17/3593">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/14/17/3593/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev902650"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next902650"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next902650" data-cycle-prev="#prev902650" data-cycle-progressive="#images902650" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-902650-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g001-550.jpg?1661937305" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images902650" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g002-550.jpg?1661937307'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g003-550.jpg?1661937303'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g004-550.jpg?1661937307'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g005-550.jpg?1661937294'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g006-550.jpg?1661937296'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g007-550.jpg?1661937302'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g008-550.jpg?1661937305'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g009-550.jpg?1661937300'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-902650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g010-550.jpg?1661937293'><p>Figure 10</p></div></script></div></div><div id="article-902650-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g001-550.jpg?1661937305" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Utilized materials and IPNs structure of the NRH and NCHs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g002-550.jpg?1661937307" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Stylus profilometer to measure the wear scars.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g003-550.jpg?1661937303" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Mean values of the coefficient of friction for NRHs and NCHs samples in lubricated condition versus (set 1) applied load (Vc = 80 mm/s), and (set 2) sliding speed (Fc = 0.7 N), (n = 3 ± SD). * ANOVA and post-hoc Tukey tests (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05) were conducted for statistical significance analyses.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g004-550.jpg?1661937307" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Mean values of the coefficient of friction for NRHs and NCHs samples in dry condition versus (set 1) applied load (Vc = 80 mm/s), and (set 2) sliding speed (Fc = 0.7 N) in dry condition, (n= 3 ± SD).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g005-550.jpg?1661937294" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Load-displacement graphs for NRHs and 0.6 wt% loaded NCHs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g006-550.jpg?1661937296" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Variations of CoF versus time for 1000 m sliding wear tests at 0.5 N, 0.7 N, and 0.9 N; in (&lt;b&gt;a&lt;/b&gt;) NRHs and (&lt;b&gt;b&lt;/b&gt;) NCHs. SEM images of the superficial layer in (&lt;b&gt;c&lt;/b&gt;) NRHs and (&lt;b&gt;d&lt;/b&gt;) NCHs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g007-550.jpg?1661937302" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Wear scar depth and width for different applied normal loads under a constant sliding speed of 80 mm/s for (&lt;b&gt;a&lt;/b&gt;) NRHs, (&lt;b&gt;b&lt;/b&gt;) NCHs samples; and at different sliding speeds under a constant load of 0.7 N for (&lt;b&gt;c&lt;/b&gt;) NRHs, (&lt;b&gt;d&lt;/b&gt;) NCHs samples.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g008-550.jpg?1661937305" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Wear volume of NRHs and NCHs samples at different (&lt;b&gt;a&lt;/b&gt;) loads and (&lt;b&gt;b&lt;/b&gt;) sliding speeds (n = 3 ± SD). All tests were performed in lubricated contact. * Statistical significance analyses were conducted by ANOVA and post hoc Tukey test (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g009-550.jpg?1661937300" title=" <strong>Figure 9</strong><br/> &lt;p&gt;SEM micrographs of the wear regions for samples tested under different loads and sliding speeds in (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;,&lt;b&gt;g&lt;/b&gt;,&lt;b&gt;i&lt;/b&gt;) NRHs samples and in (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;d&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;,&lt;b&gt;h&lt;/b&gt;,&lt;b&gt;j&lt;/b&gt;) NCHs samples. All sliding wear tests were carried out in lubricated contact condition.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-03593/article_deploy/html/images/polymers-14-03593-g010-550.jpg?1661937293" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Schematic illustration of developed lubrication regimes in hydrogels in the frame of the engineering Stribeck curve.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/17/3593'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 5745 KiB &nbsp; </span> <a href="/2073-4360/14/7/1370/pdf?version=1648888619" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Tri-Layered Vascular Grafts Guide Vascular Cells’ Native-like Arrangement" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Communication</span></div> <a class="title-link" href="/2073-4360/14/7/1370">Tri-Layered Vascular Grafts Guide Vascular Cells&rsquo; Native-like Arrangement</a> <div class="authors"> by <span class="inlineblock "><strong>Xingyu Yuan</strong>, </span><span class="inlineblock "><strong>Wen Li</strong>, </span><span class="inlineblock "><strong>Bin Yao</strong>, </span><span class="inlineblock "><strong>Zhao Li</strong>, </span><span class="inlineblock "><strong>Deling Kong</strong>, </span><span class="inlineblock "><strong>Sha Huang</strong> and </span><span class="inlineblock "><strong>Meifeng Zhu</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2022</b>, <em>14</em>(7), 1370; <a href="https://doi.org/10.3390/polym14071370">https://doi.org/10.3390/polym14071370</a> - 28 Mar 2022 </div> <a href="/2073-4360/14/7/1370#metrics">Cited by 12</a> |&nbsp;Viewed by 2502 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Bionic grafts hold great promise for directing tissue regeneration. In vascular tissue engineering, although a large number of synthetic grafts have been constructed, these substitutes only partially recapitulated the tri-layered structure of native arteries. Synthetic polymers such as poly(<span style="font-variant: small-caps;">l</span>-lactide-<i>co</i>-&epsilon;-caprolactone) <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/14/7/1370/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Bionic grafts hold great promise for directing tissue regeneration. In vascular tissue engineering, although a large number of synthetic grafts have been constructed, these substitutes only partially recapitulated the tri-layered structure of native arteries. Synthetic polymers such as poly(<span style="font-variant: small-caps;">l</span>-lactide-<i>co</i>-&epsilon;-caprolactone) (PLCL) possess good biocompatibility, controllable degradation, remarkable processability, and sufficient mechanical strength. These properties of PLCL show great promise for fabricating synthetic vascular substitutes. Here, tri-layered PLCL vascular grafts (TVGs) composed of a smooth inner layer, circumferentially aligned fibrous middle layer, and randomly distributed fibrous outer layer were prepared by sequentially using ink printing, wet spinning, and electrospinning techniques. TVGs possessed kink resistance and sufficient mechanical properties (tensile strength, elastic modulus, suture retention strength, and burst pressure) equivalent to the gold standard conduits of clinical application, i.e., human saphenous veins and human internal mammary arteries. The stratified structure of TVGs exhibited a visible guiding effect on specific vascular cells including enhancing endothelial cell (EC) monolayer formation, favoring vascular smooth muscle cells&rsquo; (VSMCs) arrangement and elongation, and facilitating fibroblasts&rsquo; proliferation and junction establishment. Our research provides a new avenue for designing synthetic vascular grafts with polymers. <a href="/2073-4360/14/7/1370">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/14/7/1370/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev781457"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next781457"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next781457" data-cycle-prev="#prev781457" data-cycle-progressive="#images781457" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-781457-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-ag-550.jpg?1648888708" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images781457" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-781457-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g001-550.jpg?1648888708'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-781457-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g002-550.jpg?1648888708'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-781457-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g003-550.jpg?1648888708'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-781457-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g004-550.jpg?1648888708'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-781457-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g005-550.jpg?1648888708'><p>Figure 5</p></div></script></div></div><div id="article-781457-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-ag-550.jpg?1648888708" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g001-550.jpg?1648888708" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Fabrication and structure of TVGs. (&lt;b&gt;a&lt;/b&gt;) Schematic illustration showing the preparation process. (&lt;b&gt;b&lt;/b&gt;) Gross morphology and (&lt;b&gt;c&lt;/b&gt;) kink resistance. (&lt;b&gt;d&lt;/b&gt;–&lt;b&gt;f&lt;/b&gt;) SEM images representing the macro-/micro-structure in the cross and longitudinal section. Scale bars: (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;d&lt;/b&gt;), 1 mm; (&lt;b&gt;e&lt;/b&gt;) 200 μm; (&lt;b&gt;f&lt;/b&gt;) 1 mm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g002-550.jpg?1648888708" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Characterization of the smooth inner layer, circumferentially aligned fibrous middle layer, and randomly distributed fibrous outer layer of TVGs. (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;c&lt;/b&gt;) SEM images showing the topological structure of the inner layer (&lt;b&gt;a&lt;/b&gt;), middle layer (&lt;b&gt;b&lt;/b&gt;), and outer layer (&lt;b&gt;c&lt;/b&gt;) of TVGs. (&lt;b&gt;d&lt;/b&gt;) White light interferometer images representing the low roughness of the smooth inner layer. The color scale indicates the relative height of the smooth film surface. The smaller the color difference shown in the image, the smoother the film surface is. (&lt;b&gt;e&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;) The wind rose diagrams indicate the highly organized and aligned fibers within the circumferentially aligned fibrous middle layer, whereas the arbitrary orientation of individual fibers was observed in the randomly distributed fibrous outer layer. (&lt;b&gt;g&lt;/b&gt;–&lt;b&gt;i&lt;/b&gt;) Quantitative analysis of the layer thickness (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 3), fiber diameter (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 100), and fiber density (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 6) of TVGs using SEM images. The results are expressed as the mean ± s.d., ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 and **** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.0001. Scale bars: (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;c&lt;/b&gt;) 50 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g003-550.jpg?1648888708" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Mechanical analysis of various grafts. (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;h&lt;/b&gt;) Stress–strain curves (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;), maximum stress (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;), breaking strain (&lt;b&gt;c&lt;/b&gt;,&lt;b&gt;g&lt;/b&gt;), and elastic modulus (&lt;b&gt;d&lt;/b&gt;,&lt;b&gt;h&lt;/b&gt;) in the radial and longitudinal direction (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 6). Arrows indicate the tensile direction. (&lt;b&gt;i&lt;/b&gt;–&lt;b&gt;k&lt;/b&gt;) Burst pressure (&lt;b&gt;i&lt;/b&gt;), porosity (&lt;b&gt;j&lt;/b&gt;), and suture retention force (&lt;b&gt;k&lt;/b&gt;) of grafts (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 6). The results are expressed as the mean ± s.d., * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, *** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001, and **** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.0001. ns, not significant.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g004-550.jpg?1648888708" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Guiding effects of the topological structure in each layer on vascular cells. (&lt;b&gt;a&lt;/b&gt;) Phalloidin-iFluor 488 and DAPI staining showing ECs’, VSMCs’, and fibroblasts’ morphology on the inner, middle, and outer layer. White arrows indicate the fiber direction. (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;) Spreading area and density of vascular cells cultured on different layers at Days 1, 3, and 5. (&lt;b&gt;d&lt;/b&gt;) Orientation angle analysis of the vascular cells cultured on smooth surface substrates (inner layer) and aligned (middle layer) and randomly (outer layer) distributed fibrous scaffolds, respectively (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 80). Schematic showing the orientation angle of cells. (&lt;b&gt;e&lt;/b&gt;) The statistical analysis of the SI of the vascular cells cultured on smooth surface substrates (inner layer) and aligned (middle layer) and randomly (outer layer) distributed fibrous scaffolds, respectively (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 60). Schematic showing changes in cell morphology with decreasing SI. The results are expressed as the mean ± s.d., ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 and **** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.0001. ns, not significant. Scale bars: (&lt;b&gt;a&lt;/b&gt;) 100 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-01370/article_deploy/html/images/polymers-14-01370-g005-550.jpg?1648888708" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Schematic illustration of designing TVGs with a stratified biomimetic structure to guide the native-like arrangement of vascular cells.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/7/1370'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 6 pages, 208 KiB &nbsp; </span> <a href="/2073-4360/14/3/494/pdf?version=1643252200" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Recent Advances and Future Challenges in the Additive Manufacturing of Hydrogels" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Editorial</span></div> <a class="title-link" href="/2073-4360/14/3/494">Recent Advances and Future Challenges in the Additive Manufacturing of Hydrogels</a> <div class="authors"> by <span class="inlineblock "><strong>Chris Danek</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2022</b>, <em>14</em>(3), 494; <a href="https://doi.org/10.3390/polym14030494">https://doi.org/10.3390/polym14030494</a> - 26 Jan 2022 </div> <a href="/2073-4360/14/3/494#metrics">Cited by 4</a> |&nbsp;Viewed by 2499 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-full inline"> The emergence of additive manufacturing, otherwise known as 3D printing, was predated by significant advances in the understanding and controlled engineering of hydrogels [...] <a href="/2073-4360/14/3/494">Full article</a> </div> </div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-721610" aria-controls="drop-supplementary-721610" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-721610" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/14/2/272/s1?version=1641826174"> Supplementary File 1 (ZIP, 368 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 6816 KiB &nbsp; </span> <a href="/2073-4360/14/2/272/pdf?version=1641982576" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/14/2/272">Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan</a> <div class="authors"> by <span class="inlineblock "><strong>Pablo Sánchez-Cid</strong>, </span><span class="inlineblock "><strong>Mercedes Jiménez-Rosado</strong>, </span><span class="inlineblock "><strong>José Fernando Rubio-Valle</strong>, </span><span class="inlineblock "><strong>Alberto Romero</strong>, </span><span class="inlineblock "><strong>Francisco J. Ostos</strong>, </span><span class="inlineblock "><strong>Mohammed Rafii-El-Idrissi Benhnia</strong> and </span><span class="inlineblock "><strong>Victor Perez-Puyana</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2022</b>, <em>14</em>(2), 272; <a href="https://doi.org/10.3390/polym14020272">https://doi.org/10.3390/polym14020272</a> - 10 Jan 2022 </div> <a href="/2073-4360/14/2/272#metrics">Cited by 20</a> |&nbsp;Viewed by 3491 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Hydrogels are considered good biomaterials for soft tissue regeneration. In this sense, collagen is the most used raw material to develop hydrogels, due to its high biocompatibility. However, its low mechanical resistance, thermal stability and pH instability have generated the need to look <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/14/2/272/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Hydrogels are considered good biomaterials for soft tissue regeneration. In this sense, collagen is the most used raw material to develop hydrogels, due to its high biocompatibility. However, its low mechanical resistance, thermal stability and pH instability have generated the need to look for alternatives to its use. In this sense, the combination of collagen with another raw material (i.e., polysaccharides) can improve the final properties of hydrogels. For this reason, the main objective of this work was the development of hydrogels based on collagen and chitosan. The mechanical, thermal and microstructural properties of the hydrogels formed with different ratios of collagen/chitosan (100/0, 75/25, 50/50, 25/75 and 0/100) were evaluated after being processed by two variants of a protocol consisting in two stages: a pH change towards pH 7 and a temperature drop towards 4 &deg;C. The main results showed that depending on the protocol, the physicochemical and microstructural properties of the hybrid hydrogels were similar to the unitary system depending on the stage carried out in first place, obtaining FTIR peaks with similar intensity or a more porous structure when chitosan was first gelled, instead of collagen. As a conclusion, the synergy between collagen and chitosan improved the properties of the hydrogels, showing good thermomechanical properties and cell viability to be used as potential biomaterials for Tissue Engineering. <a href="/2073-4360/14/2/272">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/14/2/272/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev721610"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next721610"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next721610" data-cycle-prev="#prev721610" data-cycle-progressive="#images721610" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-721610-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g001-550.jpg?1641982666" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images721610" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g002-550.jpg?1641982666'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g003-550.jpg?1641982666'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g004-550.jpg?1641982666'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g005-550.jpg?1641982666'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g006-550.jpg?1641982665'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g007-550.jpg?1641982666'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-721610-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g008-550.jpg?1641982666'><p>Figure 8</p></div></script></div></div><div id="article-721610-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g001-550.jpg?1641982666" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Scheme of the different protocols followed.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g002-550.jpg?1641982666" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Frequency sweep tests performed at the different systems processed by protocol 1 (&lt;b&gt;A&lt;/b&gt;) and 2 (&lt;b&gt;B&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g003-550.jpg?1641982666" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Flow curves obtained by the different systems processed by protocol 1 (&lt;b&gt;A&lt;/b&gt;) and 2 (&lt;b&gt;B&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g004-550.jpg?1641982666" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Temperature ramp test carried out by the different systems processed by protocol 1 (&lt;b&gt;A&lt;/b&gt;) and 2 (&lt;b&gt;B&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g005-550.jpg?1641982666" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Evaluation of the stability of the selected systems with the temperature.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g006-550.jpg?1641982665" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Microstructural images of the selected hydrogels at ×4000 and ×8000: CG/CH 100/0 (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;A′&lt;/b&gt;), CG/CH 50/50 P1 (&lt;b&gt;B&lt;/b&gt;,&lt;b&gt;B′&lt;/b&gt;), CG/CH 50/50 P2 (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;C′&lt;/b&gt;) and CG/CH 0/100 (&lt;b&gt;D&lt;/b&gt;,&lt;b&gt;D′&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g007-550.jpg?1641982666" title=" <strong>Figure 7</strong><br/> &lt;p&gt;FTIR profile of the selected hydrogels.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00272/article_deploy/html/images/polymers-14-00272-g008-550.jpg?1641982666" title=" <strong>Figure 8</strong><br/> &lt;p&gt;In vitro cytotoxicity results obtained in the selected hydrogels: CG/CH 0/100 (&lt;b&gt;A&lt;/b&gt;), CG/CH 100/0 (&lt;b&gt;B&lt;/b&gt;), CG/CH 50/50 P1 (&lt;b&gt;C&lt;/b&gt;) and CG/CH 50/50 P2 (&lt;b&gt;D&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/2/272'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item type-section" id=2021> <h2>2021</h2> <h3>Jump to: <a href="#2023">2023</a>, <a href="#2022">2022</a>, <a href="#2020">2020</a>, <a href="#2019">2019</a> </h3> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-715433" aria-controls="drop-supplementary-715433" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-715433" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/14/1/151/s1?version=1640949419"> Supplementary File 1 (ZIP, 827 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 29 pages, 6956 KiB &nbsp; </span> <a href="/2073-4360/14/1/151/pdf?version=1641798523" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/14/1/151">Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Monica Boffito</strong>, </span><span class="inlineblock "><strong>Lucia Servello</strong>, </span><span class="inlineblock "><strong>Marcela Arango-Ospina</strong>, </span><span class="inlineblock "><strong>Serena Miglietta</strong>, </span><span class="inlineblock "><strong>Martina Tortorici</strong>, </span><span class="inlineblock "><strong>Susanna Sartori</strong>, </span><span class="inlineblock "><strong>Gianluca Ciardelli</strong> and </span><span class="inlineblock "><strong>Aldo R. Boccaccini</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2022</b>, <em>14</em>(1), 151; <a href="https://doi.org/10.3390/polym14010151">https://doi.org/10.3390/polym14010151</a> - 31 Dec 2021 </div> <a href="/2073-4360/14/1/151#metrics">Cited by 2</a> |&nbsp;Viewed by 2882 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/14/1/151/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed the use of custom-made poly(urethane)s (PURs) as coating materials for 45S5 Bioglass<sup>&reg;</sup>-based scaffolds. In detail, BG scaffolds were dip-coated with two PURs differing in their soft segment (poly(&epsilon;-caprolactone) or poly(&epsilon;-caprolactone)/poly(ethylene glycol) 70/30 <i>w</i>/<i>w</i>) (PCL-PUR and PCL/PEG-PUR) or PCL (control). PUR-coated scaffolds exhibited biocompatibility, high porosity (ca. 91%), and improved mechanical properties compared to BG scaffolds (2&ndash;3 fold higher compressive strength). Interestingly, in the case of PCL-PUR, compressive strength significantly increased by coating BG scaffolds with an amount of polymer approx. 40% lower compared to PCL/PEG-PUR- and PCL-coated scaffolds. On the other hand, PEG presence within PCL/PEG-PUR resulted in a fast decrease in mechanical reliability in an aqueous environment. PURs represent promising coating materials for BG scaffolds, with the additional pros of being <i>ad-hoc</i> customized in their physico-chemical properties. Moreover, PUR-based coatings exhibited high adherence to the BG surface, probably because of the formation of hydrogen bonds between PUR N-H groups and BG surface functionalities, which were not formed when PCL was used. <a href="/2073-4360/14/1/151">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/14/1/151/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev715433"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next715433"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next715433" data-cycle-prev="#prev715433" data-cycle-progressive="#images715433" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-715433-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-ag-550.jpg?1641798657" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images715433" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g001-550.jpg?1641798657'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g002-550.jpg?1641798657'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g003-550.jpg?1641798657'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g004-550.jpg?1641798657'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g005-550.jpg?1641798657'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g006-550.jpg?1641798657'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g007-550.jpg?1641798657'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g008-550.jpg?1641798657'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g009-550.jpg?1641798657'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g010-550.jpg?1641798657'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g011-550.jpg?1641798657'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g012-550.jpg?1641798657'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g013-550.jpg?1641798657'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-715433-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g014-550.jpg?1641798657'><p>Figure 14</p></div></script></div></div><div id="article-715433-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-ag-550.jpg?1641798657" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g001-550.jpg?1641798657" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Stress-strain curves of PCL (green, dotted line), KHC2000 (blue, continuous line) and KHC2000E2000 (red, dashed line).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g002-550.jpg?1641798657" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Weight loss profile of KHC2000 (blue, continuous line), PCL (green, dotted line), and KHC2000E2000 (red, dashed line) during hydrolytic (&lt;b&gt;A&lt;/b&gt;) and enzymatic (&lt;b&gt;C&lt;/b&gt;) degradation at 37 °C. Number average molecular weight loss profile for KHC2000 (blue, continuous line), PCL (green, dotted line), and KHC2000E2000 (red, dashed line) during hydrolytic (&lt;b&gt;B&lt;/b&gt;) and enzymatic (&lt;b&gt;D&lt;/b&gt;) degradation at 37 °C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g003-550.jpg?1641798657" title=" <strong>Figure 3</strong><br/> &lt;p&gt;SEM micrographs of the surface and cross-section of PCL, KHC2000, and KHC2000E2000 films before degradation onset (0d) and after hydrolytic degradation in PBS at 37 °C for 21 days and enzymatic degradation in PBS added with lipase at 37 °C for 7 and 21 days (on day 21 PCL sample was not analyzed due to its complete degradation).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g004-550.jpg?1641798657" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Light microscope image and SEM micrographs at (&lt;b&gt;B&lt;/b&gt;) 70×, (&lt;b&gt;C&lt;/b&gt;) 500× and (&lt;b&gt;D&lt;/b&gt;) 3.5k× of BG scaffolds.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g005-550.jpg?1641798657" title=" <strong>Figure 5</strong><br/> &lt;p&gt;SEM images of a BG scaffold coated in a KHC2000E2000 solution in chloroform with 0.5% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;) or 1% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;) concentration through a 1-min (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;C&lt;/b&gt;) or a 1-day (&lt;b&gt;B&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;) dip-coating procedure.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g006-550.jpg?1641798657" title=" <strong>Figure 6</strong><br/> &lt;p&gt;SEM images of a BG scaffold coated in a KHC2000 solution in chloroform with 1% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; (&lt;b&gt;A&lt;/b&gt;) or 0.5% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; (&lt;b&gt;B&lt;/b&gt;) concentration through a 1-min dip-coating procedure.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g007-550.jpg?1641798657" title=" <strong>Figure 7</strong><br/> &lt;p&gt;SEM images of the cross-sections of PCL-, KHC2000- and KHC2000E2000-coated pellets. SEM images of BG pellets are also reported as a control condition.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g008-550.jpg?1641798657" title=" <strong>Figure 8</strong><br/> &lt;p&gt;SEM micrographs and light microscope image (top-view) of PCL/BG scaffolds (&lt;b&gt;A&lt;/b&gt;–&lt;b&gt;C&lt;/b&gt;), KHC2000/BG scaffolds (&lt;b&gt;D&lt;/b&gt;–&lt;b&gt;F&lt;/b&gt;), and KHC2000E2000/BG scaffolds (&lt;b&gt;G&lt;/b&gt;–&lt;b&gt;I&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g009-550.jpg?1641798657" title=" <strong>Figure 9</strong><br/> &lt;p&gt;SEM images of (&lt;b&gt;A&lt;/b&gt;) BG scaffold, (&lt;b&gt;B&lt;/b&gt;) PCL/BG scaffold, (&lt;b&gt;C&lt;/b&gt;) KHC2000/BG scaffold, (&lt;b&gt;D&lt;/b&gt;) KHC2000E2000/BG scaffold after 21 days immersion in SBF. ATR-FTIR (&lt;b&gt;E&lt;/b&gt;) and XRD (&lt;b&gt;F&lt;/b&gt;) spectra of BG, PCL/BG, KHC2000/BG, and KHC2000E2000/BG scaffolds after 21 days immersion in SBF. The symbol identifies the characteristic peaks of the deposited crystalline HA at 2Θ values of 26° and 32°.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g010-550.jpg?1641798657" title=" <strong>Figure 10</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) pH variation of the PBS containing pure BG (black, dashed-dotted line), PCL/BG (green, dotted line), KHC2000/BG (blue, continuous line), KHC2000E2000/BG (red, dashed line) scaffolds during hydrolytic degradation tests. (&lt;b&gt;B&lt;/b&gt;) Weight loss profile of pure BG (black, dashed-dotted line), PCL/BG (green, dotted line), KHC2000/BG (blue, continuous line), KHC2000E2000/BG (red, dashed line) scaffolds during hydrolytic degradation in PBS. SEM micrographs of (&lt;b&gt;C&lt;/b&gt;) BG, (&lt;b&gt;D&lt;/b&gt;) PCL/BG, (&lt;b&gt;E&lt;/b&gt;) KHC2000/BG and (&lt;b&gt;F&lt;/b&gt;) KHC2000E2000/BG scaffolds after 21 days immersion in PBS.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g011-550.jpg?1641798657" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Mechanical characterization of the developed scaffolds. (&lt;b&gt;A&lt;/b&gt;) Representative compressive stress-strain curves of BG, KHC2000/BG, KHC2000E2000/BG, and PCL/BG scaffolds, (&lt;b&gt;B&lt;/b&gt;) compressive strength and (&lt;b&gt;C&lt;/b&gt;) work of fracture of BG, KHC2000/BG, KHC2000E2000/BG, and PCL/BG scaffolds evaluated in dry (light gray) and wet (gray) conditions. The appearance of (&lt;b&gt;D&lt;/b&gt;) BG, (&lt;b&gt;E&lt;/b&gt;) PCL/BG, (&lt;b&gt;F&lt;/b&gt;) KHC2000/BG, and (&lt;b&gt;G&lt;/b&gt;) KHC2000E2000/BG scaffolds after compression test. * 0.01 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** 0.001 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, and *** 0.0001 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g012-550.jpg?1641798657" title=" <strong>Figure 12</strong><br/> &lt;p&gt;Mechanical characterization of BG, KHC2000/BG, KHC2000E2000/BG, and PCL/BG after 21 days immersion in SBF. (&lt;b&gt;A&lt;/b&gt;) Representative stress-strain curves of BG, KHC2000/BG, KHC2000E2000/BG, and PCL/BG scaffolds, (&lt;b&gt;B&lt;/b&gt;) compressive strength and (&lt;b&gt;C&lt;/b&gt;) work of fracture calculated for each type of scaffold in dry (light gray) and wet (gray) conditions. * 0.01 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** 0.001 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, and *** 0.0001 &amp;lt; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g013-550.jpg?1641798657" title=" <strong>Figure 13</strong><br/> &lt;p&gt;Trend of compressive strength evaluated in dry (blue, continuous line) and wet (red, dashed line) conditions as a function of immersion time in SBF for (&lt;b&gt;A&lt;/b&gt;) BG, (&lt;b&gt;B&lt;/b&gt;) KHC2000/BG, (&lt;b&gt;C&lt;/b&gt;) KHC2000E2000/BG, and (&lt;b&gt;D&lt;/b&gt;) PCL/BG scaffolds. (&lt;b&gt;E&lt;/b&gt;) Change in compressive strength (&lt;span class=&quot;html-italic&quot;&gt;σ&lt;/span&gt;&lt;sub&gt;residual&lt;/sub&gt; (%)) calculated according to Equation (4), as a function of immersion time in SBF for BG (black, dashed line), PCL/BG (green, dashed-dotted line), KHC2000/BG (blue, continuous line) and KHC2000E2000/BG (red, dashed line) scaffolds.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-14-00151/article_deploy/html/images/polymers-14-00151-g014-550.jpg?1641798657" title=" <strong>Figure 14</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Cell viability evaluated using WST-8 assay (BG scaffolds were used as control samples). Fluorescent images of (&lt;b&gt;B&lt;/b&gt;,&lt;b&gt;C&lt;/b&gt;) BG; (&lt;b&gt;D&lt;/b&gt;,&lt;b&gt;E&lt;/b&gt;) PCL/BG; (&lt;b&gt;F&lt;/b&gt;,&lt;b&gt;G&lt;/b&gt;) KHC2000/BG and (&lt;b&gt;H&lt;/b&gt;,&lt;b&gt;I&lt;/b&gt;) KHC2000E2000/BG scaffolds. Cell actin filaments and nuclei were stained with Rhodamine Phalloidin (red) and DAPI (blue), respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/14/1/151'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-630244" aria-controls="drop-supplementary-630244" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-630244" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/13/17/3016/s1?version=1630940017"> Supplementary File 1 (ZIP, 4039 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 7550 KiB &nbsp; </span> <a href="/2073-4360/13/17/3016/pdf?version=1630940016" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/17/3016">Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips</a> <div class="authors"> by <span class="inlineblock "><strong>Abdul Rahim Chethikkattuveli Salih</strong>, </span><span class="inlineblock "><strong>Kinam Hyun</strong>, </span><span class="inlineblock "><strong>Arun Asif</strong>, </span><span class="inlineblock "><strong>Afaque Manzoor Soomro</strong>, </span><span class="inlineblock "><strong>Hafiz Muhammad Umer Farooqi</strong>, </span><span class="inlineblock "><strong>Young Su Kim</strong>, </span><span class="inlineblock "><strong>Kyung Hwan Kim</strong>, </span><span class="inlineblock "><strong>Jae Wook Lee</strong>, </span><span class="inlineblock "><strong>Dongeun Huh</strong> and </span><span class="inlineblock "><strong>Kyung Hyun Choi</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(17), 3016; <a href="https://doi.org/10.3390/polym13173016">https://doi.org/10.3390/polym13173016</a> - 6 Sep 2021 </div> <a href="/2073-4360/13/17/3016#metrics">Cited by 24</a> |&nbsp;Viewed by 4068 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/17/3016/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS. <a href="/2073-4360/13/17/3016">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/17/3016/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev630244"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next630244"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next630244" data-cycle-prev="#prev630244" data-cycle-progressive="#images630244" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-630244-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g001-550.jpg?1630940119" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images630244" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g002-550.jpg?1630940119'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g003-550.jpg?1630940119'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g004-550.jpg?1630940119'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g005-550.jpg?1630940119'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g006-550.jpg?1630940119'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g007-550.jpg?1630940119'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-630244-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g008-550.jpg?1630940119'><p>Figure 8</p></div></script></div></div><div id="article-630244-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g001-550.jpg?1630940119" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Schematic representation of hepatic MPS platform setup. (&lt;b&gt;a&lt;/b&gt;) Schematic representation of experimental setup, hepatic tissue culture in dynamic environment with TEER sensor representation. (&lt;b&gt;b&lt;/b&gt;) Magnified view of hepatocyte culture on ECM-coated glass chip with ITO TEER sensor. (&lt;b&gt;c&lt;/b&gt;) Real image of experimental setup, top view of engineered MPS environment, a microfluidic chip with embedded TEER sensor for tight junction evaluation is connected to the media reservoir with tubing in which medium is circulated using peristaltic pump and a bubble trap is attached to the system for bubble removal. Sensor control unit, temperature controller, and CO&lt;sub&gt;2&lt;/sub&gt; regulator maintain cell culture incubation conditions. (&lt;b&gt;d&lt;/b&gt;) MPS chip exploded view, MPS chip assembled view with connected transducers and the actual image of ITO embedded MPS chip.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g002-550.jpg?1630940119" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Mathematical model output obtained using MATLAB polynomial regression. (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;d&lt;/b&gt;) Correlation plot between cell attachment and ECM concentration for Matrigel, fibronectin, collagen, and poly-L-lysine, respectively (model fit). (&lt;b&gt;e&lt;/b&gt;–&lt;b&gt;h&lt;/b&gt;) R Square linear fit result of cell attachment and ECM concentration of Matrigel, fibronectin, collagen, and poly-L-lysine, respectively. (&lt;b&gt;i&lt;/b&gt;–&lt;b&gt;l&lt;/b&gt;) Residual plot result between cell attachment and ECM concentration for Matrigel, fibronectin, collagen, and poly-L-lysine, respectively. (&lt;b&gt;m&lt;/b&gt;–&lt;b&gt;p&lt;/b&gt;) Histogram plot for Matrigel, fibronectin, collagen, poly-L-lysine, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g003-550.jpg?1630940119" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Live/Dead assay confocal images. Cell viability (live/dead assay) of HepG2 cell line microfluidic culture in different ECM substrata i.e., Matrigel, Fibronectin, Collagen, and Poly-L-Lysine. (&lt;b&gt;a&lt;/b&gt;) Merge result of ethidium and Calcein-AM (&lt;b&gt;b&lt;/b&gt;) live cell confocal images represented in green color (Calcein-AM) (&lt;b&gt;c&lt;/b&gt;) The red color (ethidium) representing dead cells. Scale bar: 200 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g004-550.jpg?1630940119" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Real-time TEER data graph presenting the comparative impedance to different ECM time graphs in the liver MPS (data presented as mean ± SD). In &lt;a href=&quot;#app1-polymers-13-03016&quot; class=&quot;html-app&quot;&gt;supplementary data&lt;/a&gt;, each plot is shown separately (SF.2).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g005-550.jpg?1630940119" title=" <strong>Figure 5</strong><br/> &lt;p&gt;ZO-1 expression analysis in different ECM substrata. (&lt;b&gt;a&lt;/b&gt;)Merge results of Zo-1 protein and nucleus staining image for Matrigel, fibronectin, collagen, and poly-L-lysine. The images were obtained after 6 days of liver microphysiological environmental culture. (&lt;b&gt;b&lt;/b&gt;) The green color indicates ZO-1 expression in different ECM coated glass chip results (&lt;b&gt;c&lt;/b&gt;) Blue color indicates the nuclei of cells. Scale bar: 100 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g006-550.jpg?1630940119" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Expression of E-cadherin protein immunostaining in HepG2 cell line after 6 days of experiments with a microfluidic culture. (&lt;b&gt;a&lt;/b&gt;) Merged results of tight junction protein expression, E-cadherin (green), and DAPI (blue) for nucleus staining with Matrigel, Fibronectin, Collagen, and Poly-L-Lysine based surface modified glass chip. (&lt;b&gt;b&lt;/b&gt;) Singular expression of E-cadherin protein shown in green color in different ECM types above mentioned (&lt;b&gt;c&lt;/b&gt;) Blue color indicates nuclei staining with DAPI. Scale bar: 100 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g007-550.jpg?1630940119" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Albumin immunostaining images obtained after 6 days of hepatocytes culture performed using Matrigel, fibronectin, collagen, and poly-L-lysine, substrata respectively. (&lt;b&gt;a&lt;/b&gt;) Combined figure of albumin and nuclei staining of hepatocyte cell culture with different ECM types. (&lt;b&gt;b&lt;/b&gt;) Green color indicates albumin expression in hepatocyte in different ECM type coated glass chips. (&lt;b&gt;c&lt;/b&gt;) DAPI was used for staining the nuclei represented in blue. Scale bar: 100 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-03016/article_deploy/html/images/polymers-13-03016-g008-550.jpg?1630940119" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Molecular biomarker measurement and cell viability (live/dead assay) results for different ECMs in microphysiological system. (&lt;b&gt;a&lt;/b&gt;) Albumin concentration under poly-L-lysine, collagen, fibronectin, and Matrigel. (&lt;b&gt;b&lt;/b&gt;) Urea measurement in the HepG2 cell line cultured with poly-L-lysine, collagen, fibronectin, and Matrigel. (&lt;b&gt;c&lt;/b&gt;) Live/dead assay (cell viability) measurement of HepG2 cell line cultured on different ECM-coated glass surfaces was performed after finishing the experiment and viability was calculated using ImageJ. (&lt;b&gt;d&lt;/b&gt;) CYP3A4 activity assay of HepG2 cell line grown under dynamic culture conditions including different ECM types. Data are shown as mean ± SEM. * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.05.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/17/3016'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 21 pages, 5290 KiB &nbsp; </span> <a href="/2073-4360/13/11/1828/pdf?version=1622718191" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/11/1828">Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing</a> <div class="authors"> by <span class="inlineblock "><strong>Johnel Giliomee</strong>, </span><span class="inlineblock "><strong>Lisa C. du Toit</strong>, </span><span class="inlineblock "><strong>Pradeep Kumar</strong>, </span><span class="inlineblock "><strong>Bert Klumperman</strong> and </span><span class="inlineblock "><strong>Yahya E. Choonara</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(11), 1828; <a href="https://doi.org/10.3390/polym13111828">https://doi.org/10.3390/polym13111828</a> - 31 May 2021 </div> <a href="/2073-4360/13/11/1828#metrics">Cited by 5</a> |&nbsp;Viewed by 3007 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In this study, the effect of crosslinking and concentration on the properties of a new library of low-concentration poly(Lys<sub>60</sub>-<i>ran</i>-Ala<sub>40</sub>)-based hydrogels for potential application in wound healing was investigated in order to correlate the hydrogel composition with the <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/11/1828/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In this study, the effect of crosslinking and concentration on the properties of a new library of low-concentration poly(Lys<sub>60</sub>-<i>ran</i>-Ala<sub>40</sub>)-based hydrogels for potential application in wound healing was investigated in order to correlate the hydrogel composition with the desired physicochemical and biofunctional properties to expand the assortment of poly-<span style="font-variant: small-caps;">l</span>-lysine (PLL)-based hydrogels suitable for wound healing. Controlled ring-opening polymerization (ROP) and precise hydrogel compositions were used to customize the physicochemical and biofunctional properties of a library of new hydrogels comprising poly(<span style="font-variant: small-caps;">l</span>-lysine-<i>ran</i>-<span style="font-variant: small-caps;">l</span>-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG). The chemical composition and degree of crosslinking via free amine quantification were analyzed for the P(KA)/4-PEG hydrogels. In addition, the rheological properties, pore morphology, swelling behavior and degradation time were characterized. Subsequently, in vitro cell studies for evaluation of the cytotoxicity and cell adhesion were performed. The 4 wt% 1:1 functional molar ratio hydrogel with P(KA) concentrations as low as 0.65 wt% demonstrated low cytotoxicity and desirable cell adhesion towards fibroblasts and thus displayed a desirable combination of properties for wound healing application. <a href="/2073-4360/13/11/1828">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/11/1828/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev566495"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next566495"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next566495" data-cycle-prev="#prev566495" data-cycle-progressive="#images566495" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-566495-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g001-550.jpg?1622718310" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images566495" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g002-550.jpg?1622718310'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g003-550.jpg?1622718310'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g004-550.jpg?1622718310'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g005-550.jpg?1622718310'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g006-550.jpg?1622718310'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g007-550.jpg?1622718310'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g008-550.jpg?1622718310'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g009-550.jpg?1622718310'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g010-550.jpg?1622718310'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch001-550.jpg?1622718310'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch002-550.jpg?1622718310'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-566495-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch003-550.jpg?1622718310'><p>Scheme 3</p></div></script></div></div><div id="article-566495-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g001-550.jpg?1622718310" title=" <strong>Figure 1</strong><br/> &lt;p&gt;&lt;sup&gt;1&lt;/sup&gt;H NMR spectra of K&lt;sub&gt;46&lt;/sub&gt;A&lt;sub&gt;33&lt;/sub&gt; before (top) and after (bottom) deprotection of the lysine residues. Asterisk (*) indicates residual solvent peaks from d&lt;sup&gt;6&lt;/sup&gt;-DMSO (d&lt;sup&gt;5&lt;/sup&gt;-DMSO and HDO) and double asterisks (**) indicate residual solvent peak from D&lt;sub&gt;2&lt;/sub&gt;O (HOD) [&lt;a href=&quot;#B36-polymers-13-01828&quot; class=&quot;html-bibr&quot;&gt;36&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g002-550.jpg?1622718310" title=" <strong>Figure 2</strong><br/> &lt;p&gt;A phase plot of the library of hydrogels.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g003-550.jpg?1622718310" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Rheological analyses of P(KA)/4-PEG hydrogels with 4 wt% (1:1 and 4:1 molar ratios) and 8 wt% (1:1 molar ratio) under (&lt;b&gt;A&lt;/b&gt;) time sweep, (&lt;b&gt;B&lt;/b&gt;) strain sweep and (&lt;b&gt;C&lt;/b&gt;) frequency sweep settings.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g004-550.jpg?1622718310" title=" <strong>Figure 4</strong><br/> &lt;p&gt;FTIR spectra of (&lt;b&gt;A&lt;/b&gt;) starting materials and (&lt;b&gt;B&lt;/b&gt;) hydrogels of 8 wt% with varying molar ratios.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g005-550.jpg?1622718310" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Concentration of free amines in the hydrogels compared to the calculated theoretical concentration when assuming complete reaction between the free amines and NHS esters. The effect of the molar ratio was found to be statistically significant as determined from Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-tests. This is indicated by the double asterisks (**) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 and the triple asterisks (***) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001 for the 4 wt% hydrogels. The effect of hydrogel concentration on the concentration of free amines was not statistically significant.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g006-550.jpg?1622718310" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Equilibrium swelling of “as-prepared” and freeze-dried hydrogels as a function of NH&lt;sub&gt;2&lt;/sub&gt;/NHS ester molar ratio is shown for 4 wt%, 6 wt% and 8 wt% hydrogels. The effect of molar ratio on the &lt;span class=&quot;html-italic&quot;&gt;ESR&lt;/span&gt; was statistically significant for both “as-prepared” and freeze-dried hydrogels, as determined from Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-tests (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05). The effect of hydrogel concentration was only statistically significant for the “as-prepared” hydrogels (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g007-550.jpg?1622718310" title=" <strong>Figure 7</strong><br/> &lt;p&gt;SEM images of the internal morphology of freeze-dried hydrogels.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g008-550.jpg?1622718310" title=" <strong>Figure 8</strong><br/> &lt;p&gt;The effect of hydrolytic degradation on the hydrogel mass for (&lt;b&gt;A&lt;/b&gt;) 1:1, (&lt;b&gt;B&lt;/b&gt;) 2:1 and (&lt;b&gt;C&lt;/b&gt;) 4:1 molar ratio P(KA)/4-PEG hydrogels, and (&lt;b&gt;D&lt;/b&gt;) the effect of molar ratio on the final degradation time of the P(KA)/4-PEG hydrogels is shown. The effect of molar ratio was found to be statistically significant as determined from Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-tests. This is indicated by the single asterisk (*) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, the double asterisks (**) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 and the triple asterisks (***) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001 for the 4 wt% hydrogels. The effect of concentration on the final degradation time was not statistically significant.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g009-550.jpg?1622718310" title=" <strong>Figure 9</strong><br/> &lt;p&gt;The effects of P(KA)/4-PEG hydrogel molar ratio on cell viability of NIH 3T3 cells are shown. The statistical significance is indicated by an asterisk (*) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 and double asterisks (**) for &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, as calculated from Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-tests. The negative control group is represented by (−). The difference between the positive control group (+) and the 1:1 molar ratio group was not significant (n.s).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-g010-550.jpg?1622718310" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Images of T3T NIH cell adhesion on (&lt;b&gt;A&lt;/b&gt;) well plate, (&lt;b&gt;B&lt;/b&gt;) well plate with DMSO, (&lt;b&gt;C&lt;/b&gt;) P(KA)/4-PEG hydrogel (4 wt%; 1:1 molar ratio) and (&lt;b&gt;D&lt;/b&gt;) P(KA)/4-PEG hydrogel (4 wt%; 8:1 molar ratio) on light microscope (scale bar = 200 μm).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch001-550.jpg?1622718310" title=" <strong>Scheme 1</strong><br/> &lt;p&gt;Synthesis of NCA amino acids and copolymerization via ROP.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch002-550.jpg?1622718310" title=" <strong>Scheme 2</strong><br/> &lt;p&gt;Crosslinking reaction between P(KA) and 4-PEG forms a covalent hydrogel network, P(KA)/4-PEG and NHS by-product.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01828/article_deploy/html/images/polymers-13-01828-sch003-550.jpg?1622718310" title=" <strong>Scheme 3</strong><br/> &lt;p&gt;Schematic representation of the crosslinked P(KA)/4-PEG with the hydrolytically unstable ester encircled.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1828'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 2168 KiB &nbsp; </span> <a href="/2073-4360/13/11/1808/pdf?version=1622441570" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Olive Oil/Pluronic Oleogels for Skin Delivery of Quercetin: In Vitro Characterization and Ex Vivo Skin Permeability" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/11/1808">Olive Oil/Pluronic Oleogels for Skin Delivery of Quercetin: In Vitro Characterization and Ex Vivo Skin Permeability</a> <div class="authors"> by <span class="inlineblock "><strong>Mohammed Elmowafy</strong>, </span><span class="inlineblock "><strong>Arafa Musa</strong>, </span><span class="inlineblock "><strong>Taghreed S. Alnusaire</strong>, </span><span class="inlineblock "><strong>Khaled Shalaby</strong>, </span><span class="inlineblock "><strong>Maged M. A. Fouda</strong>, </span><span class="inlineblock "><strong>Ayman Salama</strong>, </span><span class="inlineblock "><strong>Mohammad M. Al-Sanea</strong>, </span><span class="inlineblock "><strong>Mohamed A. Abdelgawad</strong>, </span><span class="inlineblock "><strong>Mohammed Gamal</strong> and </span><span class="inlineblock "><strong>Shahinaze A. Fouad</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(11), 1808; <a href="https://doi.org/10.3390/polym13111808">https://doi.org/10.3390/polym13111808</a> - 31 May 2021 </div> <a href="/2073-4360/13/11/1808#metrics">Cited by 22</a> |&nbsp;Viewed by 4344 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The main objective of this study was to prepare and characterize oleogel as potential carrier for quercetin skin delivery. The formulations were prepared by adding olive oil (5&ndash;30%) to Pluronic F127 hydrogel and were evaluated for particle size, zeta potential, viscosity in vitro <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/11/1808/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The main objective of this study was to prepare and characterize oleogel as potential carrier for quercetin skin delivery. The formulations were prepared by adding olive oil (5–30%) to Pluronic F127 hydrogel and were evaluated for particle size, zeta potential, viscosity in vitro quercetin release and stability, and were compared with that of Pluronic F127 hydrogel. The selected formulation was characterized for its interaction possibility, ex vivo skin permeation and skin histological changes and safety. The particle sizes ranged from 345.3 ± 5.3 nm to 401.5 ± 2.8 nm, and possessed negative charges. The viscosities of the formulations were found in the range of 6367–4823 cps with inverse proportionality to olive oil percentage while the higher percentages showed higher quercetin release. Percentages of 25% and 30% olive oil showed instability pattern under the conditions of accelerated stability studies. Differential scanning calorimetry verified the existence of quercetin in micellar aggregation and the network in the case of hydrogel and oleogel respectively. Ex vivo skin permeation showed an improved skin permeation of quercetin when 20% olive oil containing oleogel was used. Skin histology after 10 days of application showed stratum corneum disruption and good safety profile. Based on these findings, the proposed oleogel containing 20% olive oil denotes a potential carrier for topical delivery of quercetin. <a href="/2073-4360/13/11/1808">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/11/1808/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev565874"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next565874"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next565874" data-cycle-prev="#prev565874" data-cycle-progressive="#images565874" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-565874-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-ag-550.jpg?1622473886" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images565874" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g001-550.jpg?1622441653'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g002-550.jpg?1622441653'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g003-550.jpg?1622441653'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g004-550.jpg?1622441653'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g005-550.jpg?1622441653'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-565874-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g006-550.jpg?1622441653'><p>Figure 6</p></div></script></div></div><div id="article-565874-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-ag-550.jpg?1622473886" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g001-550.jpg?1622441653" title=" <strong>Figure 1</strong><br/> &lt;p&gt;In vitro release profiles of QT from different formulations (mean values ± SD, n = 3).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g002-550.jpg?1622441653" title=" <strong>Figure 2</strong><br/> &lt;p&gt;DSC thermograms of of QT, Pluronic F127, F4 and F1.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g003-550.jpg?1622441653" title=" <strong>Figure 3</strong><br/> &lt;p&gt;FT-IR spectra of QT, olive oil, Pluronic F127, F1 and F4.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g004-550.jpg?1622441653" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Representative graphs of the cumulative amounts of QT permeated through full thickness skin samples versus time for F1 and F4 (mean values ± SD, n = 3).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g005-550.jpg?1622441653" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Schematic representation of the mechanism of formation of pluronic olive oil oleogels.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01808/article_deploy/html/images/polymers-13-01808-g006-550.jpg?1622441653" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Microscopic pictures of H&amp;amp;E-stained skin sections from control rats (&lt;b&gt;A&lt;/b&gt;) and rats exposed to F1 for 3 days (&lt;b&gt;B&lt;/b&gt;), 7 days (&lt;b&gt;C&lt;/b&gt;) and 10 days (&lt;b&gt;D&lt;/b&gt;) and F4 for 3 days (&lt;b&gt;E&lt;/b&gt;), 7 days (&lt;b&gt;F&lt;/b&gt;) and 10 days (&lt;b&gt;G&lt;/b&gt;) showing no structural damage in dermal elements (magnification 100×, bar 100).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/11/1808'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 2281 KiB &nbsp; </span> <a href="/2073-4360/13/10/1554/pdf?version=1621045093" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/10/1554">Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin</a> <div class="authors"> by <span class="inlineblock "><strong>Tanbir Ahmad</strong>, </span><span class="inlineblock "><strong>Amin Ismail</strong>, </span><span class="inlineblock "><strong>Siti Aqlima Ahmad</strong>, </span><span class="inlineblock "><strong>Khalilah Abdul Khalil</strong>, </span><span class="inlineblock "><strong>Elmutaz Atta Awad</strong>, </span><span class="inlineblock "><strong>Muhammad Tayyab Akhtar</strong> and </span><span class="inlineblock "><strong>Awis Qurni Sazili</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(10), 1554; <a href="https://doi.org/10.3390/polym13101554">https://doi.org/10.3390/polym13101554</a> - 12 May 2021 </div> <a href="/2073-4360/13/10/1554#metrics">Cited by 22</a> |&nbsp;Viewed by 6163 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Pepsin enzyme was used to pretreat the bovine skin at the rate of 5, 15, and 25 units of enzyme/g of skin to recover gelatin, and the recovered gelatins were referred to as Pe5, Pe15, and Pe25, respectively. The gelatin yield increased significantly <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/10/1554/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Pepsin enzyme was used to pretreat the bovine skin at the rate of 5, 15, and 25 units of enzyme/g of skin to recover gelatin, and the recovered gelatins were referred to as Pe5, Pe15, and Pe25, respectively. The gelatin yield increased significantly (<i>p</i> &lt; 0.05) from 18.17% for Pe5 to 24.67% for Pe25 as the level of pepsin increased, but the corresponding gel strength and viscosity decreased significantly (<i>p</i> &lt; 0.05) from 215.49 to 56.06 g and 9.17 to 8.17 mPa·s for Pe5 and Pe25, respectively. β- and α1- and α2-chains were degraded entirely in all the gelatins samples as observed in protein pattern elaborated by gel electrophoresis. <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR) analysis indicated the coiled structure of gelatin protein chains. The lowest amide III amplitude of Pe25 as found by Fourier transform infrared (FTIR) spectroscopy indicated that α-helix structure of protein chains were lost to more irregular coiled structure. Thus, it could be summarized that pepsin might be used at the lower level (5 units/g of wet skin) to extract gelatin from bovine skin with good functional properties and at higher level (15/25 units/g of wet skin) to obtain gelatin of industrial grade with high yield. <a href="/2073-4360/13/10/1554">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/10/1554/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev553245"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next553245"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next553245" data-cycle-prev="#prev553245" data-cycle-progressive="#images553245" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-553245-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-ag-550.jpg?1621045198" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images553245" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-553245-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g001-550.jpg?1621045198'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-553245-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g002-550.jpg?1621045198'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-553245-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g003-550.jpg?1621045198'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-553245-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g004-550.jpg?1621045198'><p>Figure 4</p></div></script></div></div><div id="article-553245-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-ag-550.jpg?1621045198" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/10/1554'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g001-550.jpg?1621045198" title=" <strong>Figure 1</strong><br/> &lt;p&gt;SDS-PAGE pattern of gelatin samples extracted using different levels of pepsin enzyme. Pe5, Pe15, and Pe25 denote gelatins extracted using enzyme levels of 5, 15, and 15 unit/g of skin, respectively; C refers to control gelatin extracted without pepsin; PS denotes pretreated skin sample; M denotes high molecular marker.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/10/1554'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g002-550.jpg?1621045198" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Effect of different levels of pepsin on free amino group content of gelatins extracted from the bovine skin. Pe5, Pe15, and Pe25 denote gelatins extracted using enzyme levels of 5, 15, and 15 unit/g of skin, respectively. Bars represent the standard deviation (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 3).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/10/1554'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g003-550.jpg?1621045198" title=" <strong>Figure 3</strong><br/> &lt;p&gt;&lt;sup&gt;1&lt;/sup&gt;H nuclear magnetic resonance (NMR) spectra of gelatins extracted using different levels of pepsin enzyme. Pe5, Pe15, and Pe25 refers to gelatin extracted using pepsin at the levels of 5, 15, and 25 unit/g of wet skin, respectively. Control gelatin was extracted without pepsin.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/10/1554'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01554/article_deploy/html/images/polymers-13-01554-g004-550.jpg?1621045198" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Fourier transform infrared spectra of gelatin samples extracted using different levels of enzyme pepsin. Pe5, Pe15, and Pe25 refer to gelatins extracted using enzyme levels of 5, 15, and 15 unit/g of skin, respectively. Control gelatin was extracted without pepsin.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/10/1554'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 12 pages, 3104 KiB &nbsp; </span> <a href="/2073-4360/13/9/1514/pdf?version=1620696913" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Development and Evaluation of Rifampicin Loaded Alginate–Gelatin Biocomposite Microfibers" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/9/1514">Development and Evaluation of Rifampicin Loaded Alginate–Gelatin Biocomposite Microfibers</a> <div class="authors"> by <span class="inlineblock "><strong>Ameya Sharma</strong>, </span><span class="inlineblock "><strong>Vivek Puri</strong>, </span><span class="inlineblock "><strong>Pradeep Kumar</strong>, </span><span class="inlineblock "><strong>Inderbir Singh</strong> and </span><span class="inlineblock "><strong>Kampanart Huanbutta</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(9), 1514; <a href="https://doi.org/10.3390/polym13091514">https://doi.org/10.3390/polym13091514</a> - 8 May 2021 </div> <a href="/2073-4360/13/9/1514#metrics">Cited by 18</a> |&nbsp;Viewed by 3033 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/9/1514/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1, RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release were also carried out to explain the comparative understanding of the formulation developed. The antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence they showed significant results, having excellent antimicrobial properties; they could be prominent carriers for wound healing applications. <a href="/2073-4360/13/9/1514">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/9/1514/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev550760"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next550760"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next550760" data-cycle-prev="#prev550760" data-cycle-progressive="#images550760" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-550760-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g001-550.jpg?1620697002" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images550760" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g002-550.jpg?1620697002'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g003-550.jpg?1620697002'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g004-550.jpg?1620697002'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g005-550.jpg?1620697002'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g006-550.jpg?1620697002'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-550760-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g007-550.jpg?1620697002'><p>Figure 7</p></div></script></div></div><div id="article-550760-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g001-550.jpg?1620697002" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Fabrication method of rifampicin loaded biocomposite microfibers.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g002-550.jpg?1620697002" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Morphological analysis of drug (rifampicin) and microfibers (RF5) at magnification value at 500× and 150×.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g003-550.jpg?1620697002" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) XRD spectra of drug (rifampicin) and microfiber (RF5), (&lt;b&gt;B&lt;/b&gt;) DSC thermogram of drug (rifampicin) and microfiber (RF5).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g004-550.jpg?1620697002" title=" <strong>Figure 4</strong><br/> &lt;p&gt;FTIR spectra of drug (rifampicin), alginate, gelatin, nanoclay and microfiber (RF5).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g005-550.jpg?1620697002" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Bar graphs of different parameters (&lt;b&gt;A&lt;/b&gt;) entrapment efficiency; (&lt;b&gt;B&lt;/b&gt;) water uptake; (&lt;b&gt;C&lt;/b&gt;) tensile strength (&lt;b&gt;D&lt;/b&gt;) elongation to break (data were presented as mean ± SD and analyzed by one-way ANOVA followed by Tukey’s test as post hoc analysis. ‘a’ represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 vs. RF1, RF2, RF3 and RF4).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g006-550.jpg?1620697002" title=" <strong>Figure 6</strong><br/> &lt;p&gt;In vitro release of various formulation batches of microfibers.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01514/article_deploy/html/images/polymers-13-01514-g007-550.jpg?1620697002" title=" <strong>Figure 7</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Whole blood clotting of whole blood, blank microfibers and rifampicin loaded microfibers, (&lt;b&gt;B&lt;/b&gt;) Antimicrobial activity of standard group (Rifampicin) and microfibers (RF5) against &lt;span class=&quot;html-italic&quot;&gt;Staphylococcus aureus&lt;/span&gt; and &lt;span class=&quot;html-italic&quot;&gt;Escherichia coli&lt;/span&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/9/1514'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-539315" aria-controls="drop-supplementary-539315" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-539315" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/13/8/1339/s1?version=1618887771"> Supplementary File 1 (ZIP, 124 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 3783 KiB &nbsp; </span> <a href="/2073-4360/13/8/1339/pdf?version=1619079891" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Development and Characterization of Cellulose/Iron Acetate Nanofibers for Bone Tissue Engineering Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/8/1339">Development and Characterization of Cellulose/Iron Acetate Nanofibers for Bone Tissue Engineering Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Hamouda M. Mousa</strong>, </span><span class="inlineblock "><strong>Kamal Hany Hussein</strong>, </span><span class="inlineblock "><strong>Mostafa M. Sayed</strong>, </span><span class="inlineblock "><strong>Mohamed K. Abd El-Rahman</strong> and </span><span class="inlineblock "><strong>Heung-Myong Woo</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(8), 1339; <a href="https://doi.org/10.3390/polym13081339">https://doi.org/10.3390/polym13081339</a> - 20 Apr 2021 </div> <a href="/2073-4360/13/8/1339#metrics">Cited by 28</a> |&nbsp;Viewed by 3872 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In tissue engineering, design of biomaterial with a micro/nano structure is an essential step to mimic extracellular matrix (ECM) and to enhance biomineralization as well as cell biocompatibility. Composite polymeric nanofiber with iron particles/ions has an important role in biomineralization and collagen synthesis <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/8/1339/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In tissue engineering, design of biomaterial with a micro/nano structure is an essential step to mimic extracellular matrix (ECM) and to enhance biomineralization as well as cell biocompatibility. Composite polymeric nanofiber with iron particles/ions has an important role in biomineralization and collagen synthesis for bone tissue engineering. Herein, we report development of polymeric cellulose acetate (CA) nanofibers (17 wt.%) and traces of iron acetates salt (0.5 wt.%) within a polymeric solution to form electrospinning nanofibers mats with iron nanoparticles for bone tissue engineering applications. The resulting mats were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The resulted morphology indicated that the average diameter of CA decreased after addition of iron from (395 ± 30) to (266 ± 19) nm and had dense fiber distributions that match those of native ECM. Moreover, addition of iron acetate to CA solution resulted in mats that are thermally stable. The initial decomposition temperature was 300 °C of CA/Fe mat &gt; 270 °C of pure CA. Furthermore, a superior apatite formation resulted in a biomineralization test after 3 days of immersion in stimulated environmental condition. In vitro cell culture experiments demonstrated that the CA/Fe mat was biocompatible to human fetal-osteoblast cells (hFOB) with the ability to support the cell attachment and proliferation. These findings suggest that doping traces of iron acetate has a promising role in composite mats designed for bone tissue engineering as simple and economically nanoscale materials. Furthermore, these biomaterials can be used in a potential future application such as drug delivery, cancer treatment, and antibacterial materials. <a href="/2073-4360/13/8/1339">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/8/1339/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev539315"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next539315"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next539315" data-cycle-prev="#prev539315" data-cycle-progressive="#images539315" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-539315-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g001-550.jpg?1619080001" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images539315" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g002-550.jpg?1619080001'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g003-550.jpg?1619080001'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g004-550.jpg?1619080001'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g005-550.jpg?1619080001'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g006-550.jpg?1619080001'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g007-550.jpg?1619080001'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g008-550.jpg?1619080001'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g009-550.jpg?1619080001'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-539315-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g010-550.jpg?1619080001'><p>Figure 10</p></div></script></div></div><div id="article-539315-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g001-550.jpg?1619080001" title=" <strong>Figure 1</strong><br/> &lt;p&gt;FESEM images of the different mats and EDS point analysis. (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;) CA low and high resolution, and (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;d&lt;/b&gt;) CA/Fe mats. at low and high resolution (&lt;b&gt;e&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;) EDS point analysis of both CA and CA/Fe mats. (&lt;b&gt;g&lt;/b&gt;) TEM image of the CA/Fe mats.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g002-550.jpg?1619080001" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Figure illustrates the EDS mapping images of the two developed mats (labeled from left as CA and CA/Fe).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g003-550.jpg?1619080001" title=" <strong>Figure 3</strong><br/> &lt;p&gt;XPS analysis: (&lt;b&gt;a&lt;/b&gt;) CA and CA/Fe mats wide scan analysis, (&lt;b&gt;b&lt;/b&gt;) narrow carbon scan, (&lt;b&gt;c&lt;/b&gt;) narrow oxygen scan, and (&lt;b&gt;d&lt;/b&gt;) iron scan in CA/Fe mats.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g004-550.jpg?1619080001" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Mat characterizations for physiochemical and thermal properties: (&lt;b&gt;a&lt;/b&gt;) XRD analysis and (&lt;b&gt;b&lt;/b&gt;) FTIR analysis. (&lt;b&gt;c&lt;/b&gt;) TGA analysis and (&lt;b&gt;d&lt;/b&gt;) DSC analysis.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g005-550.jpg?1619080001" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Biomineralization test shows FESEM images of mat morphology after SBF incubation for 3 and 15 days. (&lt;b&gt;a&lt;/b&gt;) CA and (&lt;b&gt;b&lt;/b&gt;) CA/Fe mats.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g006-550.jpg?1619080001" title=" <strong>Figure 6</strong><br/> &lt;p&gt;XRD of the different mats after 15 days of biomineralization.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g007-550.jpg?1619080001" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Cytotoxicity evaluation by indirect contact assay. The effect of the extracts of CA and CA/Fe on human fetal osteoblasts cultured for 1, 3, and 7 days measured by the MTT assay. Results are presented as means ± standard deviation (n = 8).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g008-550.jpg?1619080001" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Fluorescent images of hFOB cells cultured as (&lt;b&gt;a&lt;/b&gt;) negative control, or in presence of preconditioned medium of (&lt;b&gt;b&lt;/b&gt;) CA, or (&lt;b&gt;c&lt;/b&gt;) CA/Fe mats for 7 days. Calcein AM (green) indicates live cells while ethidium homodimer (red) indicates dead cells (scale bar =100 µm, magnification = 10×. (&lt;b&gt;d&lt;/b&gt;) Cell attachment assay on CA and CA/Fe mats. A non-significant level of hFOB cell attachment is observed between CA mats and negative controls. Results are represented as means ± SD, * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.05; n = 8; Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt; test.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g009-550.jpg?1619080001" title=" <strong>Figure 9</strong><br/> &lt;p&gt;FESEM images of cell attachment: (&lt;b&gt;a&lt;/b&gt;) CA and (&lt;b&gt;b&lt;/b&gt;) CA/Fe mats. (&lt;b&gt;c&lt;/b&gt;) Proliferation of hFOB cells grown on the top surface of CA and CA/Fe mats for 1, 3, and 7 days. Results are presented as means ± SD. (&lt;b&gt;d&lt;/b&gt;) RT-PCR of the osteogenic related genes electrophoresed in 1.5% agarose gel.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-01339/article_deploy/html/images/polymers-13-01339-g010-550.jpg?1619080001" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Scheme of composite mats and the microenvironment: (&lt;b&gt;a&lt;/b&gt;) mat morphology with elements map distribution, (&lt;b&gt;b&lt;/b&gt;) TEM image of fiber and iron nanoparticles distribution, (&lt;b&gt;c&lt;/b&gt;) microenvironment and interaction with nanofiber mats, (&lt;b&gt;d&lt;/b&gt;) hFOB cell proliferation, and (&lt;b&gt;e&lt;/b&gt;) apatite formation after 15 days of incubation in a similar microenvironment.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/8/1339'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 1156 KiB &nbsp; </span> <a href="/2073-4360/13/6/856/pdf?version=1615450987" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Multifunctional Hydrogel Nanocomposites for Biomedical Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/13/6/856">Multifunctional Hydrogel Nanocomposites for Biomedical Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Emma Barrett-Catton</strong>, </span><span class="inlineblock "><strong>Murial L. Ross</strong> and </span><span class="inlineblock "><strong>Prashanth Asuri</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(6), 856; <a href="https://doi.org/10.3390/polym13060856">https://doi.org/10.3390/polym13060856</a> - 11 Mar 2021 </div> <a href="/2073-4360/13/6/856#metrics">Cited by 59</a> |&nbsp;Viewed by 8016 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/6/856/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications including tissue engineering, drug delivery, wound healing, bioprinting, and biowearable devices. <a href="/2073-4360/13/6/856">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/6/856/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev514744"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next514744"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next514744" data-cycle-prev="#prev514744" data-cycle-progressive="#images514744" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-514744-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-ag-550.jpg?1615451059" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images514744" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-514744-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-g001-550.jpg?1615451055'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-514744-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-g002-550.jpg?1615451055'><p>Figure 2</p></div></script></div></div><div id="article-514744-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-ag-550.jpg?1615451059" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/6/856'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-g001-550.jpg?1615451055" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Schematic showing the broad applicability of hydrogel nanocomposites in the biomedical industry.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/6/856'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00856/article_deploy/html/images/polymers-13-00856-g002-550.jpg?1615451055" title=" <strong>Figure 2</strong><br/> &lt;p&gt;A word cloud generated using the titles of the articles referenced in the review to highlight the broad applicability of multifunctional hydrogel nanocomposites in biomedical sciences and engineering. Word size approximately scales with the frequency of occurrence to highlight the key application areas.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/6/856'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 20 pages, 1626 KiB &nbsp; </span> <a href="/2073-4360/13/4/548/pdf?version=1613980718" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Molecular Imprinting Strategies for Tissue Engineering Applications: A Review" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/13/4/548">Molecular Imprinting Strategies for Tissue Engineering Applications: A Review</a> <div class="authors"> by <span class="inlineblock "><strong>Amedeo Franco Bonatti</strong>, </span><span class="inlineblock "><strong>Carmelo De Maria</strong> and </span><span class="inlineblock "><strong>Giovanni Vozzi</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(4), 548; <a href="https://doi.org/10.3390/polym13040548">https://doi.org/10.3390/polym13040548</a> - 12 Feb 2021 </div> <a href="/2073-4360/13/4/548#metrics">Cited by 15</a> |&nbsp;Viewed by 3040 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Tissue Engineering (TE) represents a promising solution to fabricate engineered constructs able to restore tissue damage after implantation. In the classic TE approach, biomaterials are used alongside growth factors to create a scaffolding structure that supports cells during the construct maturation. A current <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/4/548/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Tissue Engineering (TE) represents a promising solution to fabricate engineered constructs able to restore tissue damage after implantation. In the classic TE approach, biomaterials are used alongside growth factors to create a scaffolding structure that supports cells during the construct maturation. A current challenge in TE is the creation of engineered constructs able to mimic the complex microenvironment found in the natural tissue, so as to promote and guide cell migration, proliferation, and differentiation. In this context, the introduction inside the scaffold of molecularly imprinted polymers (MIPs)—synthetic receptors able to reversibly bind to biomolecules—holds great promise to enhance the scaffold-cell interaction. In this review, we analyze the main strategies that have been used for MIP design and fabrication with a particular focus on biomedical research. Furthermore, to highlight the potential of MIPs for scaffold-based TE, we present recent examples on how MIPs have been used in TE to introduce biophysical cues as well as for drug delivery and sequestering. <a href="/2073-4360/13/4/548">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/4/548/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev498565"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next498565"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next498565" data-cycle-prev="#prev498565" data-cycle-progressive="#images498565" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-498565-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g001-550.jpg?1613980817" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images498565" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-498565-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g002-550.jpg?1613980817'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-498565-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g003-550.jpg?1613980817'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-498565-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g004-550.jpg?1613980817'><p>Figure 4</p></div></script></div></div><div id="article-498565-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g001-550.jpg?1613980817" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Main elements and fabrication steps to produce a molecularly imprinted polymer. During the pre-polymerization step, different chemical bonds may form between the template molecule and functional monomers. In the semi-covalent case, covalent bonds are cleaved after polymerization, leaving accessible binding sites inside the MIP. During the rebinding step, the template interacts with these sites using non-covalent interactions.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/4/548'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g002-550.jpg?1613980817" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Simplified schematics of the micro-contact printing procedure for proteins.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/4/548'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g003-550.jpg?1613980817" title=" <strong>Figure 3</strong><br/> &lt;p&gt;An example of EI for the selective capture and release of cancer cells. In (&lt;b&gt;a&lt;/b&gt;), a schematic representation of the process. The SA epitope is imprinted over the surface of the PNIPAAm hydrogel; at 37 °C, the epitope is exposed on the surface, so that cancer cells can bind to it. When lowering the temperature to 25 °C, the conformational changes in the thermo-responsive hydrogel cause the cell release, since the SA group is no longer exposed. In (&lt;b&gt;b&lt;/b&gt;), the efficiency of the cell capture-and-release method, expressed in terms of the cell number, while in (&lt;b&gt;c&lt;/b&gt;) the capture profile over time compared to the non-imprinted hydrogel (NIH). Finally, in (&lt;b&gt;d&lt;/b&gt;) the staining of the cell on the hydrogel surface at 37 °C (captured cells) and 25 °C (released cells). Figure modified with permission from [&lt;a href=&quot;#B83-polymers-13-00548&quot; class=&quot;html-bibr&quot;&gt;83&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/4/548'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00548/article_deploy/html/images/polymers-13-00548-g004-550.jpg?1613980817" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Cell MI to create physical cues able to guide cell activities. In (&lt;b&gt;A&lt;/b&gt;), ALP activity and calcium deposition measured at 7 and 14 days for osteoblast-like cells culture on smooth PDMS surface, and on PDMS surface imprinted with the same cell type after different culturing times (4 h, 7 days and 14 days). Image reprinted with permission from [&lt;a href=&quot;#B90-polymers-13-00548&quot; class=&quot;html-bibr&quot;&gt;90&lt;/a&gt;]. In (&lt;b&gt;B&lt;/b&gt;), atomic force microscope images of ADSCs cells cultured on a keratinocytes-imprinted and ADSCs-imprinted silicone substrate. Image reprinted with permission from [&lt;a href=&quot;#B100-polymers-13-00548&quot; class=&quot;html-bibr&quot;&gt;100&lt;/a&gt;]. In (&lt;b&gt;C&lt;/b&gt;), profilometry images of the PDMS substrates imprinted with different cell types (chondrocytes, tenocytes and ADSCs), alongside the gene expression results of different cell cultures on the substrates (specifically, (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;b&lt;/b&gt;) ADSCs, (&lt;b&gt;c&lt;/b&gt;) fibroblasts and (&lt;b&gt;d&lt;/b&gt;) tenocytes). Image reprinted with permission from [&lt;a href=&quot;#B101-polymers-13-00548&quot; class=&quot;html-bibr&quot;&gt;101&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/4/548'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item type-section" id=2020> <h2>2020</h2> <h3>Jump to: <a href="#2023">2023</a>, <a href="#2022">2022</a>, <a href="#2021">2021</a>, <a href="#2019">2019</a> </h3> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 9 pages, 1861 KiB &nbsp; </span> <a href="/2073-4360/13/1/95/pdf?version=1609295626" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Impact of Ergothioneine, Hercynine, and Histidine on Oxidative Degradation of Hyaluronan and Wound Healing" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/13/1/95">Impact of Ergothioneine, Hercynine, and Histidine on Oxidative Degradation of Hyaluronan and Wound Healing</a> <div class="authors"> by <span class="inlineblock "><strong>Katarina Valachova</strong>, </span><span class="inlineblock "><strong>Karol Svik</strong>, </span><span class="inlineblock "><strong>Csaba Biro</strong>, </span><span class="inlineblock "><strong>Maurice N. Collins</strong>, </span><span class="inlineblock "><strong>Rastislav Jurcik</strong>, </span><span class="inlineblock "><strong>Lubomir Ondruska</strong> and </span><span class="inlineblock "><strong>Ladislav Soltes</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2021</b>, <em>13</em>(1), 95; <a href="https://doi.org/10.3390/polym13010095">https://doi.org/10.3390/polym13010095</a> - 29 Dec 2020 </div> <a href="/2073-4360/13/1/95#metrics">Cited by 54</a> |&nbsp;Viewed by 4932 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> A high-molecular weight hyaluronan is oxidatively degraded by Cu(II) ions and ascorbate&mdash;the so called Weissberger biogenic oxidative system&mdash;which is one of the most potent generators of reactive oxygen species, namely <sup>&bull;</sup>OH radicals. Ergothioneine, hercynine, or histidine were loaded into chitosan/hyaluronan composite membranes <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/13/1/95/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> A high-molecular weight hyaluronan is oxidatively degraded by Cu(II) ions and ascorbate&mdash;the so called Weissberger biogenic oxidative system&mdash;which is one of the most potent generators of reactive oxygen species, namely <sup>&bull;</sup>OH radicals. Ergothioneine, hercynine, or histidine were loaded into chitosan/hyaluronan composite membranes to examine their effect on skin wound healing in ischemic rabbits. We also explored the ability of ergothioneine, hercynine, or histidine to inhibit hyaluronan degradation. Rotational viscometry showed that ergothioneine decreased the degree of hyaluronan radical degradation in a dose-dependent manner. While histidine was shown to be potent in scavenging <sup>&bull;</sup>OH radicals, however, hercynine was ineffective. <i>In vivo</i> results showed that the addition of each investigated agent to chitosan/hyaluronan membranes contributed to a more potent treatment of ischemic skin wounds in rabbits compared to untreated animals and animals treated only with chitosan/hyaluronan membranes. <a href="/2073-4360/13/1/95">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/13/1/95/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev469650"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next469650"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next469650" data-cycle-prev="#prev469650" data-cycle-progressive="#images469650" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-469650-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-ag-550.jpg?1609295703" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images469650" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-469650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g001-550.jpg?1609295703'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-469650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g002-550.jpg?1609295703'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-469650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g003-550.jpg?1609295703'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-469650-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g004-550.jpg?1609295703'><p>Figure 4</p></div></script></div></div><div id="article-469650-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-ag-550.jpg?1609295703" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/1/95'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g001-550.jpg?1609295703" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Biosynthetic pathway of ergothioneine under anaerobic conditions adapted from Valachova et al. [&lt;a href=&quot;#B16-polymers-13-00095&quot; class=&quot;html-bibr&quot;&gt;16&lt;/a&gt;]: The enzyme EgtD converts the amino acid histidine into hercynine (Me, methyl group). The enzyme EanB catalyzes the synthesis of ergothioneine directly from hercynine in the presence of a sulphur donor under anaerobic conditions.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/1/95'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g002-550.jpg?1609295703" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Time-dependent changes in dynamic viscosity of the HA solution exposed to 1 µmol/L Cu(II) ions and 100 µmol/L ascorbic acid (black curve) and after the addition of ergothioneine (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;), histidine (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;), hercynine (&lt;b&gt;E&lt;/b&gt;,&lt;b&gt;F&lt;/b&gt;) before HA degradation begins (left panels) and 1 h later (right panels). The compounds were added at concentrations: 100 µmol/L (red curve), 50 µmol/L (green curve), 10 µmol/L (blue curve).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/1/95'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g003-550.jpg?1609295703" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Profiles of the wound healing in ischemic rabbits, when the wound was not treated (control), the wound treated with the chitosan/HA (Ch/HA) membrane only (red), loaded with hercynine (blue), ergothioneine (green), or histidine (grey). N = 6. &lt;sup&gt;&lt;span&gt;$&lt;/span&gt;&lt;/sup&gt; indicates a significant difference between the control and the Ch/HA membrane at &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.05. &lt;sup&gt;#&lt;/sup&gt; indicates a significant difference between the control and hercynine loaded membrane at &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.05. * indicates a significant difference between the control and ergothioneine loaded membrane at &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.05. &lt;sup&gt;^&lt;/sup&gt; indicates a significant difference between the control and histidine loaded membrane. &lt;sup&gt;@&lt;/sup&gt; Indicates a significant difference between the Ch/HA membrane and hercynine loaded membrane and &amp;amp; indicates a significant difference between the Ch/HA membrane and ergothioneine loaded membrane. &lt;sup&gt;+&lt;/sup&gt; Indicates a significant difference between the Ch/HA membrane and histidine loaded membrane.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/1/95'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-13-00095/article_deploy/html/images/polymers-13-00095-g004-550.jpg?1609295703" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Histograms of the rabbit ischemic ear tissues from: Control experiment (&lt;b&gt;A&lt;/b&gt;), after treatment with Ch/HA membranes (&lt;b&gt;B&lt;/b&gt;), after treatment with the Ch/HA composite membrane loaded with histidine (&lt;b&gt;C&lt;/b&gt;), hercynine (&lt;b&gt;D&lt;/b&gt;), or ergothioneine (&lt;b&gt;E&lt;/b&gt;). Ct: Cartilage; Ep: Epidermis.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/13/1/95'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 30 pages, 11710 KiB &nbsp; </span> <a href="/2073-4360/12/12/2958/pdf?version=1607668962" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/12/2958">Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>JunJie Yu</strong>, </span><span class="inlineblock "><strong>Su A Park</strong>, </span><span class="inlineblock "><strong>Wan Doo Kim</strong>, </span><span class="inlineblock "><strong>Taeho Ha</strong>, </span><span class="inlineblock "><strong>Yuan-Zhu Xin</strong>, </span><span class="inlineblock "><strong>JunHee Lee</strong> and </span><span class="inlineblock "><strong>Donghyun Lee</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(12), 2958; <a href="https://doi.org/10.3390/polym12122958">https://doi.org/10.3390/polym12122958</a> - 11 Dec 2020 </div> <a href="/2073-4360/12/12/2958#metrics">Cited by 66</a> |&nbsp;Viewed by 10870 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/12/2958/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural&ndash;synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced. <a href="/2073-4360/12/12/2958">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/12/2958/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev460314"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next460314"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next460314" data-cycle-prev="#prev460314" data-cycle-progressive="#images460314" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-460314-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g001-550.jpg?1607669047" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images460314" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g002-550.jpg?1607669047'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g003-550.jpg?1607669047'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g004-550.jpg?1607669047'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g005-550.jpg?1607669047'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g006-550.jpg?1607669047'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g007-550.jpg?1607669047'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g008-550.jpg?1607669047'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-460314-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g009-550.jpg?1607669047'><p>Figure 9</p></div></script></div></div><div id="article-460314-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g001-550.jpg?1607669047" title=" <strong>Figure 1</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Numerous applications of tissue engineering and (&lt;b&gt;b&lt;/b&gt;) the number of publications based on 3D bioprinting. The image (&lt;b&gt;a&lt;/b&gt;) was adapted with permission from [&lt;a href=&quot;#B16-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;16&lt;/a&gt;]. Copyright 2018 Elsevier; illustration of the (&lt;b&gt;b&lt;/b&gt;) was using search the terms of “3D bioprinting”. Data analysis was searched Pubmed and Scopus system on 11 November 2020.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g002-550.jpg?1607669047" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Different types of 3D bioprinters. (&lt;b&gt;a&lt;/b&gt;) Inkjet- and (&lt;b&gt;b&lt;/b&gt;) extrusion-based bioprinters were reproduced with permission from [&lt;a href=&quot;#B17-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;17&lt;/a&gt;]; Copyright 2013 John Wiley and Sons. (&lt;b&gt;c&lt;/b&gt;) laser-assisted bioprinter was reproduced from [&lt;a href=&quot;#B18-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;18&lt;/a&gt;]; (&lt;b&gt;d&lt;/b&gt;) stereolithography-based bioprinter was reproduced from [&lt;a href=&quot;#B19-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;19&lt;/a&gt;]; (&lt;b&gt;e&lt;/b&gt;) acoustic and (&lt;b&gt;f&lt;/b&gt;) microvalve bioprinters were reproduced permission from [&lt;a href=&quot;#B20-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;20&lt;/a&gt;]. Copyright 2016 Elsevier; (&lt;b&gt;g&lt;/b&gt;) scaffold-free bioprinter was reproduced from [&lt;a href=&quot;#B21-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;21&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g003-550.jpg?1607669047" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Chemical structure of (&lt;b&gt;a&lt;/b&gt;) nature and (&lt;b&gt;b&lt;/b&gt;) synthetic polymers. The chemical structure of alginate, fibrin, chitosan, hyaluronic acid, polyethylene glycol (PEG), polylactic-co-glycolic acid (PLGA) and pluronic were adapted with permission from [&lt;a href=&quot;#B129-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;129&lt;/a&gt;]. Copyright 2017 Elsevier; silk and polyvinyl alcohol (PVA) were adapted with permission from [&lt;a href=&quot;#B130-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;130&lt;/a&gt;]. Copyright 2017 Elsevier; polycaprolactone (PCL) and polylactic acid (PLA) [&lt;a href=&quot;#B131-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;131&lt;/a&gt;]; agarose and gelatin [&lt;a href=&quot;#B132-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;132&lt;/a&gt;]; collagen [&lt;a href=&quot;#B133-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;133&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g004-550.jpg?1607669047" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Crosslinking mechanisms of some instances. (&lt;b&gt;a&lt;/b&gt;) alginate crosslinking with calcium ions (adapted from [&lt;a href=&quot;#B134-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;134&lt;/a&gt;]); (&lt;b&gt;b&lt;/b&gt;) synthesis gelatin methacrylamide (GelMA) and crosslinking with UV was adapted with permission from [&lt;a href=&quot;#B65-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;65&lt;/a&gt;]. Copyright 2010 Elsevier; (&lt;b&gt;c&lt;/b&gt;) chitosan crosslinking with genipin [&lt;a href=&quot;#B135-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;135&lt;/a&gt;]; (&lt;b&gt;d&lt;/b&gt;) collagen crosslinked with glutaraldehyde was adapted with permission from [&lt;a href=&quot;#B136-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;136&lt;/a&gt;] Copyright 2018 Elsevier; (&lt;b&gt;e&lt;/b&gt;) crosslinking mechanism of gelatin [&lt;a href=&quot;#B137-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;137&lt;/a&gt;]; (&lt;b&gt;f&lt;/b&gt;) PVA crosslinked with glutaraldehyde was adapted from [&lt;a href=&quot;#B138-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;138&lt;/a&gt;]. Copyright 2008 Elsevier.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g005-550.jpg?1607669047" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Fabrication process and histopathologic results of osteochondral scaffold [&lt;a href=&quot;#B173-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;173&lt;/a&gt;]. (&lt;b&gt;a&lt;/b&gt;) The fabrication process of bipartite scaffold using a 3D bioprinting system; (&lt;b&gt;b&lt;/b&gt;) histological results at day 1 and 28.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g006-550.jpg?1607669047" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Characteristics of biofabricated artificial tracheal structure and histopathologic results of epithelial formation [&lt;a href=&quot;#B174-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;174&lt;/a&gt;]. (&lt;b&gt;a&lt;/b&gt;) 1, 3 and 5% alginate hydrogel being extruded through the ceramic nozzle; (&lt;b&gt;b&lt;/b&gt;) optical image of alginate cube type; (&lt;b&gt;c&lt;/b&gt;) optical image of biofabricated artificial trachea structure; (&lt;b&gt;d&lt;/b&gt;) cross-sectional SEM image of bioprinted trachea; (&lt;b&gt;e&lt;/b&gt;–&lt;b&gt;g&lt;/b&gt;) cell tracker for epithelial cells (green), chondrocytes (red) and merged image; (&lt;b&gt;h&lt;/b&gt;) normal tracheal epithelium; (&lt;b&gt;i&lt;/b&gt;) control group; (&lt;b&gt;j&lt;/b&gt;–&lt;b&gt;l&lt;/b&gt;) experimental group at 3, 6 and 12 months (scale bar: 50 um); (&lt;b&gt;m&lt;/b&gt;) a whole cross-sectional image of the experimental group at 3 months (scale bar: 1 mm).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g007-550.jpg?1607669047" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Biofabrication of artificial skin with hybrid bio-inks and assessment of wound closure by cell-free and cell treatment. (&lt;b&gt;a&lt;/b&gt;) Schematic diagram of biofabrication process for wound closure; (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;) cell distribution of top and side view after 24 h of culture; (&lt;b&gt;d&lt;/b&gt;) histological results of wound closure and (&lt;b&gt;e&lt;/b&gt;) wound remaining rate through the use of different treatments. Significance: *, &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05; **, &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 Reproduced with permission from [&lt;a href=&quot;#B78-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;78&lt;/a&gt;]. Copyright 2012 John &amp;amp; Wiley Sons.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g008-550.jpg?1607669047" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Development of a tubular structure using a rotary 3D bioprinting system. (&lt;b&gt;a&lt;/b&gt;) A rotary 3D bioprinting system and (&lt;b&gt;b&lt;/b&gt;-&lt;b&gt;f&lt;/b&gt;) biofabrication process of a tubular construct in a whole research strategy; (&lt;b&gt;g&lt;/b&gt;) optical image and (&lt;b&gt;h&lt;/b&gt;) SEM images at the cell density of 1 × 10&lt;sup&gt;6&lt;/sup&gt; and 3 × 10&lt;sup&gt;6&lt;/sup&gt; cells/mL; circumferential (&lt;b&gt;i&lt;/b&gt;) elastic modulus; (&lt;b&gt;j&lt;/b&gt;) ultimate tensile strength (UTS); (&lt;b&gt;k&lt;/b&gt;) anisotropy index; (&lt;b&gt;l&lt;/b&gt;) compliance; (&lt;b&gt;m&lt;/b&gt;) burst pressure of vascular constructs. Reproduced with permission from [&lt;a href=&quot;#B187-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;187&lt;/a&gt;]. Copyright 2019 Elsevier.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02958/article_deploy/html/images/polymers-12-02958-g009-550.jpg?1607669047" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Development of liver-specific bio-ink for liver tissue engineering. (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;c&lt;/b&gt;) Evaluation of characteristics for liver-specific bio-ink relative to the native liver (*, &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.005; scale bar 100 um) (&lt;b&gt;d&lt;/b&gt;) single line pattern and (&lt;b&gt;e&lt;/b&gt;) 2D patterns; (&lt;b&gt;f&lt;/b&gt;) 2D patterns using hybrid polymer and (&lt;b&gt;g&lt;/b&gt;) 3D hybrid structures; (&lt;b&gt;h&lt;/b&gt;) live/dead image of mesenchymal stem cell (MSC); and (&lt;b&gt;i&lt;/b&gt;) HepG2 cell line. Adapted with permission from [&lt;a href=&quot;#B189-polymers-12-02958&quot; class=&quot;html-bibr&quot;&gt;189&lt;/a&gt;]. Copyright (2017) American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2958'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-452071" aria-controls="drop-supplementary-452071" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-452071" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/12/12/2807/s1?version=1606464318"> Supplementary File 1 (PDF, 1746 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 18 pages, 3097 KiB &nbsp; </span> <a href="/2073-4360/12/12/2807/pdf?version=1606464318" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Yerba Mate Extract in Microfibrillated Cellulose and Corn Starch Films as a Potential Wound Healing Bandage" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/12/2807">Yerba Mate Extract in Microfibrillated Cellulose and Corn Starch Films as a Potential Wound Healing Bandage</a> <div class="authors"> by <span class="inlineblock "><strong>Meysam Aliabadi</strong>, </span><span class="inlineblock "><strong>Bor Shin Chee</strong>, </span><span class="inlineblock "><strong>Mailson Matos</strong>, </span><span class="inlineblock "><strong>Yvonne J. Cortese</strong>, </span><span class="inlineblock "><strong>Michael J. D. Nugent</strong>, </span><span class="inlineblock "><strong>Tielidy A. M. de Lima</strong>, </span><span class="inlineblock "><strong>Washington L. E. Magalhães</strong> and </span><span class="inlineblock "><strong>Gabriel Goetten de Lima</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(12), 2807; <a href="https://doi.org/10.3390/polym12122807">https://doi.org/10.3390/polym12122807</a> - 27 Nov 2020 </div> <a href="/2073-4360/12/12/2807#metrics">Cited by 21</a> |&nbsp;Viewed by 3333 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Microfibrillated cellulose films have been gathering considerable attention due to their high mechanical properties and cheap cost. Additionally, it is possible to include compounds within the fibrillated structure in order to confer desirable properties. <i>Ilex paraguariensis</i> A. St.-Hil, yerba mate leaf extract has <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/12/2807/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Microfibrillated cellulose films have been gathering considerable attention due to their high mechanical properties and cheap cost. Additionally, it is possible to include compounds within the fibrillated structure in order to confer desirable properties. <i>Ilex paraguariensis</i> A. St.-Hil, yerba mate leaf extract has been reported to possess a high quantity of caffeoylquinic acids that may be beneficial for other applications instead of its conventional use as a hot beverage. Therefore, we investigate the effect of blending yerba mate extract during and after defibrillation of <i>Eucalyptus sp.</i> bleached kraft paper by ultrafine grinding. Blending the extract during defibrillation increased the mechanical and thermal properties, besides being able to use the whole extract. Afterwards, this material was also investigated with high content loadings of starch and glycerine. The results present that yerba mate extract increases film resistance, and the defibrillated cellulose is able to protect the bioactive compounds from the extract. Additionally, the films present antibacterial activity against two known pathogens <i>S. aureus</i> and <i>E. coli</i>, with high antioxidant activity and increased cell proliferation. This was attributed to the bioactive compounds that presented faster in vitro wound healing, suggesting that microfibrillated cellulose (MFC) films containing extract of yerba mate can be a potential alternative as wound healing bandages. <a href="/2073-4360/12/12/2807">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/12/2807/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev452071"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next452071"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next452071" data-cycle-prev="#prev452071" data-cycle-progressive="#images452071" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-452071-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-ag-550.jpg?1606464408" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images452071" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g001-550.jpg?1606464408'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g002-550.jpg?1606464408'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g003-550.jpg?1606464408'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g004-550.jpg?1606464408'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g005-550.jpg?1606464408'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-452071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g006-550.jpg?1606464408'><p>Figure 6</p></div></script></div></div><div id="article-452071-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-ag-550.jpg?1606464408" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g001-550.jpg?1606464408" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Studied samples for microfibrillated cellulose (MFC) films containing yerba mate extract blended during (D) the defibrillation process and after (A), (&lt;b&gt;a&lt;/b&gt;) FTIR spectra, where dashed lines indicate the most important region and the arrow is an increased peak found after the extract is blended. (&lt;b&gt;b&lt;/b&gt;) YM extract release and best-fit using Korsmeyer−Peppas, (&lt;b&gt;c&lt;/b&gt;) ABTS and DPPH antioxidant scavenging activity and (&lt;b&gt;d&lt;/b&gt;) bacteria growth inhibition of 25 mg samples containing yerba mate extract.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g002-550.jpg?1606464408" title=" <strong>Figure 2</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Stress−strain curves for tensile tests in DMA, (&lt;b&gt;b&lt;/b&gt;) differential scanning calorimetry and (&lt;b&gt;c&lt;/b&gt;) thermogravimetric analysis with its (&lt;b&gt;d&lt;/b&gt;) first derivative for the MFC films.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g003-550.jpg?1606464408" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Casting films FTIR spectra, assigned numbers signify the formation of new bands by the addition of the specific material. (&lt;b&gt;b&lt;/b&gt;) Yerba mate extract release with best-fit using Korsmeyer−Peppas correlation for each curve.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g004-550.jpg?1606464408" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Antibacterial activities of the studied MFC films containing yerba mate extract and (&lt;b&gt;b&lt;/b&gt;) antioxidant activities for ABTS and DPPH.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g005-550.jpg?1606464408" title=" <strong>Figure 5</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Differential scanning calorimetry and (&lt;b&gt;b&lt;/b&gt;) thermogravimetric analysis with its (&lt;b&gt;c&lt;/b&gt;) first derivative for the films containing yerba mate extract and (&lt;b&gt;d&lt;/b&gt;) stress−strain curves for MFC films performed by DMA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02807/article_deploy/html/images/polymers-12-02807-g006-550.jpg?1606464408" title=" <strong>Figure 6</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Cell viability elution assay gray colour assigned to pure element (MFC), green is addition of YM10 and blue for the various samples containing YM20, (&lt;b&gt;b&lt;/b&gt;) phosphorylated NF-κB p65 activity and (&lt;b&gt;c&lt;/b&gt;) wound healing in vitro scratch assay at 25 mg/mL, (i) control, (ii) MFC, (iii) MFC+YM10, (iv) MFC+YM20, (v) MFC+YM20+STC, (vi) MFC+YM20+GLY, (vii) MFC+YM20+STC+GLY; same letters in each composition do not differ by Tukey’s test (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/12/2807'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 1623 KiB &nbsp; </span> <a href="/2073-4360/12/11/2715/pdf?version=1605600316" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="A Novel Microfiber Wipe for Delivery of Active Substances to Human Skin: Clinical Proof of Concept" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/11/2715">A Novel Microfiber Wipe for Delivery of Active Substances to Human Skin: Clinical Proof of Concept</a> <div class="authors"> by <span class="inlineblock "><strong>Martin Kaegi</strong>, </span><span class="inlineblock "><strong>Christian Adlhart</strong>, </span><span class="inlineblock "><strong>Markus Lehmann</strong>, </span><span class="inlineblock "><strong>Marius Risch</strong>, </span><span class="inlineblock "><strong>Werner Wessling</strong> and </span><span class="inlineblock "><strong>Peter Klaffenbach</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(11), 2715; <a href="https://doi.org/10.3390/polym12112715">https://doi.org/10.3390/polym12112715</a> - 17 Nov 2020 </div> Viewed by 2321 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> A novel technology for the delivery of active substances to the skin based on microfibers loaded with dried active substances was developed. The objective of this work was to demonstrate deposition of the active substances on the skin including concurrent cleansing properties of <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2715/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> A novel technology for the delivery of active substances to the skin based on microfibers loaded with dried active substances was developed. The objective of this work was to demonstrate deposition of the active substances on the skin including concurrent cleansing properties of the wipe. As model active substance to measure deposition capacity Niacinamide was used and as parameter to measure cleansing capacities of the wipe squalene uptake was measured. Wipes loaded with niacinamide were used in the face and the forearm of 25 subjects. By means of Raman spectrometry the deposited niacinamide was analyzed before and after application. Wipes used on the face were analyzed for squalene to assess skin cleansing properties and for residual niacinamide. Forearm analysis including placebo and verum on left and right arm respectively was performed to rule out changes of the skin through application of the tissue. Measured amounts of niacinamide from face application demonstrate statistically significant results in the study population. Analysis of the wipes used show a liberation of 28.3% of niacinamide from the wipes and an uptake of 1.7 mg squalene per wipe. Results from forearm application show statistically significant differences (<i>p</i> &lt; 0.05) between placebo and active for the complete study population. Sub group analyses are significant for both gender and ethnicity for face and forearm analysis respectively. Results clearly demonstrate deposition of niacinamide on the skin and the cleansing properties of the wipe. The institutional review board approved this prospective study. <a href="/2073-4360/12/11/2715">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2715/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev446206"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next446206"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next446206" data-cycle-prev="#prev446206" data-cycle-progressive="#images446206" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-446206-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g001-550.jpg?1605600405" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images446206" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-446206-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g002-550.jpg?1605600405'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-446206-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g003-550.jpg?1605600405'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-446206-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g004-550.jpg?1605600405'><p>Figure 4</p></div></script></div></div><div id="article-446206-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g001-550.jpg?1605600405" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Microfiber wipe in total and magnifications of filaments.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2715'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g002-550.jpg?1605600405" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Measurement by Raman-Spectrometry (Copyright proDERM).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2715'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g003-550.jpg?1605600405" title=" <strong>Figure 3</strong><br/> &lt;p&gt;HPLC chromatograms of niacinamide reference solution (&lt;b&gt;top&lt;/b&gt;), sample solution from quality control (&lt;b&gt;middle&lt;/b&gt;) and sample solution from used wipe (&lt;b&gt;bottom&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2715'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02715/article_deploy/html/images/polymers-12-02715-g004-550.jpg?1605600405" title=" <strong>Figure 4</strong><br/> &lt;p&gt;GC-SIM total ion chromatograms of reference solution (&lt;b&gt;top&lt;/b&gt;), sample solution from unused wipe (&lt;b&gt;middle&lt;/b&gt;) and sample solution from used wipe (&lt;b&gt;bottom&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2715'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-443599" aria-controls="drop-supplementary-443599" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-443599" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/12/11/2667/s1?version=1605160183"> Supplementary File 1 (PDF, 516 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 10 pages, 3150 KiB &nbsp; </span> <a href="/2073-4360/12/11/2667/pdf?version=1605160183" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Poly(ε-Caprolactone)/Poly(Glycerol Sebacate) Composite Nanofibers Incorporating Hydroxyapatite Nanoparticles and Simvastatin for Bone Tissue Regeneration and Drug Delivery Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/11/2667">Poly(ε-Caprolactone)/Poly(Glycerol Sebacate) Composite Nanofibers Incorporating Hydroxyapatite Nanoparticles and Simvastatin for Bone Tissue Regeneration and Drug Delivery Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Abdelrahman I. Rezk</strong>, </span><span class="inlineblock "><strong>Kyung-Suk Kim</strong> and </span><span class="inlineblock "><strong>Cheol Sang Kim</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(11), 2667; <a href="https://doi.org/10.3390/polym12112667">https://doi.org/10.3390/polym12112667</a> - 12 Nov 2020 </div> <a href="/2073-4360/12/11/2667#metrics">Cited by 39</a> |&nbsp;Viewed by 3898 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Herein, we report a drug eluting scaffold composed of a composite nanofibers of poly(&epsilon;-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) loaded with Hydroxyapatite nanoparticles (HANPs) and simvastatin (SIM) mimicking the bone extracellular matrix (ECM) to improve bone cell proliferation and regeneration process. Indeed, the <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2667/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Herein, we report a drug eluting scaffold composed of a composite nanofibers of poly(&epsilon;-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) loaded with Hydroxyapatite nanoparticles (HANPs) and simvastatin (SIM) mimicking the bone extracellular matrix (ECM) to improve bone cell proliferation and regeneration process. Indeed, the addition of PGS results in a slight increase in the average fiber diameter compared to PCL. However, the presence of HANPs in the composite nanofibers induced a greater fiber diameter distribution, without significantly changing the average fiber diameter. The in vitro drug release result revealed that the sustained release of SIM from the composite nanofiber obeying the Korsemeyer&ndash;Peppas and Kpocha models revealing a non-Fickian diffusion mechanism and the release mechanism follows diffusion rather than polymer erosion. Biomineralization assessment of the nanofibers was carried out in simulated body fluid (SBF). SEM and EDS analysis confirmed nucleation of the hydroxyapatite layer on the surface of the composite nanofibers mimicking the natural apatite layer. Moreover, in vitro studies revealed that the PCL-PGS-HA displayed better cell proliferation and adhesion compared to the control sample, hence improving the regeneration process. This suggests that the fabricated PCL-PGS-HA could be a promising future scaffold for control drug delivery and bone tissue regeneration application. <a href="/2073-4360/12/11/2667">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2667/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev443599"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next443599"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next443599" data-cycle-prev="#prev443599" data-cycle-progressive="#images443599" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-443599-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-ag-550.jpg?1605160266" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images443599" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-443599-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g001-550.jpg?1605160264'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-443599-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g002-550.jpg?1605160264'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-443599-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g003-550.jpg?1605160264'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-443599-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g004-550.jpg?1605160264'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-443599-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-sch001-550.jpg?1605160264'><p>Scheme 1</p></div></script></div></div><div id="article-443599-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-ag-550.jpg?1605160266" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g001-550.jpg?1605160264" title=" <strong>Figure 1</strong><br/> &lt;p&gt;SEM images of (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;E&lt;/b&gt;) PCL, (&lt;b&gt;B&lt;/b&gt;,&lt;b&gt;F&lt;/b&gt;) PCL-PGS, (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;G&lt;/b&gt;) PCL-PGS-HA, (&lt;b&gt;D&lt;/b&gt;,&lt;b&gt;H&lt;/b&gt;) PCL-PGS-HA-SIM at two different magnification point. (Scale bar = 10 µm). Inset plots represent fiber diameter distribution histograms and their average value of fiber diameter.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g002-550.jpg?1605160264" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Cumulative in vitro drug release of (A) PCL-PGS-HA-SIM composite nanofiber in PBS. The table shows the in vitro release kinetics of SIM in PBS.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g003-550.jpg?1605160264" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;I&lt;/b&gt;) SEM images and inset tables of EDS analysis after incubation in SBF solution for 10 days. (&lt;b&gt;II&lt;/b&gt;) Absorbance shown by Alizarin Red S extracted from the stained calcium deposits on the surface of different nanofibrous mats treated with SBF solution. (&lt;b&gt;III&lt;/b&gt;) The inset shows selected digital images of different nanofibrous mats. (&lt;b&gt;A&lt;/b&gt;) PCL, (&lt;b&gt;B&lt;/b&gt;) PCL-PGS, (&lt;b&gt;C&lt;/b&gt;) PCL-PGS-HA, (&lt;b&gt;D&lt;/b&gt;) PCL-PGS-HA-SIM.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-g004-550.jpg?1605160264" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;I&lt;/b&gt;) CCK-8 assay show proliferation of MC3T3-E1 cells, (&lt;b&gt;II&lt;/b&gt;) FE-SEM images of MC3T3-E1 cells cultured on different nanofibrous mats. The cells were seeded for 2, 4 and 6 days. (&lt;b&gt;A&lt;/b&gt;) PCL, (&lt;b&gt;B&lt;/b&gt;) PCL-PGS, (&lt;b&gt;C&lt;/b&gt;) PCL-PGS-HA, (&lt;b&gt;D&lt;/b&gt;) PCL-PGS-HA-SIM.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02667/article_deploy/html/images/polymers-12-02667-sch001-550.jpg?1605160264" title=" <strong>Scheme 1</strong><br/> &lt;p&gt;The condensation reaction of poly glycerol sebacate, and electrospinning process to make PCL-PGS nanofiber.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2667'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 23 pages, 1148 KiB &nbsp; </span> <a href="/2073-4360/12/11/2506/pdf?version=1603870709" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/11/2506">Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids</a> <div class="authors"> by <span class="inlineblock "><strong>Advika Kamatar</strong>, </span><span class="inlineblock "><strong>Gokhan Gunay</strong> and </span><span class="inlineblock "><strong>Handan Acar</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(11), 2506; <a href="https://doi.org/10.3390/polym12112506">https://doi.org/10.3390/polym12112506</a> - 28 Oct 2020 </div> <a href="/2073-4360/12/11/2506#metrics">Cited by 64</a> |&nbsp;Viewed by 11329 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2506/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment have led to poor translation of cancer research from in vitro to in vivo models, slowing the progress of the field. Recent advances in three-dimensional (3D) culture have improved the ability of in vitro culture to replicate in vivo conditions. Although 3D cultures still cannot achieve the complexity of the in vivo environment, they can still better replicate the cell&ndash;cell and cell&ndash;matrix interactions of solid tumors. Multicellular tumor spheroids (MCTS) are three-dimensional (3D) clusters of cells with tumor-like features such as oxygen gradients and drug resistance, and represent an important translational tool for cancer research. Accordingly, natural and synthetic polymers, including collagen, hyaluronic acid, Matrigel<sup>&reg;</sup>, polyethylene glycol (PEG), alginate and chitosan, have been used to form and study MCTS for improved clinical translatability. This review evaluates the current state of biomaterial-based MCTS formation, including advantages and disadvantages of the different biomaterials and their recent applications to the field of cancer research, with a focus on the past five years. <a href="/2073-4360/12/11/2506">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2506/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev435881"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next435881"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next435881" data-cycle-prev="#prev435881" data-cycle-progressive="#images435881" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-435881-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02506/article_deploy/html/images/polymers-12-02506-g001-550.jpg?1603870775" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images435881" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-435881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02506/article_deploy/html/images/polymers-12-02506-g002-550.jpg?1603870775'><p>Figure 2</p></div></script></div></div><div id="article-435881-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02506/article_deploy/html/images/polymers-12-02506-g001-550.jpg?1603870775" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Multicellular tumor spheroids (MCTS) biology. MCTS provide an in vitro platform for the investigation of cell–cell and cell–extracellular matrix (ECM) interactions. Additionally, MCTS mimic in vivo solid tumors in terms of nutrient, oxygen and pH gradients and zone formation.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2506'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02506/article_deploy/html/images/polymers-12-02506-g002-550.jpg?1603870775" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Matrix-free formation techniques. (&lt;b&gt;A&lt;/b&gt;) In the liquid overlay technique (LOT), cells are seeded onto a surface that prevents adhesion, encouraging cell–cell adhesion. (&lt;b&gt;B&lt;/b&gt;) In the hanging drop technique, cells are suspended in drops from the underside of a culture plate lid. (&lt;b&gt;C&lt;/b&gt;) In the spinner flask technique, rotational motion encourages cell–cell adhesion. (&lt;b&gt;D&lt;/b&gt;) In the magnetic levitation technique, cells take in magnetic nanoparticles and are aggregated by magnetic force.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2506'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-434985" aria-controls="drop-supplementary-434985" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-434985" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/12/11/2483/s1?version=1603719446"> Supplementary File 1 (PDF, 1899 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 16 pages, 5605 KiB &nbsp; </span> <a href="/2073-4360/12/11/2483/pdf?version=1606289250" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Morphological Changes in Astrocytes by Self-Oxidation of Dopamine to Polydopamine and Quantification of Dopamine through Multivariate Regression Analysis of Polydopamine Images" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/11/2483">Morphological Changes in Astrocytes by Self-Oxidation of Dopamine to Polydopamine and Quantification of Dopamine through Multivariate Regression Analysis of Polydopamine Images</a> <div class="authors"> by <span class="inlineblock "><strong>Anik Karan</strong>, </span><span class="inlineblock "><strong>Elnaz Khezerlou</strong>, </span><span class="inlineblock "><strong>Farnaz Rezaei</strong>, </span><span class="inlineblock "><strong>Leon Iasemidis</strong> and </span><span class="inlineblock "><strong>Mark A. DeCoster</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(11), 2483; <a href="https://doi.org/10.3390/polym12112483">https://doi.org/10.3390/polym12112483</a> - 26 Oct 2020 </div> <a href="/2073-4360/12/11/2483#metrics">Cited by 7</a> |&nbsp;Viewed by 2831 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Astrocytes, also known as astroglia, are important cells for the structural support of neurons as well as for biochemical balance in the central nervous system (CNS). In this study, the polymerization of dopamine (DA) to polydopamine (PDA) and its effect on astrocytes was <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2483/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Astrocytes, also known as astroglia, are important cells for the structural support of neurons as well as for biochemical balance in the central nervous system (CNS). In this study, the polymerization of dopamine (DA) to polydopamine (PDA) and its effect on astrocytes was investigated. The polymerization of DA, being directly proportional to the DA concentration, raises the prospect of detecting DA concentration from PDA optically using image-processing techniques. It was found here that DA, a naturally occurring neurotransmitter, significantly altered astrocyte cell number, morphology, and metabolism, compared to astrocytes in the absence of DA. Along with these effects on astrocytes, the polymerization of DA to PDA was tracked optically in the same cell culture wells. This polymerization process led to a unique methodology based on multivariate regression analysis that quantified the concentration of DA from optical images of astrocyte cell culture media. Therefore, this developed methodology, combined with conventional imaging equipment, could be used in place of high-end and expensive analytical chemistry instruments, such as spectrophotometry, mass spectrometry, and fluorescence techniques, for quantification of the concentration of DA after polymerization to PDA under in vitro and potentially in vivo conditions. <a href="/2073-4360/12/11/2483">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/11/2483/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev434985"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next434985"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next434985" data-cycle-prev="#prev434985" data-cycle-progressive="#images434985" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-434985-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-ag-550.jpg?1606289407" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images434985" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g001-550.jpg?1606289406'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g002-550.jpg?1606289406'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g003-550.jpg?1606289406'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g004-550.jpg?1606289406'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g005-550.jpg?1606289406'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g006-550.jpg?1606289406'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g007-550.jpg?1606289406'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g008-550.jpg?1606289406'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g009-550.jpg?1606289406'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g010-550.jpg?1606289406'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g011-550.jpg?1606289406'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g012-550.jpg?1606289406'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-434985-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g013-550.jpg?1606289406'><p>Figure 13</p></div></script></div></div><div id="article-434985-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-ag-550.jpg?1606289407" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g001-550.jpg?1606289406" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Steps involving autooxidation of dopamine to polydopamine in alkaline pH [&lt;a href=&quot;#B15-polymers-12-02483&quot; class=&quot;html-bibr&quot;&gt;15&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g002-550.jpg?1606289406" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Formation of polydopamine (PDA) after five hours of introducing dopamine (DA) to 100 mM sodium bicarbonate buffer at pH 8.5. (&lt;b&gt;A&lt;/b&gt;) Sodium bicarbonate buffer; (&lt;b&gt;B&lt;/b&gt;) 25 µM dopamine in the buffer; (&lt;b&gt;C&lt;/b&gt;) 75 µM dopamine in buffer; and (&lt;b&gt;D&lt;/b&gt;) 125 µM dopamine in the buffer. Scale bar indicates 100 µm in all panels.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g003-550.jpg?1606289406" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Treatment of 5000 astrocytes/well with dopamine which led to polymerization and formation of polydopamine. Scale bars indicate 200 µm. Panels (&lt;b&gt;A&lt;/b&gt;–&lt;b&gt;D&lt;/b&gt;) show phase contrast images of astrocytes (untreated and treated with dopamine, 48 h post treatment). Panels (&lt;b&gt;E&lt;/b&gt;–&lt;b&gt;H&lt;/b&gt;) show the bright field images of the same fields mentioned in panels (&lt;b&gt;A&lt;/b&gt;–&lt;b&gt;D&lt;/b&gt;). Panels (&lt;b&gt;I&lt;/b&gt;–&lt;b&gt;L&lt;/b&gt;) show the Diffquick stained astrocytes (untreated control and treated with dopamine), 48 h after treatment.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g004-550.jpg?1606289406" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Morphology changes in the astrocyte cell body. Diffquik staining of the astrocytes was carried out to quantify the average cell size by 15 randomly selected astrocytes from randomly selected 3 fields in 2 wells of cultured cells respectively from 3 sets of different experiments treated with the indicated concentrations of DA which in turn formed PDA and the average of their summations were taken. Data represent multiple plating for each condition and ** denotes &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 compared to control condition for cell length analyzed.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g005-550.jpg?1606289406" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Morphology and number of the astrocyte nuclei in presence of DA and PDA. Astrocytes were plated at 5000 cells/well each, allowed to grow for 5 days, and then were treated with different concentrations of DA, allowing PDA to form for the next 2 days. Thereafter, cells were washed and fixed. DAPI staining (see Methods) was performed to check for morphological changes in nuclei area (panel (&lt;b&gt;A&lt;/b&gt;)) and number of nuclei (panel (&lt;b&gt;B&lt;/b&gt;)). Data are averages from multiple platings of cells for each condition and ** denotes &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 compared to control condition.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g006-550.jpg?1606289406" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Metabolic activity of incubated astrocytes with DA treatment. Astrocytes were plated at 5000 cells/well each and then allowed to grow for 7 days, and treated with DA at indicated concentrations. PDA was allowed to form for the next 2 days when the MTT viability assay (see Methods) was used to assess the cellular metabolic activity. Data are from multiple platings of cells for each condition and * denotes &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 compared to control condition.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g007-550.jpg?1606289406" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Morphological changes in astrocytes related to formation of PDA prior to cell plating. Astrocytes at a density of 5000 per well, were introduced to wells which had already been treated with dopamine and ongoing polymerization of DA to PDA at the indicated concentrations. Scale bars indicate 200 µm. Panels (&lt;b&gt;A&lt;/b&gt;–&lt;b&gt;D&lt;/b&gt;) show phase contrast images of astrocytes (untreated and treated with dopamine, 72 h post plating). Panels (&lt;b&gt;E&lt;/b&gt;–&lt;b&gt;H&lt;/b&gt;) show bright field images of the same fields as in panels (&lt;b&gt;A&lt;/b&gt;–&lt;b&gt;D&lt;/b&gt;). Panels (&lt;b&gt;I&lt;/b&gt;–&lt;b&gt;L&lt;/b&gt;) show Diffquik stained astrocytes (untreated control and treated with dopamine) 72 h post plating.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g008-550.jpg?1606289406" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Metabolic activity/viability analysis of astrocytes in the presence of PDA per different DA concentrations. DA was introduced in astrocyte media in the above indicated concentrations. After 48 h in the incubator, astrocytes were plated at 5000 cells/well and allowed to grow for 3 days in the already formed PDA environment. A MTT assay was carried out to measure the cellular metabolic activity in the presence of PDA. Data come from multiple platings of each of the six conditions (bars in the figure), and * denotes &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 compared to the control condition.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g009-550.jpg?1606289406" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Shift in the color of astrocyte media with self-oxidation of DA to PDA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g010-550.jpg?1606289406" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Ultraviolet-visible (UV-Vis) spectrum of water, control, and astrocyte media with different DA concentrations in the presence of cells (astrocytes). The results show the increase in the absorbance intensity with the increase in the polymerization of DA to PDA. Control = cells without added DA. DA concentrations indicate absorbance measured in the presence of cells, except for media alone with 75 µM DA (open circles), which was measured under conditions without cells present.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g011-550.jpg?1606289406" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Visual comparison of RGB color intensities acquired experimentally and estimated by the model in (5) as per the trial and experiment.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g012-550.jpg?1606289406" title=" <strong>Figure 12</strong><br/> &lt;p&gt;Projected RGB color intensities from the exponential model (5) for a wide range of dopamine concentrations (incremented by 5 µM) for both experiments: dopamine first (&lt;b&gt;top&lt;/b&gt; panel) and cells first (&lt;b&gt;bottom&lt;/b&gt; panel).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02483/article_deploy/html/images/polymers-12-02483-g013-550.jpg?1606289406" title=" <strong>Figure 13</strong><br/> &lt;p&gt;Projected grayscale intensities from the exponential model (6) for a wide range of dopamine concentrations (incremented by 5 µM) for both experiments: dopamine first (&lt;b&gt;top&lt;/b&gt; panel) and cells first (&lt;b&gt;bottom&lt;/b&gt; panel).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/11/2483'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 8 pages, 1689 KiB &nbsp; </span> <a href="/2073-4360/12/10/2390/pdf?version=1603181601" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/10/2390">Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant</a> <div class="authors"> by <span class="inlineblock "><strong>Sae-Mi Kim</strong>, </span><span class="inlineblock "><strong>In-Gu Kang</strong>, </span><span class="inlineblock "><strong>Kwang-Hee Cheon</strong>, </span><span class="inlineblock "><strong>Tae-Sik Jang</strong>, </span><span class="inlineblock "><strong>Hyoun-Ee Kim</strong>, </span><span class="inlineblock "><strong>Hyun-Do Jung</strong> and </span><span class="inlineblock "><strong>Min-Ho Kang</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(10), 2390; <a href="https://doi.org/10.3390/polym12102390">https://doi.org/10.3390/polym12102390</a> - 17 Oct 2020 </div> <a href="/2073-4360/12/10/2390#metrics">Cited by 10</a> |&nbsp;Viewed by 2539 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2390/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix&rsquo;s mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA&rsquo;s biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications. <a href="/2073-4360/12/10/2390">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2390/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev430374"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next430374"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next430374" data-cycle-prev="#prev430374" data-cycle-progressive="#images430374" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-430374-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-ag-550.jpg?1603181722" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images430374" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-430374-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g001-550.jpg?1603181722'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-430374-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g002-550.jpg?1603181722'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-430374-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g003-550.jpg?1603181722'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-430374-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g004-550.jpg?1603181722'><p>Figure 4</p></div></script></div></div><div id="article-430374-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-ag-550.jpg?1603181722" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2390'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g001-550.jpg?1603181722" title=" <strong>Figure 1</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Scheme of the fabrication process of patterned hydroxyapatite (HA)/Poly(L-lactic) acid (PLLA) for load-bearing application. (&lt;b&gt;B&lt;/b&gt;) Scanning electron microscopy (SEM) images of (a) Photo resist (PR) patterning, (b) Mg deposition and lift-off, (c) HA conversion, (d) PLLA transfer, and (e) cross-section of patterned HA/PLLA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2390'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g002-550.jpg?1603181722" title=" <strong>Figure 2</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) SEM images of (a) pure PLLA, (b) HA/PLLA, and (c) patterned HA/PLLA. (&lt;b&gt;B&lt;/b&gt;) XRD spectra of pure PLLA and patterned HA/PLLA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2390'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g003-550.jpg?1603181722" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Wetting angle and (&lt;b&gt;B&lt;/b&gt;) tensile properties of pure PLLA, HA/PLLA, and patterned HA/PLLA (Statistically significant vs. pure PLLA and patterned HA/PLLA: * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2390'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02390/article_deploy/html/images/polymers-12-02390-g004-550.jpg?1603181722" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) SEM images of cell morphology after 1 d of culturing of (a) pure PLLA, (b) HA/PLLA, and (c) patterned HA/PLLA. (&lt;b&gt;B&lt;/b&gt;) DNA levels of MC3T3-E1 cells after 3 and 5 d of culturing on pure PLLA, HA/PLLA, and patterned HA/PLLA (* &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2390'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 4079 KiB &nbsp; </span> <a href="/2073-4360/12/10/2332/pdf?version=1602672780" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/10/2332">The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer</a> <div class="authors"> by <span class="inlineblock "><strong>Norhiwani Mohd Hapipi</strong>, </span><span class="inlineblock "><strong>Saiful Amri Mazlan</strong>, </span><span class="inlineblock "><strong>U. Ubaidillah</strong>, </span><span class="inlineblock "><strong>Koji Homma</strong>, </span><span class="inlineblock "><strong>Siti Aishah Abdul Aziz</strong>, </span><span class="inlineblock "><strong>Nur Azmah Nordin</strong>, </span><span class="inlineblock "><strong>Irfan Bahiuddin</strong> and </span><span class="inlineblock "><strong>Nurhazimah Nazmi</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(10), 2332; <a href="https://doi.org/10.3390/polym12102332">https://doi.org/10.3390/polym12102332</a> - 13 Oct 2020 </div> <a href="/2073-4360/12/10/2332#metrics">Cited by 14</a> |&nbsp;Viewed by 3268 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The freezing&ndash;thawing method has been commonly used in the preparation of polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP). However, this method is complex and time consuming as it requires high energy consumption and precise temperature control. In this study, PVA HMRP was prepared <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2332/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The freezing&ndash;thawing method has been commonly used in the preparation of polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP). However, this method is complex and time consuming as it requires high energy consumption and precise temperature control. In this study, PVA HMRP was prepared using a chemically crosslinked method, where borax is used as crosslinking agent capable of changing the rheological properties of the material. Three samples of PVA HMRP with various contents of carbonyl iron particles (CIPs) (50, 60, and 70 wt.%) were used to investigate their rheological properties in both steady shear and dynamic oscillation modes. Results showed the occurrence of shear thickening behaviour at low shear rate (&gamma; &gt; 1 s<sup>&minus;1</sup>), where the viscosity increased with the increased of shear rate. Moreover, the storage modulus of the samples also increased increasing the oscillation frequency from 0.1 to 100 Hz. Interestingly, the samples with 50, 60 70 wt.% of CIPs produced large relative magnetorheological (MR) effects at 4916%, 6165%, and 10,794%, respectively. Therefore, the inclusion of borax to the PVA HMRP can offer solutions for a wide range of applications, especially in artificial muscle, soft actuators, and biomedical sensors. <a href="/2073-4360/12/10/2332">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2332/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev426859"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next426859"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next426859" data-cycle-prev="#prev426859" data-cycle-progressive="#images426859" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-426859-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g001a-550.jpg?1631264936" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images426859" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g001b-550.jpg?1631264936'><p>Figure 1 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g002-550.jpg?1631264936'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003a-550.jpg?1631264936'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003b-550.jpg?1631264936'><p>Figure 3 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003c-550.jpg?1631264936'><p>Figure 3 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003d-550.jpg?1631264936'><p>Figure 3 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g004-550.jpg?1631264936'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g005a-550.jpg?1631264936'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-426859-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g005b-550.jpg?1631264936'><p>Figure 5 Cont.</p></div></script></div></div><div id="article-426859-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g001a-550.jpg?1631264936" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Magnetization curves of (&lt;b&gt;a&lt;/b&gt;) bare carbonyl iron particles (CIPs) and, (&lt;b&gt;b&lt;/b&gt;) polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP) samples with different CIPs content.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g001b-550.jpg?1631264936" title=" <strong>Figure 1 Cont.</strong><br/> &lt;p&gt;Magnetization curves of (&lt;b&gt;a&lt;/b&gt;) bare carbonyl iron particles (CIPs) and, (&lt;b&gt;b&lt;/b&gt;) polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP) samples with different CIPs content.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g002-550.jpg?1631264936" title=" <strong>Figure 2</strong><br/> &lt;p&gt;The viscosity versus shear rate for PVA HMRP samples with different CIP contents.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003a-550.jpg?1631264936" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Storage (solid) and loss (open) moduli for PVA HMRP samples as a function of the frequency with different CIP contents at the magnetic field of (&lt;b&gt;a&lt;/b&gt;) 0, (&lt;b&gt;b&lt;/b&gt;) 180, (&lt;b&gt;c&lt;/b&gt;) 370, and (&lt;b&gt;d&lt;/b&gt;) 540 mT.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003b-550.jpg?1631264936" title=" <strong>Figure 3 Cont.</strong><br/> &lt;p&gt;Storage (solid) and loss (open) moduli for PVA HMRP samples as a function of the frequency with different CIP contents at the magnetic field of (&lt;b&gt;a&lt;/b&gt;) 0, (&lt;b&gt;b&lt;/b&gt;) 180, (&lt;b&gt;c&lt;/b&gt;) 370, and (&lt;b&gt;d&lt;/b&gt;) 540 mT.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003c-550.jpg?1631264936" title=" <strong>Figure 3 Cont.</strong><br/> &lt;p&gt;Storage (solid) and loss (open) moduli for PVA HMRP samples as a function of the frequency with different CIP contents at the magnetic field of (&lt;b&gt;a&lt;/b&gt;) 0, (&lt;b&gt;b&lt;/b&gt;) 180, (&lt;b&gt;c&lt;/b&gt;) 370, and (&lt;b&gt;d&lt;/b&gt;) 540 mT.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g003d-550.jpg?1631264936" title=" <strong>Figure 3 Cont.</strong><br/> &lt;p&gt;Storage (solid) and loss (open) moduli for PVA HMRP samples as a function of the frequency with different CIP contents at the magnetic field of (&lt;b&gt;a&lt;/b&gt;) 0, (&lt;b&gt;b&lt;/b&gt;) 180, (&lt;b&gt;c&lt;/b&gt;) 370, and (&lt;b&gt;d&lt;/b&gt;) 540 mT.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g004-550.jpg?1631264936" title=" <strong>Figure 4</strong><br/> &lt;p&gt;The loss factor of all samples at off-state and on-state conditions.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g005a-550.jpg?1631264936" title=" <strong>Figure 5</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Storage moduli and (&lt;b&gt;b&lt;/b&gt;) relative magnetorheological (MR) effect of PVA HMRP samples with different CIP contents under different magnetic flux densities.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02332/article_deploy/html/images/polymers-12-02332-g005b-550.jpg?1631264936" title=" <strong>Figure 5 Cont.</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Storage moduli and (&lt;b&gt;b&lt;/b&gt;) relative magnetorheological (MR) effect of PVA HMRP samples with different CIP contents under different magnetic flux densities.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2332'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 12 pages, 5173 KiB &nbsp; </span> <a href="/2073-4360/12/10/2245/pdf?version=1601454122" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/10/2245">A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury</a> <div class="authors"> by <span class="inlineblock "><strong>Jue-Zong Yeh</strong>, </span><span class="inlineblock "><strong>Ding-Han Wang</strong>, </span><span class="inlineblock "><strong>Juin-Hong Cherng</strong>, </span><span class="inlineblock "><strong>Yi-Wen Wang</strong>, </span><span class="inlineblock "><strong>Gang-Yi Fan</strong>, </span><span class="inlineblock "><strong>Nien-Hsien Liou</strong>, </span><span class="inlineblock "><strong>Jiang-Chuan Liu</strong> and </span><span class="inlineblock "><strong>Chung-Hsing Chou</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(10), 2245; <a href="https://doi.org/10.3390/polym12102245">https://doi.org/10.3390/polym12102245</a> - 29 Sep 2020 </div> <a href="/2073-4360/12/10/2245#metrics">Cited by 13</a> |&nbsp;Viewed by 4058 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2245/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI. <a href="/2073-4360/12/10/2245">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2245/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev421642"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next421642"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next421642" data-cycle-prev="#prev421642" data-cycle-progressive="#images421642" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-421642-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-ag-550.jpg?1601454209" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images421642" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g001-550.jpg?1601454205'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g002-550.jpg?1601454205'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g003-550.jpg?1601454205'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g004-550.jpg?1601454205'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g005-550.jpg?1601454205'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g006-550.jpg?1601454205'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g007-550.jpg?1601454205'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-421642-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g008-550.jpg?1601454205'><p>Figure 8</p></div></script></div></div><div id="article-421642-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-ag-550.jpg?1601454209" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g001-550.jpg?1601454205" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Rat spinal cord injury model. (&lt;b&gt;A&lt;/b&gt;) An incision was made in the T8 of spinal cord, and the collagen scaffold (blue square) was inserted obliquely into the damaged area; (&lt;b&gt;B&lt;/b&gt;) the position of implanted collagen scaffold in the T8 of spinal cord (yellow arrow).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g002-550.jpg?1601454205" title=" <strong>Figure 2</strong><br/> &lt;p&gt;FTIR spectra of collagen scaffold.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g003-550.jpg?1601454205" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Characterization of the collagen scaffold. (&lt;b&gt;A&lt;/b&gt;) Macroscopic appearance of collagen scaffold; (&lt;b&gt;B&lt;/b&gt;) morphology of collagen scaffold characterized by SEM; (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;) in vitro biocompatibility of collagen scaffold characterized by immunofluorescence staining of hASCs with beta-actin (β-actin) and octamer-binding protein 4 (OCT-4) counterstained with Hoechst 33342, respectively. (white arrow= cell nuclei stained by Hoechst 33342).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g004-550.jpg?1601454205" title=" <strong>Figure 4</strong><br/> &lt;p&gt;In vivo biocompatibility of the collagen scaffold implanted in the T8 of spinal cord for 4 weeks. (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;) Macroscopic appearance and observation under a visible light microscope, respectively; (&lt;b&gt;C&lt;/b&gt;) expression of anti-collagen antibody observed using immunofluorescence staining.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g005-550.jpg?1601454205" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Immunofluorescence staining of neurofilament in the injured site of the spinal cord 1 week and 4 weeks post-implantation. (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;) Rat normal spinal cord without and with collagen scaffold, respectively; (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;) rat SCI model without and with collagen scaffold after 1 week post-implantation, respectively; (&lt;b&gt;E&lt;/b&gt;,&lt;b&gt;F&lt;/b&gt;) rat SCI model without and with collagen scaffold after 4 weeks post-implantation, respectively. (D = dorsal; P = posterior).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g006-550.jpg?1601454205" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Immunofluorescence staining of glial fibrillary acidic protein (GFAP) in the injured site of the spinal cord 1 week and 4 weeks post-implantation. (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;) Rat normal spinal cord without and with collagen scaffold, respectively; (&lt;b&gt;C&lt;/b&gt;,&lt;b&gt;D&lt;/b&gt;) rat SCI model without and with collagen scaffold after 1 week post-implantation, respectively; (&lt;b&gt;E&lt;/b&gt;,&lt;b&gt;F&lt;/b&gt;) rat SCI model without and with collagen scaffold after 4 weeks post-implantation, respectively. (D = dorsal; P = posterior)&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g007-550.jpg?1601454205" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Immunofluorescence staining with Hoechst 33342, fibronectin, and neurofilament in the injured site of the spinal cord 1 and 4 weeks post-implantation. The enlarged images are provided as &lt;b&gt;A&lt;/b&gt;, &lt;b&gt;B&lt;/b&gt;, &lt;b&gt;C&lt;/b&gt;, or &lt;b&gt;D&lt;/b&gt; panel.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02245/article_deploy/html/images/polymers-12-02245-g008-550.jpg?1601454205" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Immunofluorescence staining with Hoechst 33342, glial fibrillary acidic protein (GFAP), and anti-chondroitin sulfate antibody (CS-56) in the injured site of the spinal cord treated with collagen scaffold 1 week and 4 weeks post-implantation.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2245'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 36 pages, 4245 KiB &nbsp; </span> <a href="/2073-4360/12/10/2230/pdf?version=1601375212" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/10/2230">Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Hafez Jafari</strong>, </span><span class="inlineblock "><strong>Alberto Lista</strong>, </span><span class="inlineblock "><strong>Manuela Mafosso Siekapen</strong>, </span><span class="inlineblock "><strong>Pejman Ghaffari-Bohlouli</strong>, </span><span class="inlineblock "><strong>Lei Nie</strong>, </span><span class="inlineblock "><strong>Houman Alimoradi</strong> and </span><span class="inlineblock "><strong>Amin Shavandi</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(10), 2230; <a href="https://doi.org/10.3390/polym12102230">https://doi.org/10.3390/polym12102230</a> - 28 Sep 2020 </div> <a href="/2073-4360/12/10/2230#metrics">Cited by 259</a> |&nbsp;Viewed by 39053 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2230/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized. <a href="/2073-4360/12/10/2230">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2230/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev420908"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next420908"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next420908" data-cycle-prev="#prev420908" data-cycle-progressive="#images420908" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-420908-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g001-550.jpg?1601375294" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images420908" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-420908-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g002-550.jpg?1601375294'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-420908-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g003-550.jpg?1601375294'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-420908-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g004-550.jpg?1601375294'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-420908-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g005-550.jpg?1601375294'><p>Figure 5</p></div></script></div></div><div id="article-420908-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g001-550.jpg?1601375294" title=" <strong>Figure 1</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Approximate content of collagen in different tissues; values are from &lt;a href=&quot;https://www.elsevier.com/es-es/connect/medicina/colagenos-tipos-composicion-distribucion-tejidos&quot; target=&quot;_blank&quot;&gt;https://www.elsevier.com/es-es/connect/medicina/colagenos-tipos-composicion-distribucion-tejidos&lt;/a&gt;. (&lt;b&gt;b&lt;/b&gt;) Structure of collagen fibers, fibrils, triple helices of alpha chains and amino acid residues, 4-hydroxyproline (Hyp), glycine (Gly), and proline. (&lt;b&gt;c&lt;/b&gt;) Amino acids chains structure of collagen.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2230'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g002-550.jpg?1601375294" title=" <strong>Figure 2</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Fish bone, scales, and skin as sources of collagen. (&lt;b&gt;b&lt;/b&gt;). Collagen extraction procedure from fish by-products.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2230'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g003-550.jpg?1601375294" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Difference between acid-soluble collagen (ASC) and pepsin soluble collagen (PSC) extraction methods.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2230'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g004-550.jpg?1601375294" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Effect of time and solid/liquid ratio on the yield of collagen from (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;d&lt;/b&gt;) cod skin [&lt;a href=&quot;#B77-polymers-12-02230&quot; class=&quot;html-bibr&quot;&gt;77&lt;/a&gt;] Copyright (2017) American Chemical Society. (&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;) sole fish skin, reprinted from with permission from Elsevier (4851440916595) [&lt;a href=&quot;#B79-polymers-12-02230&quot; class=&quot;html-bibr&quot;&gt;79&lt;/a&gt;], and (&lt;b&gt;c&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;) giant croaker skin, reprinted with permission from [&lt;a href=&quot;#B87-polymers-12-02230&quot; class=&quot;html-bibr&quot;&gt;87&lt;/a&gt;] (open access Creative Common CC BY license.)&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2230'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02230/article_deploy/html/images/polymers-12-02230-g005-550.jpg?1601375294" title=" <strong>Figure 5</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Protein pattern for acid-soluble collagen from tilapia skin and scales [&lt;a href=&quot;#B84-polymers-12-02230&quot; class=&quot;html-bibr&quot;&gt;84&lt;/a&gt;]. Reprinted from with permission from Elsevier (4851441506573), and (&lt;b&gt;b&lt;/b&gt;) protein pattern for extrusion-hydro-extraction (EHE) procedures from tilapia skin. Reprinted from with permission from Elsevier (4851450130304) [&lt;a href=&quot;#B90-polymers-12-02230&quot; class=&quot;html-bibr&quot;&gt;90&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2230'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 16 pages, 9131 KiB &nbsp; </span> <a href="/2073-4360/12/10/2203/pdf?version=1601043366" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Fabrication of a Polycaprolactone/Alginate Bipartite Hybrid Scaffold for Osteochondral Tissue Using a Three-Dimensional Bioprinting System" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/10/2203">Fabrication of a Polycaprolactone/Alginate Bipartite Hybrid Scaffold for Osteochondral Tissue Using a Three-Dimensional Bioprinting System</a> <div class="authors"> by <span class="inlineblock "><strong>JunJie Yu</strong>, </span><span class="inlineblock "><strong>SuJeong Lee</strong>, </span><span class="inlineblock "><strong>Sunkyung Choi</strong>, </span><span class="inlineblock "><strong>Kee K. Kim</strong>, </span><span class="inlineblock "><strong>Bokyeong Ryu</strong>, </span><span class="inlineblock "><strong>C-Yoon Kim</strong>, </span><span class="inlineblock "><strong>Cho-Rok Jung</strong>, </span><span class="inlineblock "><strong>Byoung-Hyun Min</strong>, </span><span class="inlineblock "><strong>Yuan-Zhu Xin</strong>, </span><span class="inlineblock "><strong>Su A Park</strong>, </span><span class="inlineblock "><strong>Wandoo Kim</strong>, </span><span class="inlineblock "><strong>Donghyun Lee</strong> and </span><span class="inlineblock "><strong>JunHee Lee</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(10), 2203; <a href="https://doi.org/10.3390/polym12102203">https://doi.org/10.3390/polym12102203</a> - 25 Sep 2020 </div> <a href="/2073-4360/12/10/2203#metrics">Cited by 22</a> |&nbsp;Viewed by 4120 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Osteochondral defects, including damage to both the articular cartilage and the subchondral bone, are challenging to repair. Although many technological advancements have been made in recent years, there are technical difficulties in the engineering of cartilage and bone layers, simultaneously. Moreover, there is <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2203/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Osteochondral defects, including damage to both the articular cartilage and the subchondral bone, are challenging to repair. Although many technological advancements have been made in recent years, there are technical difficulties in the engineering of cartilage and bone layers, simultaneously. Moreover, there is a great need for a valuable in vitro platform enabling the assessment of osteochondral tissues to reduce pre-operative risk. Three-dimensional (3D) bioprinting systems may be a promising approach for fabricating human tissues and organs. Here, we aimed to develop a polycaprolactone (PCL)/alginate bipartite hybrid scaffold using a multihead 3D bioprinting system. The hybrid scaffold was composed of PCL, which could improve the mechanical properties of the construct, and alginate, encapsulating progenitor cells that could differentiate into cartilage and bone. To differentiate the bipartite hybrid scaffold into osteochondral tissue, a polydimethylsiloxane coculture system for osteochondral tissue (PCSOT) was designed and developed. Based on evaluation of the biological performance of the novel hybrid scaffold, the PCL/alginate bipartite scaffold was successfully fabricated; importantly, our findings suggest that this PCSOT system may be applicable as an in vitro platform for osteochondral tissue engineering. <a href="/2073-4360/12/10/2203">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/10/2203/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev419881"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next419881"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next419881" data-cycle-prev="#prev419881" data-cycle-progressive="#images419881" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-419881-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g001-550.jpg?1601043525" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images419881" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g002-550.jpg?1601043525'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g003-550.jpg?1601043525'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g004-550.jpg?1601043525'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g005-550.jpg?1601043525'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g006-550.jpg?1601043525'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g007-550.jpg?1601043525'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g008-550.jpg?1601043525'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g009-550.jpg?1601043525'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-419881-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g010-550.jpg?1601043525'><p>Figure 10</p></div></script></div></div><div id="article-419881-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g001-550.jpg?1601043525" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Front view of (&lt;b&gt;a&lt;/b&gt;) the 3D bioprinting system and of (&lt;b&gt;b&lt;/b&gt;) its printing heads.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g002-550.jpg?1601043525" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Schematics of the study flow. (&lt;b&gt;a&lt;/b&gt;) FCPC culture and harvesting for analysis of the characteristics of 1%, 3%, and 5% (w/v) alginate. (&lt;b&gt;b&lt;/b&gt;) PCSOT design and function test. (&lt;b&gt;c&lt;/b&gt;) Bioprinted hybrid and bipartite hybrid scaffold; test of the biological performance. Cell-laden alginate was extruded between PCL lines.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g003-550.jpg?1601043525" title=" <strong>Figure 3</strong><br/> &lt;p&gt;The PCSOT system, the PCL membrane, and the separating function test. (&lt;b&gt;a&lt;/b&gt;) 3D view of the PCSOT cap in Rhino; (&lt;b&gt;b&lt;/b&gt;) 3D view of the PCSOT body in Rhino; (&lt;b&gt;c&lt;/b&gt;) PCL membrane function tests on days 1 and 28.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g004-550.jpg?1601043525" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Printing process of the bipartite hybrid scaffold. (&lt;b&gt;a&lt;/b&gt;) Hybrid scaffold printed on the PCL membrane. (&lt;b&gt;b&lt;/b&gt;) Hybrid scaffold printed on the other side. (&lt;b&gt;c&lt;/b&gt;) Bioprinted bipartite hybrid scaffold matured into osteochondral tissue in the PCSOT.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g005-550.jpg?1601043525" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Evaluation of the printability and cell viability of different concentrations of alginate. (&lt;b&gt;a&lt;/b&gt;) Images of alginate extrusion at 1%, 3%, and 5% (w/v). (&lt;b&gt;b&lt;/b&gt;) Representative images of cubes printed with different concentrations of alginate. (&lt;b&gt;c&lt;/b&gt;) Viscosity of samples with different concentrations of alginate. (&lt;b&gt;d&lt;/b&gt;) Live/Dead confocal microscopy images (scale bar: 500 μm).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g006-550.jpg?1601043525" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Proliferation results for (&lt;b&gt;a&lt;/b&gt;) chondrogenesis and (&lt;b&gt;b&lt;/b&gt;) osteogenesis on the hybrid scaffolds, as per the CCK-8 assays (OD = optical density). *** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001, two-way ANOVA with Tukey’s multiple comparison test.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g007-550.jpg?1601043525" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Viability of cells on the hybrid scaffold, as determined using the Live/dead assay. The green and red dots represent live and dead cells, respectively. (&lt;b&gt;a&lt;/b&gt;) Hybrid scaffolds in chondrogenic induced medium. (&lt;b&gt;b&lt;/b&gt;) Hybrid scaffolds in osteogenic induced medium. Red bar scale: 1000 μm; yellow bar scale: 500 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g008-550.jpg?1601043525" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Expression of cartilage- and bone-specific genes. (&lt;b&gt;a&lt;/b&gt;) Relative expression levels of &lt;span class=&quot;html-italic&quot;&gt;COL2A1&lt;/span&gt; and &lt;span class=&quot;html-italic&quot;&gt;ACAN;&lt;/span&gt; two-way ANOVA with Sidak’s multiple comparison test. (&lt;b&gt;b&lt;/b&gt;) Relative expression levels of &lt;span class=&quot;html-italic&quot;&gt;COL1A1&lt;/span&gt; and &lt;span class=&quot;html-italic&quot;&gt;MEPE&lt;/span&gt;; two-way ANOVA with Tukey’s multiple comparison test. * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, and *** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g009-550.jpg?1601043525" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Biochemical and FT-IR measurements results for (&lt;b&gt;a&lt;/b&gt;) DNA contents, (&lt;b&gt;b&lt;/b&gt;) ALP activity, (&lt;b&gt;c&lt;/b&gt;) GAG contents, and (&lt;b&gt;d&lt;/b&gt;) FT-IR. * &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05, ** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, and *** &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.001, two-way ANOVA with Tukey’s multiple comparison test in (&lt;b&gt;a&lt;/b&gt;) and (&lt;b&gt;b&lt;/b&gt;), two-way ANOVA with Sidak’s multiple comparison test in (&lt;b&gt;c&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02203/article_deploy/html/images/polymers-12-02203-g010-550.jpg?1601043525" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Histological analysis of osteochondral tissue formation using Alcian blue and Alizarin red staining. Samples evaluated at (&lt;b&gt;a&lt;/b&gt;) day 1 and (&lt;b&gt;b&lt;/b&gt;) day 28. The bipartite hybrid scaffolds were cultured in the PCSOT for 4 weeks.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/10/2203'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 41306 KiB &nbsp; </span> <a href="/2073-4360/12/9/2163/pdf?version=1600771242" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Characterization of Bone Marrow and Wharton’s Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/9/2163">Characterization of Bone Marrow and Wharton’s Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Xing Liu</strong>, </span><span class="inlineblock "><strong>Adrien Baldit</strong>, </span><span class="inlineblock "><strong>Emilie de Brosses</strong>, </span><span class="inlineblock "><strong>Frédéric Velard</strong>, </span><span class="inlineblock "><strong>Ghislaine Cauchois</strong>, </span><span class="inlineblock "><strong>Yun Chen</strong>, </span><span class="inlineblock "><strong>Xiong Wang</strong>, </span><span class="inlineblock "><strong>Natalia de Isla</strong> and </span><span class="inlineblock "><strong>Cédric Laurent</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(9), 2163; <a href="https://doi.org/10.3390/polym12092163">https://doi.org/10.3390/polym12092163</a> - 22 Sep 2020 </div> <a href="/2073-4360/12/9/2163#metrics">Cited by 9</a> |&nbsp;Viewed by 3258 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> (1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton&rsquo;s <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/2163/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> (1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton&rsquo;s jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (<i>n</i> = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-<i>co</i>-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering. <a href="/2073-4360/12/9/2163">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/2163/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev417308"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next417308"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next417308" data-cycle-prev="#prev417308" data-cycle-progressive="#images417308" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-417308-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-ag-550.jpg?1600771369" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images417308" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g001-550.jpg?1600771369'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g002-550.jpg?1600771369'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g003-550.jpg?1600771369'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g004-550.jpg?1600771369'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g005-550.jpg?1600771369'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-417308-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g006-550.jpg?1600771369'><p>Figure 6</p></div></script></div></div><div id="article-417308-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-ag-550.jpg?1600771369" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g001-550.jpg?1600771369" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Image processing routine for post-treatment of µCT cross-sections for the four scaffold configurations (S1: one-layer silk scaffold; S2: two-layer silk scaffold; S3: three-layer silk scaffold; SP: silk/PLCL composite scaffold).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g002-550.jpg?1600771369" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Metabolic activity of Wharton’s jelly mesenchymal stromal cells (WJ-MSCs, left) and bone marrow mesenchymal stromal cells (BM-MSCs, right) on silk and silk/PLCL scaffolds quantified by Alamar Blue assay. (S1: one-layer silk scaffold; S2: two-layer silk scaffold; S3: three-layer silk scaffold; SP: silk/PLCL composite scaffold). Signs “*” indicate the statistical significance.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g003-550.jpg?1600771369" title=" <strong>Figure 3</strong><br/> &lt;p&gt;SEM global observations of cellular distribution on S1, S2, S3 and SP scaffolds for WJ-MSCs (left) and BM-MSCs (right).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g004-550.jpg?1600771369" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Fluorescent images of live staining of WJ-MSCs (up) and BM-MSCs (down) on the silk and silk/PLCL scaffold (S1: one-layer silk scaffold; S2: two-layer silk scaffold; S3: three-layer silk scaffold; SP: silk/PLCL composite scaffold; green: calcein AM).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g005-550.jpg?1600771369" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Observation of BM-MSCs on S1, S2, S3 and SP scaffolds from Red Sirius (RS) staining.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-02163/article_deploy/html/images/polymers-12-02163-g006-550.jpg?1600771369" title=" <strong>Figure 6</strong><br/> &lt;p&gt;IHC images of BM-MSCs on silk and silk/PLCL scaffolds. (S1: one-layer silk scaffold; S2: two-layer silk scaffold; S3: three-layer silk scaffold; SP: silk/PLCL composite scaffold; Col I: collagen I; Col III: collagen III; TNC: tenascin-c).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/2163'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 8252 KiB &nbsp; </span> <a href="/2073-4360/12/9/1969/pdf?version=1598785560" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Functional Polylactide Blend Films for Controlling Mesenchymal Stem Cell Behaviour" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/9/1969">Functional Polylactide Blend Films for Controlling Mesenchymal Stem Cell Behaviour</a> <div class="authors"> by <span class="inlineblock "><strong>Yuliya Nashchekina</strong>, </span><span class="inlineblock "><strong>Pavel Nikonov</strong>, </span><span class="inlineblock "><strong>Alexey Nashchekin</strong> and </span><span class="inlineblock "><strong>Natalya Mikhailova</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(9), 1969; <a href="https://doi.org/10.3390/polym12091969">https://doi.org/10.3390/polym12091969</a> - 30 Aug 2020 </div> <a href="/2073-4360/12/9/1969#metrics">Cited by 8</a> |&nbsp;Viewed by 2569 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Polymer blending is a suitable physical modification method to create novel properties of different polymers. Blending polylactic acid (PLA) and polyethylene glycol (PEG) produces materials with a wide range of properties. This study was the first to investigate the effect of different isomeric <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/1969/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Polymer blending is a suitable physical modification method to create novel properties of different polymers. Blending polylactic acid (PLA) and polyethylene glycol (PEG) produces materials with a wide range of properties. This study was the first to investigate the effect of different isomeric forms of PLA and PEG with terminal amino groups to obtain biocompatible films for human mesenchymal stem cell cultivation. It has been shown by scanning electron microscopy that the surface topology changes to the greatest extent when using films obtained on the basis of poly(<span style="font-variant: small-caps;">d</span>,<span style="font-variant: small-caps;">l</span>-lactide) and PEG with high molecular weights (15,000 g/mol). In order to obtain thin films and rapid evaporation of the solvent, PEG is mixed with PLA and does not form a separate phase and is not further washed out during the incubation in water. The presence of PEG with terminal hydroxyl and amino groups in blend films after incubation in water was proven using Fourier transform infrared (FTIR) spectroscopy. Results of fluorescence microscopy demonstrated that blend films formed on PLA and polyethylene glycol diamine (PEG-NH2) are more suitable for cell spreading and focal contact formation compared to cells cultured on the surface of pure PLA films or films made from PLA and PEG. <a href="/2073-4360/12/9/1969">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/1969/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev406250"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next406250"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next406250" data-cycle-prev="#prev406250" data-cycle-progressive="#images406250" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-406250-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-ag-550.jpg?1598785641" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images406250" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g001-550.jpg?1598785639'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g002-550.jpg?1598785639'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g003-550.jpg?1598785639'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g004-550.jpg?1598785639'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g005-550.jpg?1598785639'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g006a-550.jpg?1598785639'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-406250-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g006b-550.jpg?1598785639'><p>Figure 6 Cont.</p></div></script></div></div><div id="article-406250-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-ag-550.jpg?1598785641" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g001-550.jpg?1598785639" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Scanning electron microscopy (SEM) images of pure polylactide (PLA) with different isomeric forms—poly(&lt;span class=&quot;html-small-caps&quot;&gt;d&lt;/span&gt;,&lt;span class=&quot;html-small-caps&quot;&gt;l&lt;/span&gt;-lactide) (PDLA) and poly(&lt;span class=&quot;html-small-caps&quot;&gt;l&lt;/span&gt;,&lt;span class=&quot;html-small-caps&quot;&gt;l&lt;/span&gt;-lactide) PLLA; the blend polylactide/polyethylene PLA/PEG or polylactide/polyethylene glycol diamine (PLA/PEG-NH2) with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol). Scale bar 1 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g002-550.jpg?1598785639" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Fourier transform infrared (FTIR) spectra of the pure PLA with different isomeric forms—PDLA (&lt;b&gt;A&lt;/b&gt;) and PLLA (&lt;b&gt;B&lt;/b&gt;); the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g003-550.jpg?1598785639" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Contact angles of the pure PLA with different isomeric forms—PDLA and PLLA; the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g004-550.jpg?1598785639" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Fluorescence microscopy of the fetal mesenchymal stromal cells (FetMSC)s after 2 h of cultivation on the pure glass and on the pure films from PLA with different isomeric forms—PDLA and PLLA (control); the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol). N = 5: *—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, **—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 for the same concentration data, #—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, ##—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 compared with the unmodified PCL. Staining—rhodamine-phalloidin (red), 4′,6-diamidino-2-phenylindole (DAPI) (blue). Scale bar 50 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g005-550.jpg?1598785639" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Presence of focal contacts of the MSC cells after one day of cultivation on the pure glass and on the pure films from PLA with different isomeric forms—PDLA and PLLA (control); the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol). (N = 5: *—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01, **—&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 for the same concentration data). Staining—vinculin (green), DAPI (blue). Scale bar 50 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g006a-550.jpg?1598785639" title=" <strong>Figure 6</strong><br/> &lt;p&gt;SEM images of the MSC cells after one day of cultivation on the pure glass and on the pure films from PLA with different isomeric forms—PDLA and PLLA (control); the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol). Scale bar 100 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01969/article_deploy/html/images/polymers-12-01969-g006b-550.jpg?1598785639" title=" <strong>Figure 6 Cont.</strong><br/> &lt;p&gt;SEM images of the MSC cells after one day of cultivation on the pure glass and on the pure films from PLA with different isomeric forms—PDLA and PLLA (control); the blend PLA/PEG or PLA/PEG-NH2 with different molecular weights of PEG (6000 or 15,000 g/mol) and PEG-NH2 (6000 or 10,000 g/mol). Scale bar 100 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1969'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 31 pages, 9694 KiB &nbsp; </span> <a href="/2073-4360/12/9/1949/pdf?version=1598786203" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/9/1949">Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics</a> <div class="authors"> by <span class="inlineblock "><strong>Jack Campbell</strong> and </span><span class="inlineblock "><strong>Anna S. Vikulina</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(9), 1949; <a href="https://doi.org/10.3390/polym12091949">https://doi.org/10.3390/polym12091949</a> - 28 Aug 2020 </div> <a href="/2073-4360/12/9/1949#metrics">Cited by 47</a> |&nbsp;Viewed by 6196 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/1949/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand. <a href="/2073-4360/12/9/1949">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/9/1949/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev405515"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next405515"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next405515" data-cycle-prev="#prev405515" data-cycle-progressive="#images405515" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-405515-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g001-550.jpg?1598786296" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images405515" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g002-550.jpg?1598786296'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g003-550.jpg?1598786297'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g004-550.jpg?1598786297'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g005-550.jpg?1598786296'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g006-550.jpg?1598786297'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g007-550.jpg?1598786297'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g008-550.jpg?1598786297'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g009-550.jpg?1598786296'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g010-550.jpg?1598786296'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g011-550.jpg?1598786296'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g012-550.jpg?1598786297'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g013-550.jpg?1598786297'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-405515-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g014-550.jpg?1598786297'><p>Figure 14</p></div></script></div></div><div id="article-405515-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g001-550.jpg?1598786296" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Multilayer assembly made of biogenic polyelectrolytes and their biomedical applications.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g002-550.jpg?1598786296" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Layer-by-layer approach for PEM fabrication: a negatively charged substrate is alternately immersed (&lt;b&gt;A&lt;/b&gt;) (or sprayed (&lt;b&gt;B&lt;/b&gt;), for instance) in polycation and polyanion solutions, respectively. Washing steps are to remove unbound polyelectrolytes. Colour-coding: polyanion (blue); polycation (red). Figure adapted with permission from reference [&lt;a href=&quot;#B23-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;23&lt;/a&gt;], copyright © 2020 Elsevier Ltd.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g003-550.jpg?1598786297" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Dynamics within PEMs. Figure taken from reference [&lt;a href=&quot;#B97-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;97&lt;/a&gt;]. Copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g004-550.jpg?1598786297" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Scheme of the microfibre coated with the PEM and the focal plane and FRAP experiment. Figure taken from reference [&lt;a href=&quot;#B108-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;108&lt;/a&gt;], Copyright © 2020 Elsevier Ltd. (&lt;b&gt;B&lt;/b&gt;) Distribution of diffusion coefficients of CytC loaded into (HA/PLL)&lt;sub&gt;24&lt;/sub&gt; multilayers, where 24 is the number of polymer bilayers. Figure taken from reference [&lt;a href=&quot;#B109-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;109&lt;/a&gt;], Copyright © 2020 American Chemical Society (&lt;a href=&quot;https://pubs.acs.org/doi/10.1021/acs.jpcb.7b11051&quot; target=&quot;_blank&quot;&gt;https://pubs.acs.org/doi/10.1021/acs.jpcb.7b11051&lt;/a&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g005-550.jpg?1598786296" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Examining PLL mobility within (PLL/HA)&lt;sub&gt;50&lt;/sub&gt; films using CLSM and FRAP experiments: cross-sectional CLSM images of (PLL/HA)&lt;sub&gt;50&lt;/sub&gt;-PLL&lt;sup&gt;F&lt;/sup&gt; (top) and (PLL/HA)&lt;sub&gt;25&lt;/sub&gt;-(PLL&lt;sup&gt;F&lt;/sup&gt;/HA)-(PLL/HA)&lt;sub&gt;24&lt;/sub&gt; films (bottom) assembled with PLL&lt;sup&gt;30&lt;/sup&gt;, PLL&lt;sup&gt;90&lt;/sup&gt;, and PLL&lt;sup&gt;400&lt;/sup&gt; (left to right). Green indicates PLL&lt;sup&gt;F&lt;/sup&gt; and red indicates the glass substrate. The scale bar is 10 μm. Figure taken from reference [&lt;a href=&quot;#B129-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;129&lt;/a&gt;], Copyright © 2020 John Wiley and Sons Ltd.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g006-550.jpg?1598786297" title=" <strong>Figure 6</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) PSS/PDADMAC multilayers containing only polyion-polyion interactions (i.e., intrinsic charge compensation) and (&lt;b&gt;B&lt;/b&gt;) the same multilayers but overcharged or overcompensated; also containing extrinsic polyion-counter ion interactions. Figure taken from reference [&lt;a href=&quot;#B130-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;130&lt;/a&gt;], copyright © 2020 Royal Society of Chemistry.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g007-550.jpg?1598786297" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Models of film build up. &lt;b&gt;(FI&lt;/b&gt;) Model of the restructuration zone; (&lt;b&gt;a&lt;/b&gt;) initial film build-up upon the substrate, (&lt;b&gt;b&lt;/b&gt;) the development of the diffusion zone within the film, and (&lt;b&gt;c&lt;/b&gt;) the formation of the re-structuration zone, including the case where the number of deposition steps increases from &lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; to &lt;span class=&quot;html-italic&quot;&gt;n +&lt;/span&gt; 1 (&lt;b&gt;FII&lt;/b&gt;) The substrate for film fabrication is shown as a horizontal slab. The film resulting from successive polymer adsorption steps is shown via different colours, each representing a polymer layer. (&lt;b&gt;A&lt;/b&gt;) Island model, (&lt;b&gt;B&lt;/b&gt;) Dendritic model, and (&lt;b&gt;C&lt;/b&gt;) Approximate growth of material deposited. (&lt;b&gt;FI&lt;/b&gt;) is taken from reference [&lt;a href=&quot;#B139-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;139&lt;/a&gt;], Copyright © 2020 American Chemical Society. (&lt;b&gt;FII&lt;/b&gt;) is taken from reference [&lt;a href=&quot;#B137-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;137&lt;/a&gt;], copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g008-550.jpg?1598786297" title=" <strong>Figure 8</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Temperature change from 65 °C to 25 °C; (&lt;b&gt;b&lt;/b&gt;) Temperature change from 25 °C to 65 °C at the 21st bilayer. The blue triangles represent film preparation at 25 °C and 65 °C without the temperature change after 21 bilayers. (&lt;b&gt;c&lt;/b&gt;) Mass coverage of PLL in the HA/PLL film formed at different temperatures. The inset shows the enlarged growth profile until 15 bilayers. Figure taken from reference [&lt;a href=&quot;#B141-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;141&lt;/a&gt;], copyright © 2020 Published by the PCCP Owner Societies.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g009-550.jpg?1598786296" title=" <strong>Figure 9</strong><br/> &lt;p&gt;PEM thickness obtained from in situ Fourier transform-surface plasmon resonance (FT-SPR) data as a function of layer number and pH for 0.1 M buffer (&lt;b&gt;a&lt;/b&gt;), 0.2 M buffer (&lt;b&gt;b&lt;/b&gt;), and 0.5 M buffer (&lt;b&gt;c&lt;/b&gt;). Odd numbered layers are CHI and even-numbered layers are HS. (&lt;b&gt;d&lt;/b&gt;) Average incremental bilayer thickness of PEM at different buffer conditions as a function of pH. Figures taken from reference [&lt;a href=&quot;#B71-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;71&lt;/a&gt;], Copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g010-550.jpg?1598786296" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Dependence of the degree of swelling for (PLL/HA)&lt;sub&gt;75&lt;/sub&gt; films assembled at pH 5 (°) and 9 (●). Figure taken from reference [&lt;a href=&quot;#B145-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;145&lt;/a&gt;], Copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g011-550.jpg?1598786296" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Schematic demonstrating the effect of pH on the molecular mobility of multi-layered films, considering the different intermolecular interactions behind them. Figure taken from reference [&lt;a href=&quot;#B168-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;168&lt;/a&gt;], copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g012-550.jpg?1598786297" title=" <strong>Figure 12</strong><br/> &lt;p&gt;Fluorescence images of MC3T3-E1 cells after 10 days of culture atop native, GnP25- and GnP50-crosslinked PEI/(CS/PLL)n films in standard medium (blue: DAPI-labelled nuclei; green: FITC-labelled actin network) Scale bars are 100 μm (&lt;b&gt;A&lt;/b&gt;). Proliferation of cells upon the various films, as measured by Alamar Blue assays, after 2, 5, and 9 days (D2, D5, D9, respectively) of culture (&lt;b&gt;B&lt;/b&gt;). * represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 with respect to the corresponding native films. Figure taken from reference [&lt;a href=&quot;#B81-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;81&lt;/a&gt;], Copyright © 2020 American Chemical Society.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g013-550.jpg?1598786297" title=" <strong>Figure 13</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) The mechanical properties of non-cross-linked, NHS/EDC or genipin cross-linked PLL/HA, PLL/ALG and CHI/CS films. (&lt;b&gt;B&lt;/b&gt;) The Young’s modulus of PLL/ HA films modified by graphene flakes, silicon carbide or silver nanoparticles, as well as films without nanoparticles is shown. Results obtained for non-cross- linked, 400 mM NHS/EDC and 10 mM genipin cross-linked samples are presented. * represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 vs. non-cross-linked sample with graphene flakes; ** represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 vs. non-cross-linked sample with SiC; *** represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 vs. non-cross-linked sample with Ag; **** represents &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 vs. non-cross-linked sample without nanoparticles. Figure taken from reference [&lt;a href=&quot;#B183-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;183&lt;/a&gt;], &lt;b&gt;&lt;span class=&quot;html-italic&quot;&gt;C&lt;/span&gt;&lt;/b&gt;opyright © 2020 Royal Society of Chemistry.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01949/article_deploy/html/images/polymers-12-01949-g014-550.jpg?1598786297" title=" <strong>Figure 14</strong><br/> &lt;p&gt;Vertical section of PEM observed by CLSM of a (PLL/HA)&lt;sub&gt;50&lt;/sub&gt;/PLL&lt;sup&gt;FITC&lt;/sup&gt; film built in 0.15 M NaCl and swelled by immersion in solutions of increasing NaCl concentrations, up to 0.48 M, followed as a function of time. The scale bars represent 50 μm for (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;b&lt;/b&gt;,&lt;b&gt;c&lt;/b&gt;), 60 μm for (&lt;b&gt;d&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;), and 80 μm for (&lt;b&gt;g&lt;/b&gt;,&lt;b&gt;h&lt;/b&gt;,&lt;b&gt;i&lt;/b&gt;). Figure taken from reference [&lt;a href=&quot;#B167-polymers-12-01949&quot; class=&quot;html-bibr&quot;&gt;167&lt;/a&gt;], Copyright © 2020 Royal Society of Chemistry.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/9/1949'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-392150" aria-controls="drop-supplementary-392150" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-392150" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/12/8/1712/s1?version=1596107337"> Supplementary File 1 (PDF, 361 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 4065 KiB &nbsp; </span> <a href="/2073-4360/12/8/1712/pdf?version=1596183500" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/8/1712">Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation</a> <div class="authors"> by <span class="inlineblock "><strong>Miran Hannah Choi</strong>, </span><span class="inlineblock "><strong>Alexandra Blanco</strong>, </span><span class="inlineblock "><strong>Samuel Stealey</strong>, </span><span class="inlineblock "><strong>Xin Duan</strong>, </span><span class="inlineblock "><strong>Natasha Case</strong>, </span><span class="inlineblock "><strong>Scott Allen Sell</strong>, </span><span class="inlineblock "><strong>Muhammad Farooq Rai</strong> and </span><span class="inlineblock "><strong>Silviya Petrova Zustiak</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(8), 1712; <a href="https://doi.org/10.3390/polym12081712">https://doi.org/10.3390/polym12081712</a> - 30 Jul 2020 </div> <a href="/2073-4360/12/8/1712#metrics">Cited by 18</a> |&nbsp;Viewed by 4786 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/8/1712/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly from the body diminishing its therapeutic efficacy. This highlights a need for a delivery vehicle for a sustained release of PRP to improve its therapeutic effect. In this study, we used microfluidics to fabricate biodegradable PRP-loaded polyethylene glycol (PEG) microspheres. PRP was incorporated into the microspheres as a lyophilized PRP powder either as is (powder PRP) or first solubilized and pre-clotted to remove clots (liquid PRP). A high PRP loading of 10% <i>w</i>/<i>v</i> was achieved for both PRP preparations. We characterized the properties of the resulting PRP-loaded PEG microspheres including swelling, modulus, degradation, and protein release as a function of PRP loading and preparation. Overall, loading powder PRP into the PEG microspheres significantly affected the properties of microspheres, with the most pronounced effect noted in degradation. We further determined that microsphere degradation in the presence of powder PRP was affected by platelet aggregation and clotting. Platelet aggregation did not prevent but prolonged sustained PRP release from the microspheres. The delivery system developed and characterized herein could be useful for the loading and releasing of PRP to promote tissue regeneration and wound healing or to suppress tissue degeneration in osteoarthritis, and intervertebral disc degeneration. <a href="/2073-4360/12/8/1712">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/8/1712/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev392150"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next392150"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next392150" data-cycle-prev="#prev392150" data-cycle-progressive="#images392150" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-392150-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-ag-550.jpg?1598608281" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images392150" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g001-550.jpg?1598608280'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g002-550.jpg?1598608280'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g003-550.jpg?1598608280'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g004-550.jpg?1598608280'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g005-550.jpg?1598608280'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g006-550.jpg?1598608280'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g007-550.jpg?1598608280'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g008-550.jpg?1598608280'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g009-550.jpg?1598608281'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-392150-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g010-550.jpg?1598608280'><p>Figure 10</p></div></script></div></div><div id="article-392150-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-ag-550.jpg?1598608281" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g001-550.jpg?1598608280" title=" <strong>Figure 1</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Schematic of powder and liquid platelet-rich plasma (PRP) preparation. Lyophilized PRP is dissolved in buffer to prepare the powder PRP formulation. Powder PRP is then incubated for 24 h to form clots and clots are removed via centrifugation to prepare the liquid PRP formulation. Both powder and liquid PRP were used for further experiments. (&lt;b&gt;B&lt;/b&gt;) Total protein content of reconstituted powder and pre-clotted liquid PRP. The total protein content was normalized by the protein content of the powder PRP. *denotes significant difference compared to powder PRP (&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05). (&lt;b&gt;C&lt;/b&gt;) Representative Coomassie-stained 1D electrophoresis gel.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g002-550.jpg?1598608280" title=" <strong>Figure 2</strong><br/> &lt;p&gt;PRP-loaded microsphere fabrication via microfluidics. (&lt;b&gt;A&lt;/b&gt;) Four-arm polyethylene glycol (PEG)–acrylate (PEG–Ac), PEG–dithiol crosslinker (PEG–diSH or PEG-diester-dithiol-1 (PEGDD-1)) -1) and either powder or liquid PRP were dissolved in 0.3 M triethanolamine (TEA) buffer of pH 7.4. A polymer network physically entrapping the PRP was then formed by Michael-type addition between the acrylate and thiol groups of the 4-arm PEG–Ac macromer and the dithiol crosslinker. (&lt;b&gt;B&lt;/b&gt;) Olive oil and PRP-loaded PEG precursor solution were loaded into syringes and mounted on syringe pumps connected to a T-junction microchannel. PRP-loaded PEG microspheres were then collected in an olive oil bath and allowed to gel overnight.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g003-550.jpg?1598608280" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Mean diameters of PEG-only, powder PRP, and liquid PRP-loaded microspheres at olive oil flow rate of 1000 μL/min and PEG precursor solution flow rate of 10 μL/min. Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH as a crosslinker at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder and liquid PRP were loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;. All diameters were measured in oil, prior to microsphere washing. * indicates statistical difference from all other conditions (n = 100; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05). Inset: Representative microscopy images of microspheres. Scale bar is 100 µm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g004-550.jpg?1598608280" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Swelling of PEG microspheres as a function of PRP loading. (&lt;b&gt;A&lt;/b&gt;) Images of PEG-only, powder PRP, and liquid PRP-loaded microspheres before and after swelling. Scale bar is 100 µm. (&lt;b&gt;B&lt;/b&gt;) Percent swelling of PEG-only, powder PRP, and liquid PRP-loaded microspheres * indicates statistical difference from all other conditions (n = 50; &lt;span class=&quot;html-italic&quot;&gt;p &amp;lt;&lt;/span&gt; 0.05). (&lt;b&gt;C&lt;/b&gt;) Representative histograms for the size distribution of one batch of fabricated microspheres of PEG-only, powder PRP, and liquid PRP. Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH as a crosslinker at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder and liquid PRP were loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g005-550.jpg?1598608280" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Storage moduli of microspheres as a function of PRP loading. (&lt;b&gt;A&lt;/b&gt;) Representative images of powder PRP-loaded microspheres encapsulated in a bulk PEG hydrogel (10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG) for rheology measurements. (&lt;b&gt;B&lt;/b&gt;) Representative data for storage moduli of microspheres as a function of PRP loading (n = 3). Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH as a crosslinker at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder and liquid PRP were loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g006-550.jpg?1598608280" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Degradation of microspheres as a function of PRP loading. (&lt;b&gt;A&lt;/b&gt;) Microscopic images of 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; powder PRP-loaded microspheres in PBS. Microspheres were loaded with 1% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; red-fluorescent beads for visualization. Degradation was noted by fluorescent beads being dispersed in the surrounding medium as opposed to being confined in the microspheres. (&lt;b&gt;B&lt;/b&gt;) Degradation time for powder-PRP loaded microspheres as a function of PRP concentration. Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH as a crosslinker at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g007-550.jpg?1598608280" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Degradation of PEG microspheres as a function of PRP loading in mouse knee. Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH as a crosslinker at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder PRP was loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;. Infrared FluoroSphere-loaded PEG hydrogel microspheres with or without PRP were injected into the mouse knee by intra-articular injection. The fluorescent signal was followed up to 42 days after injection by an In Vivo Imaging System. PBS injection served as a control. Results showed that both PEG-only and PRP-loaded microspheres were present in the joint space (indicated by yellow arrow) 14 days after injection but only PRP-loaded microspheres remained there until 42 days after injection.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g008-550.jpg?1598608280" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Degradation of PEG-only and PRP-loaded PEG microspheres in PBS as a function of the crosslinker used for microsphere preparation. (&lt;b&gt;A&lt;/b&gt;) Chemical structures of PEGDD-1 and PEG–diSH. (&lt;b&gt;B&lt;/b&gt;) Microsphere degradation time. Microspheres were prepared with 4-arm PEG–Ac and PEG–diSH or PEGDD-1 as a crosslinker at 7.5% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder PRP was loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;. * denotes significant difference between groups (n = 50; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g009-550.jpg?1598608281" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Degradation of PRP-loaded microspheres as a function of plasmin addition or absence of Ca&lt;sup&gt;2+&lt;/sup&gt; during fabrication. Representative microscopic images of microspheres were taken on day 1 and 8. Scale bar is 100 µm for day 1 and day 8; scale bar is 50 µm for magnified images, day 8. Microspheres were prepared with 4-arm PEG–Ac and PEGDD-1 as a crosslinker at 7.5% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt; in PEG. Powder PRP was loaded at 10% &lt;span class=&quot;html-italic&quot;&gt;w&lt;/span&gt;/&lt;span class=&quot;html-italic&quot;&gt;v&lt;/span&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01712/article_deploy/html/images/polymers-12-01712-g010-550.jpg?1598608280" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Release of powder and liquid PRP from PEG microspheres. (&lt;b&gt;A&lt;/b&gt;) Normalized release profiles of powder PRP and liquid PRP-loaded microspheres. Both PBS and DPBS were used as release buffers where DPBS prevented clotting of PRP upon release. (&lt;b&gt;B&lt;/b&gt;) Calculated effective diffusion coefficient for PRP release from powder PRP and liquid PRP-loaded microspheres in PBS and DPBS buffers. * denotes significant difference between all groups (n = 6; &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/8/1712'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 21 pages, 1667 KiB &nbsp; </span> <a href="/2073-4360/12/7/1566/pdf?version=1595250290" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Polymer-Based Scaffolds for Soft-Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/7/1566">Polymer-Based Scaffolds for Soft-Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Victor Perez-Puyana</strong>, </span><span class="inlineblock "><strong>Mercedes Jiménez-Rosado</strong>, </span><span class="inlineblock "><strong>Alberto Romero</strong> and </span><span class="inlineblock "><strong>Antonio Guerrero</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(7), 1566; <a href="https://doi.org/10.3390/polym12071566">https://doi.org/10.3390/polym12071566</a> - 15 Jul 2020 </div> <a href="/2073-4360/12/7/1566#metrics">Cited by 54</a> |&nbsp;Viewed by 5996 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1566/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support cells during their growth and fulfill the function of the replaced tissue until its regeneration. These materials, called scaffolds, have been developed with a wide variety of materials and processes, with the polymer ones being the most advanced. For this reason, the need arises for a review that compiles the techniques most used in the development of polymer-based scaffolds. This review has focused on three of the most used techniques: freeze-drying, electrospinning and 3D printing, focusing on current and future trends. In addition, the advantages and disadvantages of each of them have been compared. <a href="/2073-4360/12/7/1566">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1566/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev384765"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next384765"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next384765" data-cycle-prev="#prev384765" data-cycle-progressive="#images384765" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-384765-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-ag-550.jpg?1595250371" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images384765" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g001-550.jpg?1595250367'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g002-550.jpg?1595250367'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g003-550.jpg?1595250367'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g004-550.jpg?1595250367'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g005-550.jpg?1595250367'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-384765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g006-550.jpg?1595250367'><p>Figure 6</p></div></script></div></div><div id="article-384765-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-ag-550.jpg?1595250371" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g001-550.jpg?1595250367" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Timeline of the evolution of freeze-drying over history.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g002-550.jpg?1595250367" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Timeline of the evolution of “electrospinning” over history.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g003-550.jpg?1595250367" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Schematic illustration of the electrospinning process and the fibrous structure achieved.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g004-550.jpg?1595250367" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Timeline of the evolution of “3D printing” over history.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g005-550.jpg?1595250367" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Schematic illustration of 3D printing by the modeled fused deposition technology.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01566/article_deploy/html/images/polymers-12-01566-g006-550.jpg?1595250367" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Evolution of the number of publications related to the use of freeze-drying, electrospinning and 3D printing in the biomaterials field. Data obtained from web of science. A magnification of the number of publications concerning 3D printing has also been included.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1566'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 5123 KiB &nbsp; </span> <a href="/2073-4360/12/7/1501/pdf?version=1594004823" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/7/1501">Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Soundhar Arumugam</strong>, </span><span class="inlineblock "><strong>Jayakrishna Kandasamy</strong>, </span><span class="inlineblock "><strong>Ain Umaira Md Shah</strong>, </span><span class="inlineblock "><strong>Mohamed Thariq Hameed Sultan</strong>, </span><span class="inlineblock "><strong>Syafiqah Nur Azrie Safri</strong>, </span><span class="inlineblock "><strong>Mohd Shukry Abdul Majid</strong>, </span><span class="inlineblock "><strong>Adi Azriff Basri</strong> and </span><span class="inlineblock "><strong>Faizal Mustapha</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(7), 1501; <a href="https://doi.org/10.3390/polym12071501">https://doi.org/10.3390/polym12071501</a> - 6 Jul 2020 </div> <a href="/2073-4360/12/7/1501#metrics">Cited by 48</a> |&nbsp;Viewed by 5158 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1501/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young&rsquo;s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41&deg; &plusmn; 1.71&deg;) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28&deg; &plusmn; 3.06&deg;). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future. <a href="/2073-4360/12/7/1501">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1501/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev380697"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next380697"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next380697" data-cycle-prev="#prev380697" data-cycle-progressive="#images380697" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-380697-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-ag-550.jpg?1594004928" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images380697" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g001-550.jpg?1594004922'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g002-550.jpg?1594004923'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g003-550.jpg?1594004925'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g004-550.jpg?1594004923'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g005-550.jpg?1594004923'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g006-550.jpg?1594004923'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g007-550.jpg?1594004924'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g008-550.jpg?1594004924'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g009-550.jpg?1594004923'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g010-550.jpg?1594004923'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g011-550.jpg?1594004924'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g012-550.jpg?1594004924'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-380697-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g013-550.jpg?1594004922'><p>Figure 13</p></div></script></div></div><div id="article-380697-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-ag-550.jpg?1594004928" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g001-550.jpg?1594004922" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Sandwich structure of GF/SF/CTS composite scaffolds.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g002-550.jpg?1594004923" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Stress Vs. strain variation of GF/SF/CTS composite scaffolds under tensile test.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g003-550.jpg?1594004925" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Tensile modulus vs. tensile strength of GF/SF/CTS composite scaffolds. Data are represented as means of triplicate (n = 3) ± SD, where **** indicates &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.0001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g004-550.jpg?1594004923" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Stress vs. strain variation of GF/SF/CTS composite scaffolds under a three-point bending test.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g005-550.jpg?1594004923" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Flexural modulus vs. flexural strength of GF/SF/CTS composite scaffolds. Data are represented as means of triplicate (n = 3) ± SD, where **** indicates &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.0001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g006-550.jpg?1594004923" title=" <strong>Figure 6</strong><br/> &lt;p&gt;GF/SF/CTS hybrid sandwich composite scaffolds in a three-point bending.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g007-550.jpg?1594004924" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Stress Vs. strain variation of GF/SF/CTS composite scaffolds under compressive test.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g008-550.jpg?1594004924" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Compressive modulus vs. compressive strength of GF/SF/CTS composite scaffolds. Data are represented as means of triplicate (n = 3) ± SD, where *** indicates &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; ≤ 0.001.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g009-550.jpg?1594004923" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Micro hardness of GF/SF/CTS composite scaffolds.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g010-550.jpg?1594004923" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Tensile fractured surface of different composite: (&lt;b&gt;a&lt;/b&gt;) A1 (&lt;b&gt;b&lt;/b&gt;) A2 (&lt;b&gt;c&lt;/b&gt;) A3 (&lt;b&gt;d&lt;/b&gt;) A4 (&lt;b&gt;e&lt;/b&gt;) A5, and (&lt;b&gt;f&lt;/b&gt;) A6.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g011-550.jpg?1594004924" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Flexural fractured surface of different composite: (&lt;b&gt;a&lt;/b&gt;) A1, (&lt;b&gt;b&lt;/b&gt;) A2, (&lt;b&gt;c&lt;/b&gt;) A3, (&lt;b&gt;d&lt;/b&gt;) A4, (&lt;b&gt;e&lt;/b&gt;) A5, and (&lt;b&gt;f&lt;/b&gt;) A6 composites.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g012-550.jpg?1594004924" title=" <strong>Figure 12</strong><br/> &lt;p&gt;Compressive fractured surface of different composite used in this study: (&lt;b&gt;a&lt;/b&gt;) A1, (&lt;b&gt;b&lt;/b&gt;) A2, (&lt;b&gt;c&lt;/b&gt;) A3, (&lt;b&gt;d&lt;/b&gt;) A4, (&lt;b&gt;e&lt;/b&gt;) A5, and (&lt;b&gt;f&lt;/b&gt;) A6 composites.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01501/article_deploy/html/images/polymers-12-01501-g013-550.jpg?1594004922" title=" <strong>Figure 13</strong><br/> &lt;p&gt;Water absorption of GF/SF/CTS and SF/CTS composites.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1501'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 4375 KiB &nbsp; </span> <a href="/2073-4360/12/7/1444/pdf?version=1593930093" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Sol–Gel Synthesis, Physico-Chemical and Biological Characterization of Cerium Oxide/Polyallylamine Nanoparticles" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/7/1444">Sol–Gel Synthesis, Physico-Chemical and Biological Characterization of Cerium Oxide/Polyallylamine Nanoparticles</a> <div class="authors"> by <span class="inlineblock "><strong>Motaharesadat Hosseini</strong>, </span><span class="inlineblock "><strong>Issa Amjadi</strong>, </span><span class="inlineblock "><strong>Mohammad Mohajeri</strong> and </span><span class="inlineblock "><strong>Masoud Mozafari</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(7), 1444; <a href="https://doi.org/10.3390/polym12071444">https://doi.org/10.3390/polym12071444</a> - 28 Jun 2020 </div> <a href="/2073-4360/12/7/1444#metrics">Cited by 29</a> |&nbsp;Viewed by 4778 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Cerium oxide nanoparticles (CeO<sub>2</sub>-NPs) have great applications in different industries, including nanomedicine. However, some studies report CeO<sub>2</sub>-NPs-related toxicity issues that limit their usage and efficiency. In this study, the sol&ndash;gel method was applied to the synthesis of CeO<sub>2</sub> <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1444/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Cerium oxide nanoparticles (CeO<sub>2</sub>-NPs) have great applications in different industries, including nanomedicine. However, some studies report CeO<sub>2</sub>-NPs-related toxicity issues that limit their usage and efficiency. In this study, the sol&ndash;gel method was applied to the synthesis of CeO<sub>2</sub>-NPs using poly(allylamine) (PAA) as a capping and/or stabilizing agent. The different molecular weights of PAA (15,000, 17,000, and 65,000 g/mol) were used to investigate the physico-chemical and biological properties of the NPs. In order to understand their performance as an anticancer agent, three cell lines (MCF7, HeLa, and erythrocyte) were analyzed by MTT assay and RBC hemolysis assay. The results showed that the CeO<sub>2</sub>-NPs had anticancer effects on the viability of MCF7 cells with half-maximal inhibitory concentration (IC50) values of 17.44 &plusmn; 7.32, 6.17 &plusmn; 1.68, and 0.12 &plusmn; 0.03 &mu;g/mL for PAA15000, PAA17000, PAA65000, respectively. As for HeLa cells, IC50 values reduced considerably to 8.09 &plusmn; 1.55, 2.11 &plusmn; 0.33, and 0.20 &plusmn; 0.01 &mu;g/mL, in order. A decrease in the viability of cancer cells was associated with the 50% hemolytic concentration (HC50) of 0.022 &plusmn; 0.001 mg/mL for PAA15000, 3.74 &plusmn; 0.58 mg/mL for PAA17000, and 7.35 &plusmn; 1.32 mg/mL for PAA65000. Ultraviolet-Visible (UV-vis) spectroscopy indicated that an increase in the PAA molecular weight led to a blue shift in the bandgap and high amounts of Ce<sup>3+</sup> on the surface of the nanoceria. Thus, PAA65000 could be considered as a biocompatible nanoengineered biomaterial for potential applications in cancer nanomedicine. <a href="/2073-4360/12/7/1444">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/7/1444/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev377341"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next377341"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next377341" data-cycle-prev="#prev377341" data-cycle-progressive="#images377341" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-377341-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-ag-550.jpg?1593930181" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images377341" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g001-550.jpg?1593930178'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g002-550.jpg?1593930178'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g003-550.jpg?1593930178'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g004-550.jpg?1593930179'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g005-550.jpg?1593930178'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g006-550.jpg?1593930178'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-377341-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g007-550.jpg?1593930178'><p>Figure 7</p></div></script></div></div><div id="article-377341-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-ag-550.jpg?1593930181" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g001-550.jpg?1593930178" title=" <strong>Figure 1</strong><br/> &lt;p&gt;FTIR spectra of CeO&lt;sub&gt;2&lt;/sub&gt;–NPs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g002-550.jpg?1593930178" title=" <strong>Figure 2</strong><br/> &lt;p&gt;TGA/DrTGA curves of the as-prepared gels with (&lt;b&gt;a&lt;/b&gt;) PAA15000 and (&lt;b&gt;b&lt;/b&gt;) PAA17000.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g003-550.jpg?1593930178" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Powder X-ray diffraction (PXRD) patterns of CeO&lt;sub&gt;2&lt;/sub&gt;–NPs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g004-550.jpg?1593930179" title=" <strong>Figure 4</strong><br/> &lt;p&gt;FESEM images of CeO&lt;sub&gt;2&lt;/sub&gt;–NP prepared by (&lt;b&gt;a&lt;/b&gt;) PAA15000, (&lt;b&gt;b&lt;/b&gt;) PAA17000, (&lt;b&gt;c&lt;/b&gt;) PAA65000.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g005-550.jpg?1593930178" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Optical absorption (&lt;b&gt;a&lt;/b&gt;) and Tauc plot (&lt;b&gt;b&lt;/b&gt;) of CeO&lt;sub&gt;2&lt;/sub&gt;-NPs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g006-550.jpg?1593930178" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Hemolysis activity of CeO&lt;sub&gt;2&lt;/sub&gt;-NPs.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01444/article_deploy/html/images/polymers-12-01444-g007-550.jpg?1593930178" title=" <strong>Figure 7</strong><br/> &lt;p&gt;In vitro cytotoxicity of CeO&lt;sub&gt;2&lt;/sub&gt;–NPs after 24 h of incubation with different concentrations of CeO&lt;sub&gt;2&lt;/sub&gt;–NP prepared by (&lt;b&gt;a&lt;/b&gt;) PAA15000, (&lt;b&gt;b&lt;/b&gt;) PAA17000, (&lt;b&gt;c&lt;/b&gt;) PAA65000.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/7/1444'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 4376 KiB &nbsp; </span> <a href="/2073-4360/12/6/1256/pdf?version=1590836381" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Amphipathic Substrates Based on Crosslinker-Free Poly(ε-Caprolactone):Poly(2-Hydroxyethyl Methacrylate) Semi-Interpenetrated Networks Promote Serum Protein Adsorption" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/6/1256">Amphipathic Substrates Based on Crosslinker-Free Poly(ε-Caprolactone):Poly(2-Hydroxyethyl Methacrylate) Semi-Interpenetrated Networks Promote Serum Protein Adsorption</a> <div class="authors"> by <span class="inlineblock "><strong>Guillermo Vilariño-Feltrer</strong>, </span><span class="inlineblock "><strong>Alfredo Salgado-Gallegos</strong>, </span><span class="inlineblock "><strong>Joan de-la-Concepción-Ausina</strong>, </span><span class="inlineblock "><strong>José Carlos Rodríguez-Hernández</strong>, </span><span class="inlineblock "><strong>Mohsen Shahrousvand</strong> and </span><span class="inlineblock "><strong>Ana Vallés-Lluch</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(6), 1256; <a href="https://doi.org/10.3390/polym12061256">https://doi.org/10.3390/polym12061256</a> - 30 May 2020 </div> <a href="/2073-4360/12/6/1256#metrics">Cited by 5</a> |&nbsp;Viewed by 2605 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> A simple procedure has been developed to synthesize uncrosslinked soluble poly(hydroxyethyl methacrylate) (PHEMA) gels, ready for use in a subsequent fabrication stage. The presence of 75 wt % methanol (MetOH) or dimethylformamide (DMF) impedes lateral hydroxyl&ndash;hydroxyl hydrogen bonds between PHEMA macromers to form <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/6/1256/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> A simple procedure has been developed to synthesize uncrosslinked soluble poly(hydroxyethyl methacrylate) (PHEMA) gels, ready for use in a subsequent fabrication stage. The presence of 75 wt % methanol (MetOH) or dimethylformamide (DMF) impedes lateral hydroxyl&ndash;hydroxyl hydrogen bonds between PHEMA macromers to form during their solution polymerization at 60 &deg;C, up to 24 h. These gels remain soluble when properly stored in closed containers under cold conditions and, when needed, yield by solvent evaporation spontaneous physically-crosslinked PHEMA adapted to the mould used. Moreover, this two-step procedure allows obtaining multicomponent systems where a stable and water-affine PHEMA network would be of interest. In particular, amphiphilic polycaprolactone (PCL):PHEMA semi-interpenetrated (sIPN) substrates have been developed, from quaternary metastable solutions in chloroform (CHCl<sub>3</sub>):MetOH 3:1 wt. and PCL ranging from 50 to 90 wt % in the polymer fraction (thus determining the composition of the solution). The coexistence of these countered molecules, uniformly distributed at the nanoscale, has proven to enhance the number and interactions of serum protein adsorbed from the acellular medium as compared to the homopolymers, the sIPN containing 80 wt % PCL showing an outstanding development. In accordance to the quaternary diagram presented, this protocol can be adapted for the development of polymer substrates, coatings or scaffolds for biomedical applications, not relying upon phase separation, such as the electrospun mats here proposed herein (12 wt % polymer solutions were used for this purpose, with PCL ranging from 50% to 100% in the polymer fraction). <a href="/2073-4360/12/6/1256">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/6/1256/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev365060"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next365060"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next365060" data-cycle-prev="#prev365060" data-cycle-progressive="#images365060" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-365060-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g001-550.jpg?1590836467" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images365060" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g002-550.jpg?1590836467'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g003-550.jpg?1590836467'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-sch001-550.jpg?1590836467'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A1-550.jpg?1590836467'><p>Figure A1</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A2-550.jpg?1590836463'><p>Figure A2</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A3-550.jpg?1590836463'><p>Figure A3</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-365060-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A4-550.jpg?1590836467'><p>Figure A4</p></div></script></div></div><div id="article-365060-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g001-550.jpg?1590836467" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Topography and properties of APsIPN substrates. (&lt;b&gt;a&lt;/b&gt;) SEM micrographs of amphiphilic semi-interpenetrated (sIPN) substrates with different PCL mass fractions. Details show pictures of selected substrates on coverslips. Scale bar: 20 μm; (&lt;b&gt;b&lt;/b&gt;) Calorimetry of APsIPN substrates. Melting (T&lt;sub&gt;m&lt;/sub&gt;) and glass transition temperatures (T&lt;sub&gt;g&lt;/sub&gt;) of pure homopolymers are outlined; (&lt;b&gt;c&lt;/b&gt;) Contact angle of substrates with different PHEMA moieties in dry (void) and swollen (blue) conditions. Notice that the x-axis represents molar fraction (x), instead of mass fraction (ω).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g002-550.jpg?1590836467" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Serum protein adsorption on APsIPN substrates. (&lt;b&gt;a&lt;/b&gt;) Adsorbed serum protein per area, as measured from the adapted Micro BCA assay; (&lt;b&gt;b&lt;/b&gt;) Greyscale band quantification of stained SDS–PAGE acrylamide gels (6 and 15 wt %) for detached proteins. Significant bands are indicated as their corresponding molecular mass; (&lt;b&gt;c&lt;/b&gt;) Phase-contrast atomic force microscope (AFM) images of the array of APsIPN substrates and control (glass coverslip) in dry conditions (top), after a 30-min immersion in water (middle) and after incubation with 10% fetal bovine serum (FBS) (bottom). All samples were sprayed with distilled water and dried with argon prior to observation. Images are 1 μm side squares, normalized to (−30°, 30°) phase range.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g003-550.jpg?1590836467" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Validation of APsIPN solutions spinnability. SEM micrographs of resulting membranes after electrospinning (&lt;b&gt;a&lt;/b&gt;) 12 wt % or (&lt;b&gt;b&lt;/b&gt;) 25 wt % solutions of APsIPN80 in CHCl&lt;sub&gt;3&lt;/sub&gt;:MetOH 75:25 (3:1 ratio) at 25 °C. Scale bar: 10 μm; (&lt;b&gt;c&lt;/b&gt;) Complex viscosity measurements of APsIPN80 12 wt % solutions in CHCl&lt;sub&gt;3&lt;/sub&gt;:MetOH 3:1 at different temperatures for a wide range of oscillation strains. Samples revealed to be in gel phase (tan δ &amp;lt; 1), except 12 wt % solution at 25 °C for oscillation strain &amp;lt; 0.2% (as per data in &lt;a href=&quot;#polymers-12-01256-f0A4&quot; class=&quot;html-fig&quot;&gt;Figure A4&lt;/a&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-sch001-550.jpg?1590836467" title=" <strong>Scheme 1</strong><br/> &lt;p&gt;Preparation of PCL- poly(hydroxyethyl methacrylate) (PHEMA) quaternary solutions. (&lt;b&gt;a&lt;/b&gt;) Example of steps for the preparation of a quaternary 12 wt % polymer blend solution with 80 wt % PCL in the polymer fraction; (&lt;b&gt;b&lt;/b&gt;) Mass fraction of PHEMA in the polymer fraction, &lt;span class=&quot;html-italic&quot;&gt;ω&lt;sub&gt;pol&lt;/sub&gt;&lt;sup&gt;PHEMA&lt;/sup&gt;&lt;/span&gt;, versus mass fraction of polymer mixture (PCL + PHEMA) in the solution, &lt;span class=&quot;html-italic&quot;&gt;ω&lt;sub&gt;pol&lt;/sub&gt;&lt;/span&gt;. The dashed line depicts the physical limitation of the fabrication technique. Quaternary solutions used throughout the manuscript are represented with &lt;b&gt;x’s&lt;/b&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A1-550.jpg?1590836467" title=" <strong>Figure A1</strong><br/> &lt;p&gt;&lt;b&gt;Rheological properties of PHEMA solutions and gels.&lt;/b&gt; Storage (G’, red) and loss modulus (G”, blue) of PHEMA solutions {s} and “re-swelled” gels {g} in DMF (&lt;b&gt;a&lt;/b&gt;) or MetOH (&lt;b&gt;b&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A2-550.jpg?1590836463" title=" <strong>Figure A2</strong><br/> &lt;p&gt;&lt;b&gt;Effect of solvent over protein adsorption on homopolymer substrates.&lt;/b&gt; Comparison of serum protein adsorbed on substrates based in pure homopolymers (PCL = APsIPN100; PHEMA = APsIPN0). Pure solvents for PCL and PHEMA are CHCl&lt;sub&gt;3&lt;/sub&gt; and MetOH, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A3-550.jpg?1590836463" title=" <strong>Figure A3</strong><br/> &lt;p&gt;&lt;b&gt;Protein electrophoresis.&lt;/b&gt; Coomassie blue-stained gels at 6% (top) and 15% (bottom) acrylamide after SDS–PAGE of serum proteins, either detached from the substrates with loading buffer or diluted 1:100 &lt;span class=&quot;html-italic&quot;&gt;v/v&lt;/span&gt; from the FBS incubation supernatant.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01256/article_deploy/html/images/polymers-12-01256-g0A4-550.jpg?1590836467" title=" <strong>Figure A4</strong><br/> &lt;p&gt;&lt;b&gt;Oscillatory rheology of APsIPN80 solutions.&lt;/b&gt; Storage (G’, solid line) and loss (G”, dashed line) components of shear modulus versus oscillation strain for APsIPN80 12 wt % solutions in CHCl&lt;sub&gt;3&lt;/sub&gt;:MetOH 3:1 at different temperatures.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1256'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-364434" aria-controls="drop-supplementary-364434" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-364434" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/12/6/1233/s1?version=1590744161"> Supplementary File 1 (PDF, 362 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 3718 KiB &nbsp; </span> <a href="/2073-4360/12/6/1233/pdf?version=1658131459" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/6/1233">Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Turdimuhammad Abdullah</strong>, </span><span class="inlineblock "><strong>Kalamegam Gauthaman</strong>, </span><span class="inlineblock "><strong>Ahmed H. Hammad</strong>, </span><span class="inlineblock "><strong>Kasturi Joshi Navare</strong>, </span><span class="inlineblock "><strong>Ahmed A. Alshahrie</strong>, </span><span class="inlineblock "><strong>Sidi A. Bencherif</strong>, </span><span class="inlineblock "><strong>Ali Tamayol</strong> and </span><span class="inlineblock "><strong>Adnan Memic</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(6), 1233; <a href="https://doi.org/10.3390/polym12061233">https://doi.org/10.3390/polym12061233</a> - 29 May 2020 </div> <a href="/2073-4360/12/6/1233#metrics">Cited by 52</a> |&nbsp;Viewed by 5656 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/6/1233/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(<i>ε</i>-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications. <a href="/2073-4360/12/6/1233">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/6/1233/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev364434"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next364434"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next364434" data-cycle-prev="#prev364434" data-cycle-progressive="#images364434" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-364434-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-ag-550.jpg?1658131604" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images364434" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-364434-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g001-550.jpg?1658131603'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-364434-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g002-550.jpg?1658131594'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-364434-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g003-550.jpg?1658131598'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-364434-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g004-550.jpg?1658131600'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-364434-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g005-550.jpg?1658131590'><p>Figure 5</p></div></script></div></div><div id="article-364434-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-ag-550.jpg?1658131604" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g001-550.jpg?1658131603" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Schematic illustration describing the fabrication process of oxygen-releasing scaffolds by electrospinning.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g002-550.jpg?1658131594" title=" <strong>Figure 2</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Alizarin red S staining of the electrospun sheet with different concentration of CP, confirms incorporation of CP in PGS/PCL polymer network. (&lt;b&gt;b&lt;/b&gt;) XRD spectra of CP nanoparticles, PCL/PGS scaffold and composite scaffold. (&lt;b&gt;c&lt;/b&gt;) TEM image of the electrospun composite nanofiber demonstrates embedding of CP nanoparticles within the fiber. (&lt;b&gt;d&lt;/b&gt;,&lt;b&gt;e&lt;/b&gt;) DSC curve of PGS/PCL scaffold with different concentration of CP scaffold during heating (&lt;b&gt;d&lt;/b&gt;) and cooling (&lt;b&gt;e&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g003-550.jpg?1658131598" title=" <strong>Figure 3</strong><br/> &lt;p&gt;SEM images and size distributions of ball-milled CP particles (&lt;b&gt;a&lt;/b&gt;), PCL/PGS scaffold without CP (&lt;b&gt;b&lt;/b&gt;) and PCL/PGS scaffold with 1% (&lt;b&gt;c&lt;/b&gt;), 2.5% (&lt;b&gt;d&lt;/b&gt;), 5% (&lt;b&gt;e&lt;/b&gt;) and 10% (&lt;b&gt;f&lt;/b&gt;) CP. Scale bars = 1 µm (&lt;b&gt;a&lt;/b&gt;) and 10 µm (&lt;b&gt;b&lt;/b&gt;–&lt;b&gt;f&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g004-550.jpg?1658131600" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Degradation profiles in PBS buffer, and (&lt;b&gt;b&lt;/b&gt;) oxygen-releasing kinetics of the composite PGS/PCL scaffolds at various CP concentrations.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01233/article_deploy/html/images/polymers-12-01233-g005-550.jpg?1658131590" title=" <strong>Figure 5</strong><br/> &lt;p&gt;(&lt;b&gt;a&lt;/b&gt;) Antibacterial activity of the scaffolds against &lt;span class=&quot;html-italic&quot;&gt;S. aureus&lt;/span&gt; presented by zone of inhibition. (&lt;b&gt;b&lt;/b&gt;) Cell viability results for the scaffold-free 3D-printed ring (control), presented by the optical density (OD) value for the MTT assays. (&lt;b&gt;c&lt;/b&gt;) Cell metabolic activity of BM-MSCs in the scaffold. The data were normalized according to Equation (4) and represented as mean ± SD (&lt;span class=&quot;html-italic&quot;&gt;n&lt;/span&gt; = 3).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/6/1233'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 2873 KiB &nbsp; </span> <a href="/2073-4360/12/5/1150/pdf?version=1589789969" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/5/1150">Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Mohammad Amin Salati</strong>, </span><span class="inlineblock "><strong>Javad Khazai</strong>, </span><span class="inlineblock "><strong>Amir Mohammad Tahmuri</strong>, </span><span class="inlineblock "><strong>Ali Samadi</strong>, </span><span class="inlineblock "><strong>Ali Taghizadeh</strong>, </span><span class="inlineblock "><strong>Mohsen Taghizadeh</strong>, </span><span class="inlineblock "><strong>Payam Zarrintaj</strong>, </span><span class="inlineblock "><strong>Josh D. Ramsey</strong>, </span><span class="inlineblock "><strong>Sajjad Habibzadeh</strong>, </span><span class="inlineblock "><strong>Farzad Seidi</strong>, </span><span class="inlineblock "><strong>Mohammad Reza Saeb</strong> and </span><span class="inlineblock "><strong>Masoud Mozafari</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(5), 1150; <a href="https://doi.org/10.3390/polym12051150">https://doi.org/10.3390/polym12051150</a> - 18 May 2020 </div> <a href="/2073-4360/12/5/1150#metrics">Cited by 148</a> |&nbsp;Viewed by 10143 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The lack of adequate blood/lymphatic vessels as well as low-potential articular cartilage regeneration underlines the necessity to search for alternative biomaterials. Owing to their unique features, such as reversible thermogelling behavior and tissue-like mechanical behavior, agarose-based biomaterials have played a key role in <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/5/1150/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The lack of adequate blood/lymphatic vessels as well as low-potential articular cartilage regeneration underlines the necessity to search for alternative biomaterials. Owing to their unique features, such as reversible thermogelling behavior and tissue-like mechanical behavior, agarose-based biomaterials have played a key role in cartilage tissue repair. Accordingly, the need for fabricating novel highly efficient injectable agarose-based biomaterials as hydrogels for restoration of injured cartilage tissue has been recognized. In this review, the resources and conspicuous properties of the agarose-based biomaterials were reviewed. First, different types of signals together with their functionalities in the maintenance of cartilage homeostasis were explained. Then, various cellular signaling pathways and their significant role in cartilage tissue engineering were overviewed. Next, the molecular structure and its gelling behavior have been discussed. Eventually, the latest advancements, the lingering challenges, and future ahead of agarose derivatives from the cartilage regeneration perspective have been discussed. <a href="/2073-4360/12/5/1150">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/5/1150/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev359451"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next359451"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next359451" data-cycle-prev="#prev359451" data-cycle-progressive="#images359451" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-359451-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-ag-550.jpg?1589790062" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images359451" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-359451-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g001-550.jpg?1589790061'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-359451-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g002-550.jpg?1589790061'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-359451-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g003-550.jpg?1589790062'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-359451-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g004-550.jpg?1589790061'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-359451-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g005-550.jpg?1589790061'><p>Figure 5</p></div></script></div></div><div id="article-359451-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-ag-550.jpg?1589790062" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g001-550.jpg?1589790061" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Adjustable features of agarose can result in flexible characteristics similar to cells and tissues. Here, the conductivity and Young’s modulus of agarose-based biomaterials are patterned. Reprinted with permission from [&lt;a href=&quot;#B18-polymers-12-01150&quot; class=&quot;html-bibr&quot;&gt;18&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g002-550.jpg?1589790061" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Schematic of the cartilage tissue structure. (a) Collagen (type II) and chondrocytes are two major components of cartilage tissue, the application of cartilage tissue in different parts of the human body (reproduced with permission from [&lt;a href=&quot;#B42-polymers-12-01150&quot; class=&quot;html-bibr&quot;&gt;42&lt;/a&gt;]).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g003-550.jpg?1589790062" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Schematic illustration of extraction route for the production of (&lt;b&gt;a&lt;/b&gt;) agar from algae through a chemical treatment and physical filtration for (&lt;b&gt;b&lt;/b&gt;) agarose from agar source using DMSO solution.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g004-550.jpg?1589790061" title=" <strong>Figure 4</strong><br/> &lt;p&gt;The molecular structure of agarose and schematic of its gelling process (reprinted from [&lt;a href=&quot;#B21-polymers-12-01150&quot; class=&quot;html-bibr&quot;&gt;21&lt;/a&gt;]).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-01150/article_deploy/html/images/polymers-12-01150-g005-550.jpg?1589790061" title=" <strong>Figure 5</strong><br/> &lt;p&gt;cartilage injury after transplantation of different groups: (&lt;b&gt;i&lt;/b&gt;) nontransplant control, (&lt;b&gt;ii&lt;/b&gt;) autologous articular cartilage (AU), (&lt;b&gt;iii&lt;/b&gt;) allogeneic (same species, different rat) articular cartilage (AL), (&lt;b&gt;iv&lt;/b&gt;) allogeneic articular cartilage replacing agarose gel (ALA), (&lt;b&gt;v&lt;/b&gt;) allogeneic articular cartilage replacing agarose gel with bFGF (ALAB), (&lt;b&gt;vi&lt;/b&gt;) agarose gel (AG), and (&lt;b&gt;vii&lt;/b&gt;) agarose gel with bFGF (AGB). The cartilage restoration evaluation was drastically greater in the AU group than that in the AL group, as was the ALAB group compared with the ALA group. Assessment of histological data after transplantation. (&lt;b&gt;A&lt;/b&gt;,&lt;b&gt;B&lt;/b&gt;) Nontransplant control: amorphous reparative tissue filling the subchondral region. AU: intensive staining covering the defect. AL: the intensity of staining in the regenerated region was less than that of AU and ALAB. ALA: partly positive cartilage organization in the area. ALAB: amounts of cartilage-like tissue restored in the full-thickness defect. AG and AGB showed the agarose gel occupied the space and hindered the reconstructive process. (&lt;b&gt;C&lt;/b&gt;) Histological findings in knee cartilage in the transplantation site at postoperative week (POW) 3 and POW 6 (hematoxylin and eosin). At POWs 3 and 6, the ALAB and AU groups showed no obvious evidence of rejection. In the other two groups, chondrocytes with small, condensed nuclei were visible at each time point. Scale bar is 50 μm for all images (Reprinted with permission form [&lt;a href=&quot;#B83-polymers-12-01150&quot; class=&quot;html-bibr&quot;&gt;83&lt;/a&gt;]).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/5/1150'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 3258 KiB &nbsp; </span> <a href="/2073-4360/12/4/953/pdf?version=1587614689" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/4/953">Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Luis Amaro</strong>, </span><span class="inlineblock "><strong>Daniela M. Correia</strong>, </span><span class="inlineblock "><strong>Pedro M. Martins</strong>, </span><span class="inlineblock "><strong>Gabriela Botelho</strong>, </span><span class="inlineblock "><strong>Sónia A. C. Carabineiro</strong>, </span><span class="inlineblock "><strong>Clarisse Ribeiro</strong> and </span><span class="inlineblock "><strong>Senentxu Lanceros-Mendez</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(4), 953; <a href="https://doi.org/10.3390/polym12040953">https://doi.org/10.3390/polym12040953</a> - 20 Apr 2020 </div> <a href="/2073-4360/12/4/953#metrics">Cited by 20</a> |&nbsp;Viewed by 4043 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a piezoelectric biodegradable and biocompatible polymer suitable for tissue engineering applications. The incorporation of magnetostrictive cobalt ferrites (CFO) into PHBV matrix enables the production of magnetically responsive composites, which proved to be effective in the differentiation of a variety of <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/953/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a piezoelectric biodegradable and biocompatible polymer suitable for tissue engineering applications. The incorporation of magnetostrictive cobalt ferrites (CFO) into PHBV matrix enables the production of magnetically responsive composites, which proved to be effective in the differentiation of a variety of cells and tissues. In this work, PHBV and PHBV with CFO nanoparticles were produced in the form of films, fibers and porous scaffolds and subjected to an experimental program allowing to evaluate the degradation process under biological conditions for a period up to 8 weeks. The morphology, physical, chemical and thermal properties were evaluated, together with the weight loss of the samples during the in vitro degradation assays. No major changes in the mentioned properties were found, thus proving its applicability for tissue engineering applications. Degradation was apparent from week 4 and onwards, leading to the conclusion that the degradation ratio of the material is suitable for a large range of tissue engineering applications. Further, it was found that the degradation of the samples maintain the biocompatibility of the materials for the pristine polymer, but can lead to cytotoxic effects when the magnetic CFO nanoparticles are exposed, being therefore needed, for magnetoactive applications, to substitute them by biocompatible ferrites, such as an iron oxide (Fe<sub>3</sub>O<sub>4</sub>). <a href="/2073-4360/12/4/953">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/953/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev347845"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next347845"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next347845" data-cycle-prev="#prev347845" data-cycle-progressive="#images347845" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-347845-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g001-550.jpg?1588994270" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images347845" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g002-550.jpg?1588994270'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g003-550.jpg?1588994270'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g004a-550.jpg?1588994270'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g004b-550.jpg?1588994270'><p>Figure 4 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g005-550.jpg?1588994270'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g006-550.jpg?1588994270'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g007-550.jpg?1588994270'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-347845-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g008-550.jpg?1588994270'><p>Figure 8</p></div></script></div></div><div id="article-347845-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g001-550.jpg?1588994270" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Schematic representation of the steps involved in the degradation assays.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g002-550.jpg?1588994270" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and PHBV/cobalt ferrite (CFO) films, scaffolds and fibers after 1, 2, 4 and 6 weeks immersion in simulated body fluid (SBF) at 37 °C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g003-550.jpg?1588994270" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Cross-section SEM images of representative samples: PHBV/CFO films (&lt;b&gt;a&lt;/b&gt;,&lt;b&gt;b&lt;/b&gt;), PHBV fibers (&lt;b&gt;c&lt;/b&gt;,&lt;b&gt;d&lt;/b&gt;), PHBV/CFO fibers (&lt;b&gt;e&lt;/b&gt;,&lt;b&gt;f&lt;/b&gt;) and PHBV/CFO scaffolds (&lt;b&gt;g&lt;/b&gt;,&lt;b&gt;h&lt;/b&gt;), before and after degradation, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g004a-550.jpg?1588994270" title=" <strong>Figure 4</strong><br/> &lt;p&gt;FTIR spectra of the different PHBV and PHBV/CFO morphologies before (&lt;b&gt;a&lt;/b&gt;) and after (&lt;b&gt;b&lt;/b&gt;) 6 weeks of immersion in SBF. DSC thermograms of pristine and PHBV/CFO composites (&lt;b&gt;c&lt;/b&gt;) before and (&lt;b&gt;d&lt;/b&gt;) after 6 weeks of immersion in SBF, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g004b-550.jpg?1588994270" title=" <strong>Figure 4 Cont.</strong><br/> &lt;p&gt;FTIR spectra of the different PHBV and PHBV/CFO morphologies before (&lt;b&gt;a&lt;/b&gt;) and after (&lt;b&gt;b&lt;/b&gt;) 6 weeks of immersion in SBF. DSC thermograms of pristine and PHBV/CFO composites (&lt;b&gt;c&lt;/b&gt;) before and (&lt;b&gt;d&lt;/b&gt;) after 6 weeks of immersion in SBF, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g005-550.jpg?1588994270" title=" <strong>Figure 5</strong><br/> &lt;p&gt;XPS results of non-degraded and degraded PHBV and PHBV/CFO samples with different morphologies: (&lt;b&gt;a&lt;/b&gt;–&lt;b&gt;c&lt;/b&gt;) C1s scan spectra for films, fibers and scaffolds, respectively and (&lt;b&gt;d&lt;/b&gt;) O1s spectra.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g006-550.jpg?1588994270" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Schematic representation of the PHBV hydrolytic degradation [&lt;a href=&quot;#B56-polymers-12-00953&quot; class=&quot;html-bibr&quot;&gt;56&lt;/a&gt;].&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g007-550.jpg?1588994270" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Weight loss relative to the original mass after degradation for 2, 6 and 8 weeks in SBF for (&lt;b&gt;a&lt;/b&gt;) PHBV and PHBV/CFO films, (&lt;b&gt;b&lt;/b&gt;) fibers and (&lt;b&gt;c&lt;/b&gt;) scaffolds.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00953/article_deploy/html/images/polymers-12-00953-g008-550.jpg?1588994270" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Cytotoxicity assay results of MC3T3-E1 pre-osteoblast cells in contact with the as-prepared extraction media exposed to the different PHBV samples after six weeks of degradation for 72 h (relative metabolic activity was presented as the percentage of the negative control with n = 4 ± Standard Deviation).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/953'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 22 pages, 2274 KiB &nbsp; </span> <a href="/2073-4360/12/4/939/pdf?version=1587199248" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Recent Advances in Tissue Adhesives for Clinical Medicine" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/12/4/939">Recent Advances in Tissue Adhesives for Clinical Medicine</a> <div class="authors"> by <span class="inlineblock "><strong>Liangpeng Ge</strong> and </span><span class="inlineblock "><strong>Shixuan Chen</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(4), 939; <a href="https://doi.org/10.3390/polym12040939">https://doi.org/10.3390/polym12040939</a> - 18 Apr 2020 </div> <a href="/2073-4360/12/4/939#metrics">Cited by 103</a> |&nbsp;Viewed by 13814 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/939/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives. <a href="/2073-4360/12/4/939">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/939/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev347283"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next347283"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next347283" data-cycle-prev="#prev347283" data-cycle-progressive="#images347283" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-347283-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g001-550.jpg?1588994087" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images347283" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-347283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g002-550.jpg?1588994087'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-347283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g003-550.jpg?1588994087'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-347283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g004-550.jpg?1588994087'><p>Figure 4</p></div></script></div></div><div id="article-347283-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g001-550.jpg?1588994087" title=" <strong>Figure 1</strong><br/> &lt;p&gt;The schematic illustration of preparing multifunctional GelMA-TA hydrogel with high stiffness, super-elasticity, deformability (&lt;b&gt;A&lt;/b&gt;), and in vivo self-healing and adhesive property (&lt;b&gt;B&lt;/b&gt;). Biomedical applications of GelMA-TA gel for skin wound closure (&lt;b&gt;C&lt;/b&gt;), sutureless gastric surgery (&lt;b&gt;D&lt;/b&gt;). &lt;sup&gt;49&lt;/sup&gt; Copyright 2018, Elsevier.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/939'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g002-550.jpg?1588994087" title=" <strong>Figure 2</strong><br/> &lt;p&gt;The types of peel tests, including 180 degrees peel (&lt;b&gt;A&lt;/b&gt;), peel wheel (&lt;b&gt;B&lt;/b&gt;), T-peel (&lt;b&gt;C&lt;/b&gt;), Floating roller (115 degrees) (&lt;b&gt;D&lt;/b&gt;), floating roller or (without rollers) moving table (&lt;b&gt;E&lt;/b&gt;). The schematic of lap shear tests (&lt;b&gt;F&lt;/b&gt;). Citing from &lt;a href=&quot;http://www.mecmesin.com/peel-test-adhesion-testing&quot; target=&quot;_blank&quot;&gt;http://www.mecmesin.com/peel-test-adhesion-testing&lt;/a&gt;.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/939'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g003-550.jpg?1588994087" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Chemical structure of cPEG adhesive precursor. Photographs of precursor solution in phosphate-buffered saline before (&lt;b&gt;B&lt;/b&gt;) and after (&lt;b&gt;C&lt;/b&gt;) addition of aqueous sodium periodate solution; gel formation occurred within 20–30 s. (&lt;b&gt;D&lt;/b&gt;) Analysis of islet graft and cPEG adhesive explants. Top row: photographic images of the site of cPEG adhesive-mediated 150-islet transplantation at the epididymal fat pad and liver surface, immediately before graft explant on day 112. Immobilized islet bolus is visible on the external liver surface. Black arrows, cPEG adhesive. Middle row: representative light micrographs of hematoxylin and eosin (H&amp;amp;E)-stained graft explants. Adhesive, AD; islet, IS; epididymal fat tissue, EF; liver tissue, L. Scale bars: 100 mm. Bottom row: representative fluorescent micrographs of the immunohistochemical triple stain of graft explants. Insulin, green; OX-41 (macrophage marker), blue; CD31 (endothelial cell marker), red. White arrows, non-specific cPEG labeling. All images, scale bar: 100 mm. &lt;sup&gt;108&lt;/sup&gt; Copyright 2010, Elsevier.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/939'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00939/article_deploy/html/images/polymers-12-00939-g004-550.jpg?1588994087" title=" <strong>Figure 4</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Schematic fabrication of DCTA: in one pot, the gelatin–dopamine gluing macromers are first rapidly crosslinked by Fe3+ (first crosslink), at the same time, which are gradually crosslinked with genipin (second crosslink). (&lt;b&gt;B&lt;/b&gt;) Gross view of the DCTA implants (with murine skins) extracted on day 4, 14, and 28, respectively, after subcutaneous implantation in mice. (&lt;b&gt;C&lt;/b&gt;) Degradation of DCTA over time after implantation. H&amp;amp;E staining of the tissues surrounding DCTA after 4 (&lt;b&gt;D&lt;/b&gt;), 14 (&lt;b&gt;E&lt;/b&gt;), and 28 (&lt;b&gt;F&lt;/b&gt;) days’ implantation; the DCTA is marked with an asterisk. scale bar:100 μm. &lt;sup&gt;129&lt;/sup&gt; Copyright 2016, Elsevier.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/939'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 9 pages, 2515 KiB &nbsp; </span> <a href="/2073-4360/12/4/924/pdf?version=1587050487" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/4/924">Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines</a> <div class="authors"> by <span class="inlineblock "><strong>Hiroki Masuda</strong>, </span><span class="inlineblock "><strong>Yoshinori Arisaka</strong>, </span><span class="inlineblock "><strong>Ruriko Sekiya-Aoyama</strong>, </span><span class="inlineblock "><strong>Tetsuya Yoda</strong> and </span><span class="inlineblock "><strong>Nobuhiko Yui</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(4), 924; <a href="https://doi.org/10.3390/polym12040924">https://doi.org/10.3390/polym12040924</a> - 16 Apr 2020 </div> <a href="/2073-4360/12/4/924#metrics">Cited by 9</a> |&nbsp;Viewed by 3143 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Biointerfaces based on polyrotaxane (PRX), consisting of &alpha;-cyclodextrins (&alpha;-CDs) threaded on a poly(ethylene glycol) (PEG) chain, are promising functionalized platforms for culturing cells. PRXs are characterized by the molecular mobility of constituent molecules where the threading &alpha;-CDs can move and rotate along the <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/924/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Biointerfaces based on polyrotaxane (PRX), consisting of &alpha;-cyclodextrins (&alpha;-CDs) threaded on a poly(ethylene glycol) (PEG) chain, are promising functionalized platforms for culturing cells. PRXs are characterized by the molecular mobility of constituent molecules where the threading &alpha;-CDs can move and rotate along the PEG chain. Taking advantage of this mobility, we have previously succeeded in demonstrating the regulation of cellular responses, such as cellular adhesion, proliferation, and differentiation. In the present study, we investigated differences in the cellular responses to PRX surfaces versus commercially available tissue culture polystyrene (TCPS) surfaces using fibroblasts, preosteoblasts, and preadipocytes. PRX surfaces were found to more significantly promote cellular proliferation than the TCPS surfaces, regardless of the cell type. To identify the signaling pathways involved in the activation of cellular proliferation, a DNA microarray analysis was performed. PRX surfaces showed a significant increase in the integrin-mediated cell adhesion and focal adhesion pathways. Furthermore, PRX surfaces also promoted osteoblast differentiation more than TCPS. These results suggest that structural features of PRX surfaces act as mechanical cues to dominate cellular proliferation and differentiation. <a href="/2073-4360/12/4/924">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/924/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev346567"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next346567"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next346567" data-cycle-prev="#prev346567" data-cycle-progressive="#images346567" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-346567-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g001-550.jpg?1588993951" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images346567" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-346567-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g002-550.jpg?1588993951'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-346567-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g003-550.jpg?1588993951'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-346567-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g004-550.jpg?1588993951'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-346567-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g005-550.jpg?1588993951'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-346567-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g006-550.jpg?1588993951'><p>Figure 6</p></div></script></div></div><div id="article-346567-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g001-550.jpg?1588993951" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Chemical structure of methylated polyrotaxane triblock copolymer (Me-PRX) and preparation of Me-PRX surfaces.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g002-550.jpg?1588993951" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Experimental design for (&lt;b&gt;A&lt;/b&gt;) fibroblast proliferation, (&lt;b&gt;B&lt;/b&gt;) induction of osteoblast differentiation, and (&lt;b&gt;C&lt;/b&gt;) induction of adipocyte differentiation.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g003-550.jpg?1588993951" title=" <strong>Figure 3</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) The adhesion area of BALB/3T3, MC3T3-E1, and MC3T3-G2/PA6 cells on the surface of Me-PRX and tissue culture polystyrene (TCPS) surfaces. (&lt;b&gt;B&lt;/b&gt;) Aspect ratio of cells on each surface. Each rectangle represents the mean. Data are presented as mean ± S.D., n ≥ 50. *&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 (Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-test). (&lt;b&gt;C&lt;/b&gt;) Fluorescent images of cells on each surface after 24 h culture. Blue, nucleus; red, actin filament. Scale bars, 50 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g004-550.jpg?1588993951" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Growth curves of BALB/3T3, MC3T3-E1, and MC3T3-G2/PA6 cells on the surface of Me-PRX (closed circles) and TCPS (open circles) during a 5-day cultivation period. The initial cell seeding density was 2.0 × 10&lt;sup&gt;3&lt;/sup&gt; cells/cm&lt;sup&gt;2&lt;/sup&gt;. Data are presented as mean ± standard deviation (S.D.), n = 4. *&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.05 (Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-test).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g005-550.jpg?1588993951" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Scatter plot representation of global gene expression profiles in BALB/3T3 cells on Me-PRX (twofold change threshold). Global gene expression profiles of cells on Me-PRX surfaces were compared with those of cells on TCPS surfaces. Red circles: upregulated genes; green circles: downregulated genes.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00924/article_deploy/html/images/polymers-12-00924-g006-550.jpg?1588993951" title=" <strong>Figure 6</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Alizarin red S staining images of MC3T3-E1 cells on Me-PRX and TCPS surfaces after a 4-week incubation in osteogenic differentiation media. Scale bar: 500 μm. (&lt;b&gt;B&lt;/b&gt;) Oil red O staining images of MC3T3-G2/PA6 cells on each surface after a 2-week incubation in adipogenic differentiation media. Scale bar: 50 μm. (&lt;b&gt;C&lt;/b&gt;) Relative area of the alizarin red S stained cultures was analyzed using Image J software. (&lt;b&gt;D&lt;/b&gt;) Relative area of Oil Red O stained cells was analyzed using Image J software. Data are presented as mean ± S.D., n = 6. *&lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; &amp;lt; 0.01 (Student’s &lt;span class=&quot;html-italic&quot;&gt;t&lt;/span&gt;-test).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/924'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 13 pages, 2909 KiB &nbsp; </span> <a href="/2073-4360/12/4/922/pdf?version=1587880853" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Characterization of Thermal Damage Due to Two-Temperature High-Order Thermal Lagging in a Three-Dimensional Biological Tissue Subjected to a Rectangular Laser Pulse" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/4/922">Characterization of Thermal Damage Due to Two-Temperature High-Order Thermal Lagging in a Three-Dimensional Biological Tissue Subjected to a Rectangular Laser Pulse</a> <div class="authors"> by <span class="inlineblock "><strong>Hamdy M. Youssef</strong> and </span><span class="inlineblock "><strong>Najat. A. Alghamdi</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(4), 922; <a href="https://doi.org/10.3390/polym12040922">https://doi.org/10.3390/polym12040922</a> - 16 Apr 2020 </div> <a href="/2073-4360/12/4/922#metrics">Cited by 13</a> |&nbsp;Viewed by 2531 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The use of lasers and thermal transfers on the skin is fundamental in medical and clinical treatments. In this paper, we constructed and applied bioheat transfer equations in the context of a two-temperature heat conduction model in order to discuss the three-dimensional variation <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/922/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The use of lasers and thermal transfers on the skin is fundamental in medical and clinical treatments. In this paper, we constructed and applied bioheat transfer equations in the context of a two-temperature heat conduction model in order to discuss the three-dimensional variation in the temperature of laser-irradiated biological tissue. The amount of thermal damage in the tissue was calculated using the Arrhenius integral. Mathematical difficulties were encountered in applying the equations. As a result, the Laplace and Fourier transform technique was employed, and solutions for the conductive temperature and dynamical temperature were obtained in the Fourier transform domain. <a href="/2073-4360/12/4/922">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/4/922/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev346267"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next346267"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next346267" data-cycle-prev="#prev346267" data-cycle-progressive="#images346267" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-346267-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-ag-550.jpg?1588993941" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images346267" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g001-550.jpg?1588993941'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g002-550.jpg?1588993941'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g003-550.jpg?1588993941'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g004-550.jpg?1588993941'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g005-550.jpg?1588993941'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g006-550.jpg?1588993941'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-346267-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g007-550.jpg?1588993941'><p>Figure 7</p></div></script></div></div><div id="article-346267-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-ag-550.jpg?1588993941" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g001-550.jpg?1588993941" title=" <strong>Figure 1</strong><br/> &lt;p&gt;The three-dimensional skin tissue.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g002-550.jpg?1588993941" title=" <strong>Figure 2</strong><br/> &lt;p&gt;The studied functions at various positions along the axes.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g003-550.jpg?1588993941" title=" <strong>Figure 3</strong><br/> &lt;p&gt;The studied functions at various positions for various values of the two-temperature parameter.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g004-550.jpg?1588993941" title=" <strong>Figure 4</strong><br/> &lt;p&gt;The studied functions for various values of the penetration depth parameter.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g005-550.jpg?1588993941" title=" <strong>Figure 5</strong><br/> &lt;p&gt;The studied functions for various values of the rectangular laser pulse.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g006-550.jpg?1588993941" title=" <strong>Figure 6</strong><br/> &lt;p&gt;The studied functions for various values of the time t.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00922/article_deploy/html/images/polymers-12-00922-g007-550.jpg?1588993941" title=" <strong>Figure 7</strong><br/> &lt;p&gt;The studied functions for various values of the power density parameter.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/4/922'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 13 pages, 2543 KiB &nbsp; </span> <a href="/2073-4360/12/3/592/pdf?version=1583731815" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Role of Two-Step Blending in the Properties of Starch/Chitin/Polylactic Acid Biodegradable Composites for Biomedical Applications" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/3/592">The Role of Two-Step Blending in the Properties of Starch/Chitin/Polylactic Acid Biodegradable Composites for Biomedical Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Niyi Gideon Olaiya</strong>, </span><span class="inlineblock "><strong>Arif Nuryawan</strong>, </span><span class="inlineblock "><strong>Peter Kayode Oke</strong>, </span><span class="inlineblock "><strong>H. P. S. Abdul Khalil</strong>, </span><span class="inlineblock "><strong>Samsul Rizal</strong>, </span><span class="inlineblock "><strong>P. B. Mogaji</strong>, </span><span class="inlineblock "><strong>E. R. Sadiku</strong>, </span><span class="inlineblock "><strong>S. R. Suprakas</strong>, </span><span class="inlineblock "><strong>Peter Kayode Farayibi</strong>, </span><span class="inlineblock "><strong>Vincent Ojijo</strong> and </span><span class="inlineblock "><strong>M. T. Paridah</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(3), 592; <a href="https://doi.org/10.3390/polym12030592">https://doi.org/10.3390/polym12030592</a> - 5 Mar 2020 </div> <a href="/2073-4360/12/3/592#metrics">Cited by 14</a> |&nbsp;Viewed by 4640 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/3/592/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 &deg;C to 100 &deg;C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system. <a href="/2073-4360/12/3/592">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/3/592/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev328905"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next328905"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next328905" data-cycle-prev="#prev328905" data-cycle-progressive="#images328905" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-328905-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-ag-550.jpg?1585727547" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images328905" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g001-550.jpg?1585727547'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g002-550.jpg?1585727546'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g003-550.jpg?1585727547'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g004-550.jpg?1585727546'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g005-550.jpg?1585727546'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-328905-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g006-550.jpg?1585727546'><p>Figure 6</p></div></script></div></div><div id="article-328905-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-ag-550.jpg?1585727547" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g001-550.jpg?1585727547" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Mechanical properties: (&lt;b&gt;a&lt;/b&gt;) tensile strength, (&lt;b&gt;b&lt;/b&gt;) yield strength, (&lt;b&gt;c&lt;/b&gt;) elastic modulus, and (&lt;b&gt;d&lt;/b&gt;) impact strength of samples A1 (neat PLA), A2 (PLA/8% chitin), A3 (PLA/6% chitin/2% starch), A4 (PLA/4% chitin/4% starch), and A5 (PLA/2% chitin/6% starch).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g002-550.jpg?1585727546" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Dynamic mechanical analysis (DMA) at 1 Hz for (&lt;b&gt;a&lt;/b&gt;) E’, (&lt;b&gt;c&lt;/b&gt;) E”, (&lt;b&gt;e&lt;/b&gt;) and tan δ; and at 10 Hz for (&lt;b&gt;b&lt;/b&gt;) E’, (&lt;b&gt;d&lt;/b&gt;) E”, (&lt;b&gt;f&lt;/b&gt;) and tan δ for samples A1, A2, A3, A4, and A5.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g003-550.jpg?1585727547" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Morphological properties of (&lt;b&gt;a&lt;/b&gt;) A1 (neat PLA surface), (&lt;b&gt;b&lt;/b&gt;) A2 (PLA/8% chitin), (&lt;b&gt;c&lt;/b&gt;) A3 (PLA/6% chitin/2% starch, (&lt;b&gt;d&lt;/b&gt;) A4 (PLA/4% chitin/4% starch), (&lt;b&gt;e&lt;/b&gt;) A5 (PLA/2% chitin/6% starch), and (&lt;b&gt;f&lt;/b&gt;) a neat PLA-fractured surface.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g004-550.jpg?1585727546" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Morphological properties of samples showing edges, small cleavages, tear ridges, and a network of dispersion (the blends with PLA).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g005-550.jpg?1585727546" title=" <strong>Figure 5</strong><br/> &lt;p&gt;XRD of the composites: (&lt;b&gt;A1&lt;/b&gt;) (neat PLA), (&lt;b&gt;A2&lt;/b&gt;) (PLA/8% chitin), (&lt;b&gt;A3&lt;/b&gt;) (PLA/6% chitin/2% starch), (&lt;b&gt;A4&lt;/b&gt;) (PLA/4% chitin/4% starch), and (&lt;b&gt;A5&lt;/b&gt;) (PLA/2% chitin/6% starch).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00592/article_deploy/html/images/polymers-12-00592-g006-550.jpg?1585727546" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Liver light microscopy of a histological examination (hematoxylin and eosin stain) of the rats: (&lt;b&gt;a&lt;/b&gt;) control (standard feed), (&lt;b&gt;b&lt;/b&gt;) green (PLA/6% chitin/2% starch), and (&lt;b&gt;c&lt;/b&gt;) red (PLA/2% chitin/6% starch).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/3/592'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 10 pages, 8343 KiB &nbsp; </span> <a href="/2073-4360/12/1/213/pdf?version=1579685372" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Rapid Photoinduced Single Cell Detachment from Gold Nanoparticle-Embedded Collagen Gels with Low Denaturation Temperature" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/12/1/213">Rapid Photoinduced Single Cell Detachment from Gold Nanoparticle-Embedded Collagen Gels with Low Denaturation Temperature</a> <div class="authors"> by <span class="inlineblock "><strong>Chie Kojima</strong>, </span><span class="inlineblock "><strong>Misaki Nishio</strong>, </span><span class="inlineblock "><strong>Yusuke Nakajima</strong>, </span><span class="inlineblock "><strong>Takeshi Kawano</strong>, </span><span class="inlineblock "><strong>Kenji Takatsuka</strong> and </span><span class="inlineblock "><strong>Akikazu Matsumoto</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2020</b>, <em>12</em>(1), 213; <a href="https://doi.org/10.3390/polym12010213">https://doi.org/10.3390/polym12010213</a> - 15 Jan 2020 </div> <a href="/2073-4360/12/1/213#metrics">Cited by 5</a> |&nbsp;Viewed by 3968 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Cell Separation is important in various biomedical fields. We have prepared gold nanoparticle (AuNP)-embedded collagen gels as a visible-light-responsive cell scaffold in which photoinduced single cell detachment occurs through local thermal denaturation of the collagen gel via the photothermal effect of AuNP. Physicochemical <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/12/1/213/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Cell Separation is important in various biomedical fields. We have prepared gold nanoparticle (AuNP)-embedded collagen gels as a visible-light-responsive cell scaffold in which photoinduced single cell detachment occurs through local thermal denaturation of the collagen gel via the photothermal effect of AuNP. Physicochemical properties of collagen materials depend on the origin of the collagen and the presence of telopeptides. In this study, we prepared various AuNP-embedded collagen gels by using different collagen materials with and without the telopeptides to compare their thermal denaturation properties and photoinduced single cell detachment behaviors. Cellmatrix type I-C without telopeptides exhibited a lower denaturation temperature than Cellmatrix type I-A and Atelocell IAC, as examined by Fourier transform infrared (FTIR) spectroscopy, rheological analysis, and sol&ndash;gel transition observation. Three-dimensional (3D) laser microscopic imaging revealed that collagen fibers shrank in Cellmatrix type I-A upon heating, but collagen fibers disappeared in Cellmatrix type I-C upon heating. Cells cultured on the Cellmatrix type I-C-based AuNP-embedded collagen gel detached with shorter photoirradiation than on the Cellmatrix type I-A-based AuNP-embedded collagen gel, suggesting that collagen gels without telopeptides are suitable for a photoinduced single cell detachment system. <a href="/2073-4360/12/1/213">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/12/1/213/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev309030"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next309030"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next309030" data-cycle-prev="#prev309030" data-cycle-progressive="#images309030" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-309030-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-ag-550.jpg?1581020780" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images309030" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g001-550.jpg?1581020779'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g002-550.jpg?1581020779'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g003-550.jpg?1581020779'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g004-550.jpg?1581020779'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g005-550.jpg?1581020779'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g006-550.jpg?1581020779'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g007-550.jpg?1581020779'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g008-550.jpg?1581020779'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g009-550.jpg?1581020779'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-309030-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g010-550.jpg?1581020779'><p>Figure 10</p></div></script></div></div><div id="article-309030-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-ag-550.jpg?1581020780" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g001-550.jpg?1581020779" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Schematic illustration of photoinduced cell detachment.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g002-550.jpg?1581020779" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Collagen materials obtained by acid and enzyme treatment.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g003-550.jpg?1581020779" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Fourier transform infrared (FTIR) spectra at different temperatures of AuNP-embedded collagen gels made from Cellmatrix type I-A (&lt;b&gt;A&lt;/b&gt;), Atelocell IAC (&lt;b&gt;B&lt;/b&gt;), and Cellmatrix type I-C (&lt;b&gt;C&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g004-550.jpg?1581020779" title=" <strong>Figure 4</strong><br/> &lt;p&gt;FTIR spectra of the collagen solution, the concentration medium, and the regenerative solution.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g005-550.jpg?1581020779" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Ratio of amide III signals (1186 cm&lt;sup&gt;−1&lt;/sup&gt;/1206 cm&lt;sup&gt;−1&lt;/sup&gt;) of collagen gels with and without AuNPs (red and black) as a function of temperature. (&lt;b&gt;A&lt;/b&gt;) Cellmatrix type I-A, (&lt;b&gt;B&lt;/b&gt;) Atelocell IAC, and (&lt;b&gt;C&lt;/b&gt;) Cellmatrix type I-C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g006-550.jpg?1581020779" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Rheological analysis of different collagen gels with and without AuNP (red and black). (&lt;b&gt;A&lt;/b&gt;) Cellmatrix type I-A, (&lt;b&gt;B&lt;/b&gt;) Atelocell IAC, and (&lt;b&gt;C&lt;/b&gt;) Cellmatrix type I-C. G’ and G’’ are shown as solid and dotted lines, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g007-550.jpg?1581020779" title=" <strong>Figure 7</strong><br/> &lt;p&gt;Sol–gel experiment of AuNP-embedded collagen gels. (&lt;b&gt;A&lt;/b&gt;) Cellmatrix type I-A and (&lt;b&gt;B&lt;/b&gt;) Cellmatrix type I-C.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g008-550.jpg?1581020779" title=" <strong>Figure 8</strong><br/> &lt;p&gt;3D laser microscopic images of collagen gels made from Cellmatrix type I-A and Cellmatrix type I-C, with and without AuNPs. Bar: 20 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g009-550.jpg?1581020779" title=" <strong>Figure 9</strong><br/> &lt;p&gt;3D laser microscopic images at different temperatures of AuNP-embedded collagen gels made from Cellmatrix type I-A and Cellmatrix type I-C. Bar: 20 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-12-00213/article_deploy/html/images/polymers-12-00213-g010-550.jpg?1581020779" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Single cell detachment from AuNP-embedded collagen gels made from Cellmatrix type I-A (&lt;b&gt;A&lt;/b&gt;, AuCol-IA) and Cellmatrix type I-C (&lt;b&gt;B&lt;/b&gt;, AuCol-IC) by photoirradiation for 2 s and subsequent aspiration. The photoirradiated cells are marked with a circle. Bar. 30 μm.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/12/1/213'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item type-section" id=2019> <h2>2019</h2> <h3>Jump to: <a href="#2023">2023</a>, <a href="#2022">2022</a>, <a href="#2021">2021</a>, <a href="#2020">2020</a> </h3> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-295167" aria-controls="drop-supplementary-295167" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-295167" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/11/12/2026/s1?version=1575640680"> Supplementary File 1 (PDF, 351 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 13 pages, 4528 KiB &nbsp; </span> <a href="/2073-4360/11/12/2026/pdf?version=1576729285" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/11/12/2026">PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release</a> <div class="authors"> by <span class="inlineblock "><strong>Lin Xu</strong>, </span><span class="inlineblock "><strong>Hong-Liang Li</strong> and </span><span class="inlineblock "><strong>Li-Ping Wang</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2019</b>, <em>11</em>(12), 2026; <a href="https://doi.org/10.3390/polym11122026">https://doi.org/10.3390/polym11122026</a> - 6 Dec 2019 </div> <a href="/2073-4360/11/12/2026#metrics">Cited by 19</a> |&nbsp;Viewed by 4203 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-<i>g</i>-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by <sup>1</sup>H NMR. The modified nanoparticles <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/11/12/2026/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-<i>g</i>-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by <sup>1</sup>H NMR. The modified nanoparticles were characterized by FT-IR spectroscopy, XPS, GPC, TEM and TGA. The analytical results show that &alpha;-bromoisobutyryl bromide (BIBB) (ATRP initiator) had been successfully anchored onto SNPs&rsquo; surfaces, and was followed by surface-initiated, metal-free ATRP of 2-(diethylamino)ethyl methacrylate (DEAEMA). The resultant SNPs-<i>g</i>-PDEAEMA were uniform spherical nanoparticles with the particles size of about 22&ndash;25 nm, and the graft density of PDEAEMA on SNPs&rsquo; surfaces obtained by TGA was 19.98 &mu;mol/m<sup>2</sup>. Owing to the covalent grafting of pH-sensitive PDEAEMA, SNPs-<i>g</i>-PDEAEMA can dispersed well in acidic aqueous solution, but poorly in neutral and alkaline aqueous solutions, which is conducive to being employed as drug carriers to construct a pH-sensitive controlled drug delivery system. In vitro cytotoxicity evaluation results showed that the cytotoxicity of SNPs-<i>g</i>-PDEAEMA to the L929 cells had completely disappeared on the 3rd day. The loading of quercetin on SNPs-<i>g</i>-PDEAEMA was performed using adsorption process from ethanol solutions, and the dialysis release rate increased sharply when the pH value of phosphate-buffered saline (PBS) decreased from 7.4 to 5.5. All these results indicated that the pH-responsive microcapsules could serve as potential anti-cancer drug carriers. <a href="/2073-4360/11/12/2026">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/11/12/2026/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev295167"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next295167"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next295167" data-cycle-prev="#prev295167" data-cycle-progressive="#images295167" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-295167-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-ag-550.jpg?1577761223" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images295167" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g001-550.jpg?1577761223'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g002-550.jpg?1577761223'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g003-550.jpg?1577761223'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g004-550.jpg?1577761223'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g005-550.jpg?1577761223'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g006-550.jpg?1577761223'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g007-550.jpg?1577761223'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g008-550.jpg?1577761223'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g009-550.jpg?1577761223'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-295167-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-sch001-550.jpg?1577761223'><p>Scheme 1</p></div></script></div></div><div id="article-295167-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-ag-550.jpg?1577761223" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g001-550.jpg?1577761223" title=" <strong>Figure 1</strong><br/> &lt;p&gt;XPS wide-scan spectra of silica nanoparticles (SNPs)-KH550 (&lt;b&gt;a&lt;/b&gt;) and SNPs-Br (&lt;b&gt;b&lt;/b&gt;). XPS high resolution spectra of (&lt;b&gt;c&lt;/b&gt;) N1s of SNPs-KH550 and SNPs-Br, (&lt;b&gt;d&lt;/b&gt;) N1s core-level spectra of SNPs-Br, (&lt;b&gt;e&lt;/b&gt;) C1s of SNPs-KH550 and SNPs-Br, (&lt;b&gt;f&lt;/b&gt;) C1s core-level spectra of SNPs-Br and (&lt;b&gt;g&lt;/b&gt;) Br3d of SNPs-KH550 and SNPs-Br.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g002-550.jpg?1577761223" title=" <strong>Figure 2</strong><br/> &lt;p&gt;FT-IR spectra of (&lt;b&gt;a&lt;/b&gt;) SNPs, (&lt;b&gt;b&lt;/b&gt;) SNPs-KH550, (&lt;b&gt;c&lt;/b&gt;) SNPs-Br and (&lt;b&gt;d&lt;/b&gt;) SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g003-550.jpg?1577761223" title=" <strong>Figure 3</strong><br/> &lt;p&gt;&lt;sup&gt;1&lt;/sup&gt;H NMR spectrum of PDEAEMA formed in solution.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g004-550.jpg?1577761223" title=" <strong>Figure 4</strong><br/> &lt;p&gt;TEM images of (&lt;b&gt;a&lt;/b&gt;) SNPs, (&lt;b&gt;b&lt;/b&gt;) SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA and the particle size distribution.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g005-550.jpg?1577761223" title=" <strong>Figure 5</strong><br/> &lt;p&gt;TGA curves of SNPs (&lt;b&gt;a&lt;/b&gt;), SNPs-KH550 (&lt;b&gt;b&lt;/b&gt;), SNPs-Br (&lt;b&gt;c&lt;/b&gt;) and SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA (&lt;b&gt;d&lt;/b&gt;).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g006-550.jpg?1577761223" title=" <strong>Figure 6</strong><br/> &lt;p&gt;The dispersibility of SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA in acid, neuter and alkaline aqueous solutions, respectively.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g007-550.jpg?1577761223" title=" <strong>Figure 7</strong><br/> &lt;p&gt;In vitro cytotoxicity of control sample and SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA towards L929 cells.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g008-550.jpg?1577761223" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Fluorescence microscope images of L929 cells treated with SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA-Qu-cy5.5 for 0.5, 2 and 8 h, while non-treated cells were used as the control (0 h).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-g009-550.jpg?1577761223" title=" <strong>Figure 9</strong><br/> &lt;p&gt;In vitro quercetin release curves of SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA-Qu at different pH values.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-02026/article_deploy/html/images/polymers-11-02026-sch001-550.jpg?1577761223" title=" <strong>Scheme 1</strong><br/> &lt;p&gt;Synthesis of SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA, scheme of drug loading and pH-dependent release from SNPs-&lt;span class=&quot;html-italic&quot;&gt;g&lt;/span&gt;-PDEAEMA.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/12/2026'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 21 pages, 419 KiB &nbsp; </span> <a href="/2073-4360/11/7/1163/pdf?version=1562593621" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/2073-4360/11/7/1163">Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae</a> <div class="authors"> by <span class="inlineblock "><strong>Joanne Katherine Talens Manlusoc</strong>, </span><span class="inlineblock "><strong>Chieh-Lun Hsieh</strong>, </span><span class="inlineblock "><strong>Cheng-Yang Hsieh</strong>, </span><span class="inlineblock "><strong>Ellen San Nicolas Salac</strong>, </span><span class="inlineblock "><strong>Ya-Ting Lee</strong> and </span><span class="inlineblock "><strong>Po-Wei Tsai</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2019</b>, <em>11</em>(7), 1163; <a href="https://doi.org/10.3390/polym11071163">https://doi.org/10.3390/polym11071163</a> - 8 Jul 2019 </div> <a href="/2073-4360/11/7/1163#metrics">Cited by 64</a> |&nbsp;Viewed by 7157 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> With the advent of exploration in finding new sources for treating different diseases, one possible natural source is from marine algae. Having an array of potential benefits, researchers are interested in the components which comprise one of these activities. This can lead to <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/11/7/1163/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> With the advent of exploration in finding new sources for treating different diseases, one possible natural source is from marine algae. Having an array of potential benefits, researchers are interested in the components which comprise one of these activities. This can lead to the isolation of active compounds with biological activities, such as antioxidation of free radicals, anti-inflammation, antiproliferation of cancer cells, and anticoagulant to name a few. One of the compounds that are isolated from marine algae are sulfated polysaccharides (SPs). SPs are complex heterogenous natural polymers with an abundance found in different species of marine algae. Marine algae are known to be one of the most important sources of SPs, and depending on the species, its chemical structure varies. This variety has important physical and chemical components and functions which has gained the attention of researchers as this contributes to the many facets of its pharmacologic activity. In this review, recent pharmacologic application potentials and updates on the use of SPs from marine algae are discussed. <a href="/2073-4360/11/7/1163">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/11/7/1163/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="absgraph cycle-slideshow"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-246634-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-11-01163/article_deploy/html/images/polymers-11-01163-g001-550.jpg?1564748842" alt="" style="border: 0;"><p>Figure 1</p></div></div></div><div id="article-246634-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-11-01163/article_deploy/html/images/polymers-11-01163-g001-550.jpg?1564748842" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Sulfated polysaccharide chemical structures of (&lt;b&gt;A&lt;/b&gt;) Fucoidan, (&lt;b&gt;B&lt;/b&gt;) Carrageenan, (&lt;b&gt;C&lt;/b&gt;) Porphyran, (&lt;b&gt;D&lt;/b&gt;) Ulvan.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/7/1163'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-240838" aria-controls="drop-supplementary-240838" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-240838" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/2073-4360/11/6/1059/s1?version=1560851341"> Supplementary File 1 (PDF, 220 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 10 pages, 1683 KiB &nbsp; </span> <a href="/2073-4360/11/6/1059/pdf?version=1560851341" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Design of Controlled Release System for Paracetamol Based on Modified Lignin" data-journal="polymers"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/polymers/editors_choice">More Editor’s choice articles in journal <em>Polymers</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/2073-4360/11/6/1059">Design of Controlled Release System for Paracetamol Based on Modified Lignin</a> <div class="authors"> by <span class="inlineblock "><strong>Mahboubeh Pishnamazi</strong>, </span><span class="inlineblock "><strong>Hamid Hafizi</strong>, </span><span class="inlineblock "><strong>Saeed Shirazian</strong>, </span><span class="inlineblock "><strong>Mario Culebras</strong>, </span><span class="inlineblock "><strong>Gavin M. Walker</strong> and </span><span class="inlineblock "><strong>Maurice N. Collins</strong></span> </div> <div class="color-grey-dark"> <em>Polymers</em> <b>2019</b>, <em>11</em>(6), 1059; <a href="https://doi.org/10.3390/polym11061059">https://doi.org/10.3390/polym11061059</a> - 18 Jun 2019 </div> <a href="/2073-4360/11/6/1059#metrics">Cited by 82</a> |&nbsp;Viewed by 8208 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The influence of lignin modification on drug release and pH-dependent releasing behavior of oral solid dosage forms was investigated using three different formulations. The first formulation contains microcrystalline cellulose (MCC 101) as the excipient and paracetamol as the active pharmaceutical ingredient (API). The <a href="#" data-counterslink = "https://www.mdpi.com/2073-4360/11/6/1059/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The influence of lignin modification on drug release and pH-dependent releasing behavior of oral solid dosage forms was investigated using three different formulations. The first formulation contains microcrystalline cellulose (MCC 101) as the excipient and paracetamol as the active pharmaceutical ingredient (API). The second formulation includes Alcell lignin and MCC 101 as the excipient and paracetamol, and the third formulation consists of carboxylated Alcell lignin, MCC 101 and paracetamol. Direct compaction was carried out in order to prepare the tablets. Lignin can be readily chemically modified due to the existence of different functional groups in its structure. The focus of this investigation is on lignin carboxylation and its influence on paracetamol control release behavior at varying pH. Results suggest that carboxylated lignin tablets had the highest drug release, which is linked to their faster disintegration and lower tablet hardness. <a href="/2073-4360/11/6/1059">Full article</a> </div> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/2073-4360/11/6/1059/show" ><span >&#9658;</span><span style=" display: none;">&#9660;</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev240838"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next240838"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next240838" data-cycle-prev="#prev240838" data-cycle-progressive="#images240838" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-240838-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-ag-550.jpg?1571702853" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images240838" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g001-550.jpg?1571702853'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g002-550.jpg?1571702853'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g003-550.jpg?1571702852'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g004-550.jpg?1571702852'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g005-550.jpg?1571702853'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-240838-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g006-550.jpg?1571702852'><p>Figure 6</p></div></script></div></div><div id="article-240838-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-ag-550.jpg?1571702853" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g001-550.jpg?1571702853" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Mechanism of lignin carboxylation.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g002-550.jpg?1571702853" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Fourier-transform infrared spectroscopy (FTIR) spectra of lignin (red) and carboxylated lignin (blue).&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g003-550.jpg?1571702852" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Disintegration time of tablets prepared containing pure lignin, modified lignin and no lignin.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g004-550.jpg?1571702852" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Hardness of tablets prepared containing pure lignin, modified lignin and no lignin.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g005-550.jpg?1571702853" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Drug release rate of paracetamol for the formulations at pH = 5.8.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/polymers/polymers-11-01059/article_deploy/html/images/polymers-11-01059-g006-550.jpg?1571702852" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Drug release rate of carboxylated lignin in pH = 1.2 and pH = 7.2.&lt;/p&gt; <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/2073-4360/11/6/1059'>Full article</a></strong> "></a></div> </div> </div> </div> <span data-special-issue-id="59858"></span> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/polymers">Polymers</a></em>, EISSN 2073-4360, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/polymers" class="rss-link">RSS</a> </span> <span> <a href="/journal/polymers/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732286508" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks &amp; Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences &amp; Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical &amp; Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer&#039;s Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access &amp; Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#231c05424e5318505641494640571e65514c4e0611136e67736a061062061113061111734c4f5a4e4651500611134a4d061113774a50505646061113664d444a4d4646514a4d440552564c571805424e5318414c475a1e4b57575350190c0c5454540d4e47534a0d404c4e0c504a0c161a1b161b061062061362061362734c4f5a4e4651500611134a4d061113774a50505646061113664d444a4d4646514a4d442929705346404a424f0611136a50505646061113774a574f46061062061113734c4f5a4e4651500611134a4d061113774a50505646061113664d444a4d4646514a4d44061362061362744641504a57460610620611134b575753500610620611650611655454540d4e47534a0d404c4e061165504a061165161a1b161b061362061362645646505706111366474a574c510610620613620613626d424e4606106206111367510d061113735142504b424d574b061113625056514a0613626245454a4f4a42574a4c4d0610620611136746534251574e464d570611134c45061113614a4c464d444a4d4646514a4d4406116006111370404b4c4c4f0611134c45061113664d444a4d4646514a4d4406116006111370424d5742061113604f425142061113764d4a554651504a575a061160061113161313061113664f06111360424e4a4d4c0611137146424f06116006111370424d5742061113604f42514206116006111360620611131a16131610061160061113767062061362061362" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Polymers+in+Tissue+Engineering&amp;hashtags=mdpipolymers&amp;url=https%3A%2F%2Fwww.mdpi.com%2Fsi%2F59858&amp;via=Polymers_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2Fsi%2F59858&amp;title=Polymers%20in%20Tissue%20Engineering%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DSpecial%20Issue%20Title%3A%20Polymers%20in%20Tissue%20Engineering%0A%0AWebsite%3A%20https%3A%2F%2Fwww.mdpi.com%2Fsi%2F59858%0A%0AGuest%20Editor%3A%0A%0AName%3A%20Dr.%20Prashanth%20Asuri%0AAffiliation%3A%20Department%20of%20Bioengineering%2C%20School%20of%20Engineering%2C%20Santa%20Clara%20University%2C%20500%20El%20Camino%20Real%2C%20Santa%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/si/59858" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/si/59858" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/si/59858" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/si/59858" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/si/59858" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/si/59858</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="108" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="144" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="132" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="192" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="120" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="120" y="36" width="12" height="12" /> <rect x="132" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="132" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="108" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="108" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="120" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="84" y="108" width="12" height="12" /> <rect x="120" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="36" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="240" y="132" width="12" height="12" /> <rect x="0" y="144" width="12" height="12" /> <rect x="12" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="96" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="264" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="156" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="168" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="108" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="168" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="264" y="228" width="12" height="12" /> <rect x="288" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="132" y="240" width="12" height="12" /> <rect x="156" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="120" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="156" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="156" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732286508"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "polymers"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732286508"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732286508'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732286508"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732286508"></script> <script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732286508"></script> <script> var mainColumn1 = "#middle-column"; var extendingReady = true; $(document).ready(function() { $("#journal-browser-go").toggleClass("button--grey", "" === $("#journal-browser-volume").val()); $("#journal-browser-go").toggleClass("button--color", "" !== $("#journal-browser-volume").val()); $("#journal-browser-volume").change(function(e) { $('#journal-browser-issue').find('option').not('.volume-0').hide(); $('#journal-browser-issue').find('.volume-' + $(this).val()).show(); $('#journal-browser-issue').find('option:first').prop('selected', 'selected'); $("#journal-browser-issue").trigger("chosen:updated"); $('#journal-browser-go').toggleClass('button--grey', '' === $(this).val()); $('#journal-browser-go').toggleClass('button--color', '' !== $(this).val()); }); // add resize event for the window (to recalculate side column elements) // TODO: is it better to use resize end or resize here? $(window).on('resize', function() { mdpi_column_height_module.calculateColumnHeights(false, mainColumn1); }); $(".link-journal-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("ul").toggleClass("active"); $("#social-media-links").toggle(); $("#journal-alerts").toggle(); }); $(".link-journal-browser").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass('show-for-medium-up'); }); }); </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732286508"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e70c458cb775fec',t:'MTczMjM2MDc5Ni4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10