CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 53 results for author: <span class="mathjax">Chapman, H N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chapman, H N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chapman%2C+H+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chapman, H N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02343">arXiv:2502.02343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02343">pdf</a>, <a href="https://arxiv.org/format/2502.02343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Direct observation of the exciton polaron by serial femtosecond crystallography on single CsPbBr$_3$ quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhou Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Samoli%2C+M">Margarita Samoli</a>, <a href="/search/physics?searchtype=author&amp;query=Erdem%2C+O">Onur Erdem</a>, <a href="/search/physics?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&amp;query=Samanta%2C+A+K">Amit Kumar Samanta</a>, <a href="/search/physics?searchtype=author&amp;query=E%2C+J">Juncheng E</a>, <a href="/search/physics?searchtype=author&amp;query=Estillore%2C+A">Armando Estillore</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=Locardi%2C+F">Federico Locardi</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&amp;query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/physics?searchtype=author&amp;query=Melo%2C+D">Diogo Melo</a>, <a href="/search/physics?searchtype=author&amp;query=Mills%2C+G">Grant Mills</a>, <a href="/search/physics?searchtype=author&amp;query=Rafie-Zinedine%2C+S">Safi Rafie-Zinedine</a>, <a href="/search/physics?searchtype=author&amp;query=Round%2C+A">Adam Round</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=de+Wijn%2C+R">Raphael de Wijn</a>, <a href="/search/physics?searchtype=author&amp;query=Wollweber%2C+T">Tamme Wollweber</a>, <a href="/search/physics?searchtype=author&amp;query=Worbs%2C+L">Lena Worbs</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+Y">Yulong Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A+P">Adrian P. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02343v1-abstract-short" style="display: inline;"> The outstanding opto-electronic properties of lead halide perovskites have been related to the formation of polarons. Nevertheless, the observation of the atomistic deformation brought about by one electron-hole pair in these materials has remained elusive. Here, we measure the diffraction patterns of single CsPbBr$_3$ quantum dots (QDs) with and without resonant excitation in the single exciton l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02343v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02343v1-abstract-full" style="display: none;"> The outstanding opto-electronic properties of lead halide perovskites have been related to the formation of polarons. Nevertheless, the observation of the atomistic deformation brought about by one electron-hole pair in these materials has remained elusive. Here, we measure the diffraction patterns of single CsPbBr$_3$ quantum dots (QDs) with and without resonant excitation in the single exciton limit using serial femtosecond crystallography (SFX). By reconstructing the 3D differential diffraction pattern, we observe small shifts of the Bragg peaks indicative of a crystal-wide deformation field. Building on DFT calculations, we show that these shifts are consistent with the lattice distortion induced by a delocalized electron and a localized hole, forming a mixed large/small exciton polaron. This result creates a clear picture of the polaronic deformation in CsPbBr$_3$ QDs, highlights the exceptional sensitivity of SFX to lattice distortions in few-nanometer crystallites, and establishes an experimental platform for future studies of electron-lattice interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02343v1-abstract-full').style.display = 'none'; document.getElementById('2502.02343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 12 pages, 5 figures; Supplemental: 21 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11127">arXiv:2409.11127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11127">pdf</a>, <a href="https://arxiv.org/format/2409.11127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Convergent-beam attosecond X-ray crystallography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chufeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Butola%2C+M">Mansi Butola</a>, <a href="/search/physics?searchtype=author&amp;query=Dresselhaus%2C+J+L">J. Lukas Dresselhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Egorov%2C+D">Dmitry Egorov</a>, <a href="/search/physics?searchtype=author&amp;query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+N">Nikolay Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Kiene%2C+A">Antonia Kiene</a>, <a href="/search/physics?searchtype=author&amp;query=Klopprogge%2C+B">Bjarne Klopprogge</a>, <a href="/search/physics?searchtype=author&amp;query=Kremling%2C+V">Viviane Kremling</a>, <a href="/search/physics?searchtype=author&amp;query=Middendorf%2C+P">Philipp Middendorf</a>, <a href="/search/physics?searchtype=author&amp;query=Oberthuer%2C+D">Dominik Oberthuer</a>, <a href="/search/physics?searchtype=author&amp;query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&amp;query=Scheer%2C+T+E+S">T. Emilie S. Scheer</a>, <a href="/search/physics?searchtype=author&amp;query=Sprenger%2C+J">Janina Sprenger</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+J+C">Jia Chyi Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Zakharova%2C+M">Margarita Zakharova</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenhui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11127v1-abstract-short" style="display: inline;"> Sub-angstrom spatial resolution of electron density coupled with sub-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11127v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11127v1-abstract-full" style="display: none;"> Sub-angstrom spatial resolution of electron density coupled with sub-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here we propose to reach this realm by employing convergent-beam X-ray crystallography with high-power attosecond pulses from a hard-X-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds, and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase of the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography -- especially for crystals of small molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11127v1-abstract-full').style.display = 'none'; document.getElementById('2409.11127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13262">arXiv:2402.13262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13262">pdf</a>, <a href="https://arxiv.org/format/2402.13262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Development of crystal optics for Multi-Projection X-ray Imaging for synchrotron and XFEL sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bellucci%2C+V">Valerio Bellucci</a>, <a href="/search/physics?searchtype=author&amp;query=Birnsteinova%2C+S">Sarlota Birnsteinova</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J+C+P">Jayanath C. P. Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Giovanetti%2C+G">Gabriele Giovanetti</a>, <a href="/search/physics?searchtype=author&amp;query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/physics?searchtype=author&amp;query=Samoylova%2C+L">Liubov Samoylova</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+I">Ilia Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Morillo%2C+L+L">Luis Lopez Morillo</a>, <a href="/search/physics?searchtype=author&amp;query=Graceffa%2C+R">Rita Graceffa</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Huelsen%2C+H">Helge Huelsen</a>, <a href="/search/physics?searchtype=author&amp;query=Kollmann%2C+H">Heiko Kollmann</a>, <a href="/search/physics?searchtype=author&amp;query=Calliste%2C+T+N+T">Thu Nhi Tran Calliste</a>, <a href="/search/physics?searchtype=author&amp;query=Korytar%2C+D">Dusan Korytar</a>, <a href="/search/physics?searchtype=author&amp;query=Zaprazny%2C+Z">Zdenko Zaprazny</a>, <a href="/search/physics?searchtype=author&amp;query=Mazzolari%2C+A">Andrea Mazzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Romagnoni%2C+M">Marco Romagnoni</a>, <a href="/search/physics?searchtype=author&amp;query=Asimakopoulou%2C+E+M">Eleni Myrto Asimakopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Z">Zisheng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ulicny%2C+J">Jozef Ulicny</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13262v1-abstract-short" style="display: inline;"> X-ray Multi-Projection Imaging (XMPI) is an emerging technology that allows for the acquisition of millions of 3D images per second in samples opaque to visible light. This breakthrough capability enables volumetric observation of fast stochastic phenomena, which were inaccessible due to the lack of a volumetric X-ray imaging probe with kHz to MHz repetition rate. These include phenomena of indust&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13262v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13262v1-abstract-full" style="display: none;"> X-ray Multi-Projection Imaging (XMPI) is an emerging technology that allows for the acquisition of millions of 3D images per second in samples opaque to visible light. This breakthrough capability enables volumetric observation of fast stochastic phenomena, which were inaccessible due to the lack of a volumetric X-ray imaging probe with kHz to MHz repetition rate. These include phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. Indeed, the speed of traditional tomography is limited by the shear forces caused by rotation, to a maximum of 1000 Hz in state-of-the-art tomography. Moreover, the shear forces can disturb the phenomena in observation, in particular with soft samples or sensitive phenomena such as fluid dynamics. XMPI is based on splitting an X-ray beam to generate multiple simultaneous views of the sample, therefore eliminating the need for rotation. The achievable performances depend on the characteristics of the X-ray source, the detection system, and the X-ray optics used to generate the multiple views. The increase in power density of the X-ray sources around the world now enables 3D imaging with sampling speeds in the kilohertz range at synchrotrons and megahertz range at X-ray Free-Electron Lasers (XFELs). Fast detection systems are already available, and 2D MHz imaging was already demonstrated at synchrotron and XFEL. In this work, we explore the properties of X-ray splitter optics and XMPI schemes that are compatible with synchrotron insertion devices and XFEL X-ray beams. We describe two possible schemes designed to permit large samples and complex sample environments. Then, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13262v1-abstract-full').style.display = 'none'; document.getElementById('2402.13262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.08639">arXiv:2309.08639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.08639">pdf</a>, <a href="https://arxiv.org/format/2309.08639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Live Iterative Ptychography with projection-based algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Welker%2C+S">Simon Welker</a>, <a href="/search/physics?searchtype=author&amp;query=Peer%2C+T">Tal Peer</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Gerkmann%2C+T">Timo Gerkmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.08639v2-abstract-short" style="display: inline;"> In this work, we demonstrate that the ptychographic phase problem can be solved in a live fashion during scanning, while data is still being collected. We propose a generally applicable modification of the widespread projection-based algorithms such as Error Reduction (ER) and Difference Map (DM). This novel variant of ptychographic phase retrieval enables immediate visual feedback during experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08639v2-abstract-full').style.display = 'inline'; document.getElementById('2309.08639v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.08639v2-abstract-full" style="display: none;"> In this work, we demonstrate that the ptychographic phase problem can be solved in a live fashion during scanning, while data is still being collected. We propose a generally applicable modification of the widespread projection-based algorithms such as Error Reduction (ER) and Difference Map (DM). This novel variant of ptychographic phase retrieval enables immediate visual feedback during experiments, reconstruction of arbitrary-sized objects with a fixed amount of computational resources, and adaptive scanning. By building upon the Real-Time Iterative Spectrogram Inversion (RTISI) family of algorithms from the audio processing literature, we show that live variants of projection-based methods such as DM can be derived naturally and may even achieve higher-quality reconstructions than their classic non-live counterparts with comparable effective computational load. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.08639v2-abstract-full').style.display = 'none'; document.getElementById('2309.08639v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ICASSP 24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11920">arXiv:2305.11920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11920">pdf</a>, <a href="https://arxiv.org/format/2305.11920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Megahertz X-ray Multi-projection imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Villanueva-Perez%2C+P">Pablo Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Bellucci%2C+V">Valerio Bellucci</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Birnsteinova%2C+S">Sarlota Birnsteinova</a>, <a href="/search/physics?searchtype=author&amp;query=Graceffa%2C+R">Rita Graceffa</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Asimakopoulou%2C+E+M">Eleni Myrto Asimakopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+I">Ilia Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Z">Zisheng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Romagnoni%2C+M">Marco Romagnoni</a>, <a href="/search/physics?searchtype=author&amp;query=Mazzolari%2C+A">Andrea Mazzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J+C+P">Jayanath C. P. Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Deiter%2C+C">Carsten Deiter</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Giovanetti%2C+G">Gabriele Giovanetti</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Ritschel%2C+T">Tobias Ritschel</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A">Adrian Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Vagovic%2C+P">Patrik Vagovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11920v1-abstract-short" style="display: inline;"> X-ray time-resolved tomography is one of the most popular X-ray techniques to probe dynamics in three dimensions (3D). Recent developments in time-resolved tomography opened the possibility of recording kilohertz-rate 3D movies. However, tomography requires rotating the sample with respect to the X-ray beam, which prevents characterization of faster structural dynamics. Here, we present megahertz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11920v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11920v1-abstract-full" style="display: none;"> X-ray time-resolved tomography is one of the most popular X-ray techniques to probe dynamics in three dimensions (3D). Recent developments in time-resolved tomography opened the possibility of recording kilohertz-rate 3D movies. However, tomography requires rotating the sample with respect to the X-ray beam, which prevents characterization of faster structural dynamics. Here, we present megahertz (MHz) X-ray multi-projection imaging (MHz-XMPI), a technique capable of recording volumetric information at MHz rates and micrometer resolution without scanning the sample. We achieved this by harnessing the unique megahertz pulse structure and intensity of the European X-ray Free-electron Laser with a combination of novel detection and reconstruction approaches that do not require sample rotations. Our approach enables generating multiple X-ray probes that simultaneously record several angular projections for each pulse in the megahertz pulse burst. We provide a proof-of-concept demonstration of the MHz-XMPI technique&#39;s capability to probe 4D (3D+time) information on stochastic phenomena and non-reproducible processes three orders of magnitude faster than state-of-the-art time-resolved X-ray tomography, by generating 3D movies of binary droplet collisions. We anticipate that MHz-XMPI will enable in-situ and operando studies that were impossible before, either due to the lack of temporal resolution or because the systems were opaque (such as for MHz imaging based on optical microscopy). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11920v1-abstract-full').style.display = 'none'; document.getElementById('2305.11920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.18043">arXiv:2303.18043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.18043">pdf</a>, <a href="https://arxiv.org/format/2303.18043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Online dynamic flat-field correction for MHz Microscopy data at European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Birnsteinova%2C+S">Sarlota Birnsteinova</a>, <a href="/search/physics?searchtype=author&amp;query=de+Lima%2C+D+E+F">Danilo E. Ferreira de Lima</a>, <a href="/search/physics?searchtype=author&amp;query=Sobolev%2C+E">Egor Sobolev</a>, <a href="/search/physics?searchtype=author&amp;query=Kirkwood%2C+H+J">Henry J. Kirkwood</a>, <a href="/search/physics?searchtype=author&amp;query=Bellucci%2C+V">Valerio Bellucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R+J">Richard J. Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J+C+P">Jayanath C. P. Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Dall%27Antonia%2C+F">Fabio Dall&#39;Antonia</a>, <a href="/search/physics?searchtype=author&amp;query=Asimakopoulou%2C+E+M">Eleni Myrto Asimakopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Z">Zisheng Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Buakor%2C+K">Khachiwan Buakor</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A+P">Adrian P. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Villanueva-Perez%2C+P">Pablo Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Vagovic%2C+P">Patrik Vagovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.18043v1-abstract-short" style="display: inline;"> The X-ray microscopy technique at the European X-ray free-electron laser (EuXFEL), operating at a MHz repetition rate, provides superior contrast and spatial-temporal resolution compared to typical microscopy techniques at other X-ray sources. In both online visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18043v1-abstract-full').style.display = 'inline'; document.getElementById('2303.18043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.18043v1-abstract-full" style="display: none;"> The X-ray microscopy technique at the European X-ray free-electron laser (EuXFEL), operating at a MHz repetition rate, provides superior contrast and spatial-temporal resolution compared to typical microscopy techniques at other X-ray sources. In both online visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of XFEL sources hinders the use of existing flat-flied normalization methods during MHz X-ray microscopy experiments. Here, we present an online dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images. The method is used for the normalization of individual X-ray projections and has been implemented as an online analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18043v1-abstract-full').style.display = 'none'; document.getElementById('2303.18043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00072">arXiv:2303.00072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00072">pdf</a>, <a href="https://arxiv.org/format/2303.00072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Absolute spectral metrology of XFEL pulses using diffraction in crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Petrov%2C+I">Ilia Petrov</a>, <a href="/search/physics?searchtype=author&amp;query=Samoylova%2C+L">Liubov Samoylova</a>, <a href="/search/physics?searchtype=author&amp;query=Birnsteinova%2C+S">Sarlota Birnsteinova</a>, <a href="/search/physics?searchtype=author&amp;query=Bellucci%2C+V">Valerio Bellucci</a>, <a href="/search/physics?searchtype=author&amp;query=Makita%2C+M">Mikako Makita</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=de+Wijn%2C+R">Raphael de Wijn</a>, <a href="/search/physics?searchtype=author&amp;query=Mazzolari%2C+A">Andrea Mazzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Romagnoni%2C+M">Marco Romagnoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A">Adrian Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Vagovic%2C+P">Patrik Vagovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00072v1-abstract-short" style="display: inline;"> At modern X-ray sources, such as synchrotrons and X-ray Free-Electron Lasers (XFELs), it is important to measure the absolute value of the photon energy directly. Here, a method for absolute spectral metrology is presented. A photon energy estimation method based on the spectral measurements and rocking of diffracting crystals is presented. The photon energy of SASE1 channel of the European XFEL w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00072v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00072v1-abstract-full" style="display: none;"> At modern X-ray sources, such as synchrotrons and X-ray Free-Electron Lasers (XFELs), it is important to measure the absolute value of the photon energy directly. Here, a method for absolute spectral metrology is presented. A photon energy estimation method based on the spectral measurements and rocking of diffracting crystals is presented. The photon energy of SASE1 channel of the European XFEL was measured, and the benefits and applications of the precise photon energy evaluation are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00072v1-abstract-full').style.display = 'none'; document.getElementById('2303.00072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04938">arXiv:2210.04938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.04938">pdf</a>, <a href="https://arxiv.org/format/2210.04938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.015205">10.1103/PhysRevE.107.015205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decreasing ultrafast X-ray pulse durations with saturable absorption and resonant transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cardoch%2C+S">Sebastian Cardoch</a>, <a href="/search/physics?searchtype=author&amp;query=Trost%2C+F">Fabian Trost</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+H+A">Howard A. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Caleman%2C+C">Carl Caleman</a>, <a href="/search/physics?searchtype=author&amp;query=Timneanu%2C+N">Nicusor Timneanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04938v1-abstract-short" style="display: inline;"> Saturable absorption is a nonlinear effect where a material&#39;s ability to absorb light is frustrated due to a high influx of photons and the creation of electron vacancies. Experimentally induced saturable absorption in copper revealed a reduction in the temporal duration of transmitted X-ray laser pulses, but a complete understanding of this process is still missing. In this computational work, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04938v1-abstract-full').style.display = 'inline'; document.getElementById('2210.04938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04938v1-abstract-full" style="display: none;"> Saturable absorption is a nonlinear effect where a material&#39;s ability to absorb light is frustrated due to a high influx of photons and the creation of electron vacancies. Experimentally induced saturable absorption in copper revealed a reduction in the temporal duration of transmitted X-ray laser pulses, but a complete understanding of this process is still missing. In this computational work, we employ non-local thermodynamic equilibrium plasma simulations to study the interaction of femtosecond X-rays and copper. Following the onset of frustrated absorption, we find that a $K\text{--}M$ resonant transition occurring at highly charged states turns copper opaque again. The changes in absorption generate a transient transparent window responsible for the shortened transmission signal. We also propose using fluorescence induced by the incident beam as an alternative source to achieve shorter X-ray pulses. Intense femtosecond X-ray pulses are valuable to probe the structure and dynamics of biological samples or to reach extreme states of matter. Shortened pulses could be relevant for emerging imaging techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04938v1-abstract-full').style.display = 'none'; document.getElementById('2210.04938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 107, 015205 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03793">arXiv:2210.03793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03793">pdf</a>, <a href="https://arxiv.org/format/2210.03793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.495920">10.1364/OE.495920 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab Initio Spatial Phase Retrieval via Intensity Triple Correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Peard%2C+N">Nolan Peard</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03793v3-abstract-short" style="display: inline;"> Second-order intensity correlations from incoherent emitters can reveal the Fourier transform modulus of their spatial distribution, but retrieving the phase to enable completely general Fourier inversion to real space remains challenging. Phase retrieval via the third-order intensity correlations has relied on special emitter configurations which simplified an unaddressed sign problem in the comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03793v3-abstract-full').style.display = 'inline'; document.getElementById('2210.03793v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03793v3-abstract-full" style="display: none;"> Second-order intensity correlations from incoherent emitters can reveal the Fourier transform modulus of their spatial distribution, but retrieving the phase to enable completely general Fourier inversion to real space remains challenging. Phase retrieval via the third-order intensity correlations has relied on special emitter configurations which simplified an unaddressed sign problem in the computation. Without a complete treatment of this sign problem, the general case of retrieving the Fourier phase from a truly arbitrary configuration of emitters is not possible. In this paper, a general method for ab initio phase retrieval via the intensity triple correlations is described. Simulations demonstrate accurate phase retrieval for clusters of incoherent emitters which could be applied to imaging stars or fluorescent atoms and molecules. With this work, it is now finally tractable to perform Fourier inversion directly and reconstruct images of arbitrary arrays of independent emitters via far-field intensity correlations alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03793v3-abstract-full').style.display = 'none'; document.getElementById('2210.03793v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14378">arXiv:2203.14378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14378">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0092269">10.1063/5.0092269 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise wavefront characterization of X-ray optical elements using a laboratory source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dresselhaus%2C+J+L">J. L. Dresselhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Fleckenstein%2C+H">H. Fleckenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Domaracky%2C+M">M. Domaracky</a>, <a href="/search/physics?searchtype=author&amp;query=Prasciolu%2C+M">M. Prasciolu</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+N">N. Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Carnis%2C+J">J. Carnis</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+K+T">K. T. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">A. J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">S. Bajt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14378v1-abstract-short" style="display: inline;"> Improvements in X-ray optics critically depend on the measurement of their optical performance. The knowledge of wavefront aberrations, for example, can be used to improve the fabrication of optical elements or to design phase correctors to compensate for these errors. Nowadays, the characterization of such optics is made using intense X-ray sources such as synchrotrons. However, the limited acces&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14378v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14378v1-abstract-full" style="display: none;"> Improvements in X-ray optics critically depend on the measurement of their optical performance. The knowledge of wavefront aberrations, for example, can be used to improve the fabrication of optical elements or to design phase correctors to compensate for these errors. Nowadays, the characterization of such optics is made using intense X-ray sources such as synchrotrons. However, the limited access to these facilities can substantially slow down the development process. Improvements in the brightness of lab-based X-ray micro-sources in combination with the development of new metrology methods, and in particular ptychographic X-ray speckle tracking, enable characterization of X-ray optics in the lab with a precision and sensitivity not possible before. Here, we present a laboratory set-up that utilizes a commercially available X-ray source and can be used to characterize different types of X-ray optics. The set-up is used in our laboratory on a routine basis to characterize multilayer Laue lenses of high numerical aperture and other optical elements. This typically includes measurements of the wavefront distortions, optimum operating photon energy and focal length of the lens. To check the sensitivity and accuracy of this laboratory set-up we compared the results to those obtained at the synchrotron and saw no significant difference. To illustrate the feedback of measurements on performance, we demonstrated the correction of the phase errors of a particular multilayer Laue lens using a 3D printed compound refractive phase plate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14378v1-abstract-full').style.display = 'none'; document.getElementById('2203.14378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11712">arXiv:2203.11712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On the use of multilayer Laue lenses with X-ray Free Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+K+T">Kevin T. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+N">Nikolay Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Domarack%C3%BD%2C+M">Martin Domarack媒</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Trost%2C+F">Fabian Trost</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Krebs%2C+D">Dietrich Krebs</a>, <a href="/search/physics?searchtype=author&amp;query=Aplin%2C+S">Steve Aplin</a>, <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Boesenberg%2C+U">Ulrike Boesenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+M">Matthias Fuchs</a>, <a href="/search/physics?searchtype=author&amp;query=Gevorkov%2C+Y">Yaroslav Gevorkov</a>, <a href="/search/physics?searchtype=author&amp;query=Hallmann%2C+J">Joerg Hallmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Kno%C5%A1ka%2C+J">Juraj Kno拧ka</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chufeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+W">Wei Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%B6ller%2C+J">Johannes M枚ller</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11712v1-abstract-short" style="display: inline;"> Multilayer Laue lenses were used for the first time to focus x-rays from an X-ray Free Electron Laser (XFEL). In an experiment, which was performed at the European XFEL, we demonstrated focusing to a spot size of a few tens of nanometers. A series of runs in which the number of pulses per train was increased from 1 to 2, 3, 4, 5, 6, 7, 10, 20 and 30 pulses per train, all with a pulse separation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11712v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11712v1-abstract-full" style="display: none;"> Multilayer Laue lenses were used for the first time to focus x-rays from an X-ray Free Electron Laser (XFEL). In an experiment, which was performed at the European XFEL, we demonstrated focusing to a spot size of a few tens of nanometers. A series of runs in which the number of pulses per train was increased from 1 to 2, 3, 4, 5, 6, 7, 10, 20 and 30 pulses per train, all with a pulse separation of 3.55 us, was done using the same set of lenses. The increase in the number of pulses per train was accompanied with an increase of x-ray intensity (transmission) from 9% to 92% at 5 pulses per train, and then the transmission was reduced to 23.5 % when the pulses were increased further. The final working condition was 30 pulses per train and 23.5% transmission. Only at this condition we saw that the diffraction efficiency of the MLLs changed over the course of a pulse train, and this variation was reproducible from train to train. We present the procedure to align and characterize these lenses and discuss challenges working with the pulse trains from this unique x-ray source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11712v1-abstract-full').style.display = 'none'; document.getElementById('2203.11712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06179">arXiv:2109.06179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06179">pdf</a>, <a href="https://arxiv.org/format/2109.06179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Unsupervised learning approaches to characterize heterogeneous samples using X-ray single particle imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+Y">Yulong Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&amp;query=Bergemann%2C+M">Martin Bergemann</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&amp;query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/physics?searchtype=author&amp;query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=Karnevskiy%2C+M">Mikhail Karnevskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Lange%2C+H">Holger Lange</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&amp;query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/physics?searchtype=author&amp;query=Michelat%2C+T">Thomas Michelat</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Samanta%2C+A+K">Amit K. Samanta</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06179v1-abstract-short" style="display: inline;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06179v1-abstract-full" style="display: none;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA) provides a rough classification which is essentially parameter-free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs) can generate 3D structures of the objects at any point in the structural landscape. We implement both these methods in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and demonstrate its utility by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern and recover both discrete structural classes as well as continuous deformations. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility to move beyond studying homogeneous sample sets and study open questions on topics such as nanocrystal growth and dynamics as well as phase transitions which have not been externally triggered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'none'; document.getElementById('2109.06179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02899">arXiv:2102.02899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.02899">pdf</a>, <a href="https://arxiv.org/format/2102.02899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Optical funnel to guide and focus virus particles for X-ray laser imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Lavin-Varela%2C+S">Sebastian Lavin-Varela</a>, <a href="/search/physics?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&amp;query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02899v2-abstract-short" style="display: inline;"> The need for precise manipulation of nanoparticles in gaseous or near-vacuum environments is encountered in many studies that include aerosol morphology, nanodroplet physics, nanoscale optomechanics, and biomolecular physics. Photophoretic forces, whereby momentum exchange between a particle and surrounding gas is induced with optical light, were recently shown to be a robust means of trapping and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02899v2-abstract-full').style.display = 'inline'; document.getElementById('2102.02899v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02899v2-abstract-full" style="display: none;"> The need for precise manipulation of nanoparticles in gaseous or near-vacuum environments is encountered in many studies that include aerosol morphology, nanodroplet physics, nanoscale optomechanics, and biomolecular physics. Photophoretic forces, whereby momentum exchange between a particle and surrounding gas is induced with optical light, were recently shown to be a robust means of trapping and manipulating nanoparticles in air. We previously proposed a photophoretic &#34;optical funnel&#34; concept for the delivery of bioparticles to the focus of an x-ray free-electron laser (XFEL) beam for femtosecond x-ray diffractive imaging. Here, we describe the formation of a high-aspect-ratio optical funnel and provide a first experimental demonstration of this concept by transversely compressing and concentrating a high-speed beam of aerosolized viruses by a factor of three in a low-pressure environment. These results pave the way toward improved sample delivery efficiency for XFEL imaging experiments as well as other forms of imaging and spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02899v2-abstract-full').style.display = 'none'; document.getElementById('2102.02899v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11237">arXiv:2012.11237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.11237">pdf</a>, <a href="https://arxiv.org/format/2012.11237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> New aerodynamic lens injector for single particle diffractive imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&amp;query=Samanta%2C+A+K">Amit K. Samanta</a>, <a href="/search/physics?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&amp;query=Worbs%2C+L">Lena Worbs</a>, <a href="/search/physics?searchtype=author&amp;query=Pohlman%2C+N">Nicolai Pohlman</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Domaracky%2C+M">Martin Domaracky</a>, <a href="/search/physics?searchtype=author&amp;query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&amp;query=Passow%2C+C">Christopher Passow</a>, <a href="/search/physics?searchtype=author&amp;query=Correa%2C+J">Jonathan Correa</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11237v1-abstract-short" style="display: inline;"> An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11237v1-abstract-full').style.display = 'inline'; document.getElementById('2012.11237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11237v1-abstract-full" style="display: none;"> An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction patterns of polystyrene spheres are modeled using Mie scattering, which allowed for the characterization of the particle beam under diffractive-imaging conditions and yield good agreement with particle-trajectory simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11237v1-abstract-full').style.display = 'none'; document.getElementById('2012.11237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13597">arXiv:2007.13597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13597">pdf</a>, <a href="https://arxiv.org/format/2007.13597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> 3D diffractive imaging of nanoparticle ensembles using an X-ray laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhou Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=Samanta%2C+A+K">Amit K. Samanta</a>, <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&amp;query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&amp;query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&amp;query=Lange%2C+H">Holger Lange</a>, <a href="/search/physics?searchtype=author&amp;query=Letruin%2C+R">Romain Letruin</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sikorski%2C+M">Marcin Sikorski</a>, <a href="/search/physics?searchtype=author&amp;query=Schulz%2C+F">Florian Schulz</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13597v1-abstract-short" style="display: inline;"> We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 150&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13597v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13597v1-abstract-full" style="display: none;"> We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13597v1-abstract-full').style.display = 'none'; document.getElementById('2007.13597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 main figures, 6 supplementary figures, 2 supplementary movies (link in document)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.00297">arXiv:2006.00297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.00297">pdf</a>, <a href="https://arxiv.org/format/2006.00297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2040-8986/abb9c2">10.1088/2040-8986/abb9c2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A ray-trace analysis of X-ray multilayer Laue lenses for nanometer focusing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.00297v1-abstract-short" style="display: inline;"> Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Bragg&#39;s law over the entire lens aperture and give rise to constructive interference at the focus. Here th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.00297v1-abstract-full').style.display = 'inline'; document.getElementById('2006.00297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.00297v1-abstract-full" style="display: none;"> Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Bragg&#39;s law over the entire lens aperture and give rise to constructive interference at the focus. Here the analysis method of ray-tracing of thick diffractive optical elements is applied to such lenses to optimise their designs and to investigate their operating and manufacturing tolerances. Expressions are provided of the fourth-order series expansions of the wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of crossed lenses that each focuses in only one dimension like a cylindrical lens. We find that aplanatic zone-plate designs, whereby aberrations are corrected over a large field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We investigate the performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show their fields of view are mainly limited by the acceptance angle of Bragg diffraction, and that aberrations can limit the performance of lenses with longer focal lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect lenses and examine some strategies for the correction of their aberrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.00297v1-abstract-full').style.display = 'none'; document.getElementById('2006.00297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12726">arXiv:2003.12726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12726">pdf</a>, <a href="https://arxiv.org/format/2003.12726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> speckle-tracking: a Software Suite for Ptychographic X-ray Speckle Tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+K+T">Kevin T. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Quiney%2C+H+M">Harry M. Quiney</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12726v1-abstract-short" style="display: inline;"> In recent years, x-ray speckle tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications. These methods are based on the measurement of near-field images. Thanks to the simple experimental set-up, high angular sensitivity and compatibility with low coherence sources these methods have been actively developed for use with synchrotron and laboratory lig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12726v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12726v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12726v1-abstract-full" style="display: none;"> In recent years, x-ray speckle tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications. These methods are based on the measurement of near-field images. Thanks to the simple experimental set-up, high angular sensitivity and compatibility with low coherence sources these methods have been actively developed for use with synchrotron and laboratory light sources. Not only do speckle-tracking techniques give the potential for high resolution imaging, but they also provide rapid and robust characterisation of aberrations of x-ray optical elements, focal spot profiles and the sample position and transmission properties. In order to realise these capabilities, we require software implementations that are equally rapid and robust. To address this need, a software suite has been developed for the &#34;ptychographic x-ray speckle tracking technique&#34; -- an x-ray speckle based method suitable for highly divergent wavefields. The software suite is written in Python 3, with an OpenCL back end for GPU and multi-CPU core processing. It is accessible as a Python module, through the command line or through a graphical user interface and is available as source code under version 3 or later of the GNU General Public License. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12726v1-abstract-full').style.display = 'none'; document.getElementById('2003.12726v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12716">arXiv:2003.12716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12716">pdf</a>, <a href="https://arxiv.org/format/2003.12716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Ptychographic X-ray Speckle Tracking with Multi Layer Laue Lens Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew James Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+K+T">Kevin T. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&amp;query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Villanueva-Perez%2C+P">Pablo Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Domaracky%2C+M">Martin Domaracky</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhn%2C+M">Manuela Kuhn</a>, <a href="/search/physics?searchtype=author&amp;query=Aplin%2C+S">Steve Aplin</a>, <a href="/search/physics?searchtype=author&amp;query=Mohacsi%2C+I">Istwan Mohacsi</a>, <a href="/search/physics?searchtype=author&amp;query=Messerschmidt%2C+M">Marc Messerschmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Stachnik%2C+K">Karolina Stachnik</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y">Yang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Burkhart%2C+A">Anja Burkhart</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&amp;query=Nazaretski%2C+E">Evgeny Nazaretski</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+H">Hanfei Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xiaojing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Y">Yong Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12716v1-abstract-short" style="display: inline;"> The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12716v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12716v1-abstract-full" style="display: none;"> The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical sensitivity. The penetrating power that makes x-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques that have enabled the fabrication of a series of highly focusing x-ray lenses, known as wedged multi layer Laue lenses. Improvements to the lens design and fabrication technique demands an accurate, robust, in-situ and at-wavelength characterisation method. To this end, we have developed a modified form of the speckle-tracking wavefront metrology method, the ptychographic x-ray speckle tracking method, which is capable of operating with highly divergent wavefields. A useful by-product of this method, is that it also provides high-resolution and aberration-free projection images of extended specimens. We report on three separate experiments using this method, where we have resolved ray path angles to within 4 nano-radians with an imaging resolution of 45nm (full-period). This method does not require a high degree of coherence, making it suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12716v1-abstract-full').style.display = 'none'; document.getElementById('2003.12716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12686">arXiv:2003.12686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.12686">pdf</a>, <a href="https://arxiv.org/format/2003.12686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Ptychographic X-ray Speckle Tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Quiney%2C+H+M">Harry M. Quiney</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12686v1-abstract-short" style="display: inline;"> We present a method for the measurement of the phase gradient of a wavefront by tracking the relative motion of speckles in projection holograms as a sample is scanned across the wavefront. By removing the need to obtain an un-distorted reference image of the sample, this method is suitable for the metrology of highly divergent wavefields. Such wavefields allow for large magnification factors, tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12686v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12686v1-abstract-full" style="display: none;"> We present a method for the measurement of the phase gradient of a wavefront by tracking the relative motion of speckles in projection holograms as a sample is scanned across the wavefront. By removing the need to obtain an un-distorted reference image of the sample, this method is suitable for the metrology of highly divergent wavefields. Such wavefields allow for large magnification factors, that, according to current imaging capabilities, will allow for nano-radian angular sensitivity and nano-scale sample projection imaging. Both the reconstruction algorithm and the imaging geometry are nearly identical to that of ptychography, except that the sample is placed downstream of the beam focus and that no coherent propagation is explicitly accounted for. Like other x-ray speckle tracking methods, it is robust to low-coherence x-ray sources making is suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology. We also present a modified form of the speckle tracking approximation, based on a second-order local expansion of the Fresnel integral. This result extends the validity of the speckle tracking approximation and may be useful for similar approaches in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12686v1-abstract-full').style.display = 'none'; document.getElementById('2003.12686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10796">arXiv:1912.10796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.10796">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-0362-y">10.1038/s42005-020-0362-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz single-particle imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sobolev%2C+E">Egor Sobolev</a>, <a href="/search/physics?searchtype=author&amp;query=Zolotarev%2C+S">Serguey Zolotarev</a>, <a href="/search/physics?searchtype=author&amp;query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">Kenta Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Reddy%2C+H+K+N">Hemanth K. N. Reddy</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">Jakob Andreasson</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Barak%2C+I">Imrich Barak</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+S">Sadia Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Bobkov%2C+S">Sergey Bobkov</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Chojnowski%2C+G">Grzegorz Chojnowski</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rner%2C+K">Katerina D枚rner</a>, <a href="/search/physics?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&amp;query=Fl%C3%BCckiger%2C+L">Leonie Fl眉ckiger</a>, <a href="/search/physics?searchtype=author&amp;query=Galzitskaya%2C+O">Oxana Galzitskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/physics?searchtype=author&amp;query=Hogue%2C+B+G">Brenda G. Hogue</a>, <a href="/search/physics?searchtype=author&amp;query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&amp;query=Hosseinizadeh%2C+A">Ahmad Hosseinizadeh</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10796v1-abstract-short" style="display: inline;"> The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will soon provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10796v1-abstract-full').style.display = 'inline'; document.getElementById('1912.10796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10796v1-abstract-full" style="display: none;"> The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will soon provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The obtained results pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10796v1-abstract-full').style.display = 'none'; document.getElementById('1912.10796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 3, 97 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13494">arXiv:1910.13494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.13494">pdf</a>, <a href="https://arxiv.org/format/1910.13494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5133963">10.1063/1.5133963 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray diffractive imaging of controlled gas-phase molecules: Toward imaging of dynamics in the molecular frame </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kierspel%2C+T">Thomas Kierspel</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Wiese%2C+J">Joss Wiese</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terry Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A">Andy Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Boutet%2C+S">S茅bastien Boutet</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P">Philip Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+L">Lauge Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Fry%2C+A">Alan Fry</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M">Mark Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=Koglin%2C+J+E">Jason E. Koglin</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+M">Mengning Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Natan%2C+A">Adi Natan</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+J">Joseph Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Rolles%2C+D">Daniel Rolles</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Schnorr%2C+K">Kirsten Schnorr</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+S">Stephan Stern</a>, <a href="/search/physics?searchtype=author&amp;query=Th%C3%B8gersen%2C+J">Jan Th酶gersen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13494v2-abstract-short" style="display: inline;"> We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($位\approx130 \text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13494v2-abstract-full').style.display = 'inline'; document.getElementById('1910.13494v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13494v2-abstract-full" style="display: none;"> We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($位\approx130 \text{pm}$) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the CSPAD detector and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to within 5 %. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data which should be readily available at upcoming high-repetition-rate facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13494v2-abstract-full').style.display = 'none'; document.getElementById('1910.13494v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10841">arXiv:1908.10841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.10841">pdf</a>, <a href="https://arxiv.org/format/1908.10841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> The natural breakup length of a steady capillary jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ganan-Calvo%2C+A+M">Alfonso M. Ganan-Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Heymann%2C+M">Michael Heymann</a>, <a href="/search/physics?searchtype=author&amp;query=Wiedorn%2C+M+O">Max O. Wiedorn</a>, <a href="/search/physics?searchtype=author&amp;query=Knoska%2C+J">Juraj Knoska</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y">Yang Du</a>, <a href="/search/physics?searchtype=author&amp;query=Ganan-Riesco%2C+B">Braulio Ganan-Riesco</a>, <a href="/search/physics?searchtype=author&amp;query=Herrada%2C+M+A">Miguel A. Herrada</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez-Herrera%2C+J+M">Jose M. Lopez-Herrera</a>, <a href="/search/physics?searchtype=author&amp;query=Cruz-Mazo%2C+F">Francisco Cruz-Mazo</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sasa Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Montanero%2C+J+M">Jose M. Montanero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10841v3-abstract-short" style="display: inline;"> Despite their fundamental and applied importance, a general model to predict the natural breakup length of steady capillary jets has not been proposed yet. In this work, we derive a scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimenta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10841v3-abstract-full').style.display = 'inline'; document.getElementById('1908.10841v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10841v3-abstract-full" style="display: none;"> Despite their fundamental and applied importance, a general model to predict the natural breakup length of steady capillary jets has not been proposed yet. In this work, we derive a scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. This law is explained in terms of the growth of perturbations excited by the jet breakup itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10841v3-abstract-full').style.display = 'none'; document.getElementById('1908.10841v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07263">arXiv:1906.07263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07263">pdf</a>, <a href="https://arxiv.org/format/1906.07263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Megahertz X-ray microscopy at X-ray Free-Electron Laser and Synchrotron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vagovi%C4%8D%2C+P">Patrik Vagovi膷</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Mike%C5%A1%2C+L">Ladislav Mike拧</a>, <a href="/search/physics?searchtype=author&amp;query=Mills%2C+G">Grant Mills</a>, <a href="/search/physics?searchtype=author&amp;query=Graceffa%2C+R">Rita Graceffa</a>, <a href="/search/physics?searchtype=author&amp;query=Mattsson%2C+F">Frans Mattsson</a>, <a href="/search/physics?searchtype=author&amp;query=Villanueva-Perez%2C+P">Pablo Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Ershov%2C+A">Alexey Ershov</a>, <a href="/search/physics?searchtype=author&amp;query=Farag%C3%B3%2C+T">Tom谩拧 Farag贸</a>, <a href="/search/physics?searchtype=author&amp;query=Uli%C4%8Dn%C3%BD%2C+J">Jozef Uli膷n媒</a>, <a href="/search/physics?searchtype=author&amp;query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/physics?searchtype=author&amp;query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&amp;query=Mokso%2C+R">Rajmund Mokso</a>, <a href="/search/physics?searchtype=author&amp;query=Zdora%2C+M">Marie-Christine Zdora</a>, <a href="/search/physics?searchtype=author&amp;query=Olbinado%2C+M+P">Margie P. Olbinado</a>, <a href="/search/physics?searchtype=author&amp;query=Rack%2C+A">Alexander Rack</a>, <a href="/search/physics?searchtype=author&amp;query=Baumbach%2C+T">Tilo Baumbach</a>, <a href="/search/physics?searchtype=author&amp;query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A+P">Adrian P. Mancuso</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07263v1-abstract-short" style="display: inline;"> We demonstrate X-ray phase contrast microscopy performed at the European X-ray Free-Electron Laser sampled at 1.128 MHz rate. We have applied this method to image stochastic processes induced by an optical laser incident on water-filled capillaries with micrometer scale spatial resolution. The generated high speed water jet, cavitation formation and annihilation in water and glass, as well as glas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07263v1-abstract-full').style.display = 'inline'; document.getElementById('1906.07263v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07263v1-abstract-full" style="display: none;"> We demonstrate X-ray phase contrast microscopy performed at the European X-ray Free-Electron Laser sampled at 1.128 MHz rate. We have applied this method to image stochastic processes induced by an optical laser incident on water-filled capillaries with micrometer scale spatial resolution. The generated high speed water jet, cavitation formation and annihilation in water and glass, as well as glass explosions are observed. The comparison between XFEL and previous synchrotron MHz microscopy shows the superior contrast and spatial resolution at the XFEL over the synchrotron. This work opens up new possibilities for the characterization of dynamic stochastic systems on nanosecond to microsecond time scales at megahertz rate with object velocities up to few kilometers per second using X-ray Free-Electron Laser sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07263v1-abstract-full').style.display = 'none'; document.getElementById('1906.07263v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">First MHz-rate microscopy at European XFEL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.05008">arXiv:1905.05008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.05008">pdf</a>, <a href="https://arxiv.org/format/1905.05008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.27.037816">10.1364/OE.27.037816 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-signal limit of X-ray single particle imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A+A">Andrew A. Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=DeMirci%2C+H">Hasan DeMirci</a>, <a href="/search/physics?searchtype=author&amp;query=Hogue%2C+B+G">Brenda G. Hogue</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+C+H">Chun Hong Yoon</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.05008v2-abstract-short" style="display: inline;"> An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an ave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05008v2-abstract-full').style.display = 'inline'; document.getElementById('1905.05008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.05008v2-abstract-full" style="display: none;"> An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05008v2-abstract-full').style.display = 'none'; document.getElementById('1905.05008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 27.26 (2019): 37816-37833 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05434">arXiv:1808.05434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05434">pdf</a>, <a href="https://arxiv.org/format/1808.05434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Hard X-ray multi-projection imaging for single-shot approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Villanueva-Perez%2C+P">P. Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Pedrini%2C+B">B. Pedrini</a>, <a href="/search/physics?searchtype=author&amp;query=Mokso%2C+R">R. Mokso</a>, <a href="/search/physics?searchtype=author&amp;query=Vagovic%2C+P">P. Vagovic</a>, <a href="/search/physics?searchtype=author&amp;query=Guzenko%2C+V">V. Guzenko</a>, <a href="/search/physics?searchtype=author&amp;query=Leake%2C+S">S. Leake</a>, <a href="/search/physics?searchtype=author&amp;query=Willmott%2C+P+R">P. R. Willmott</a>, <a href="/search/physics?searchtype=author&amp;query=David%2C+C">C. David</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Stampanoni%2C+M">M. Stampanoni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05434v1-abstract-short" style="display: inline;"> Obtaining 3D information from a single X-ray exposure at high-brilliance sources, such as X-ray free-electron lasers (XFELs) [1] or diffraction-limited storage rings [2], allows the study of fast dynamical processes in their native environment. However, current X-ray 3D methodologies are either not compatible with single-shot approaches because they rely on multiple exposures, such as confocal mic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05434v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05434v1-abstract-full" style="display: none;"> Obtaining 3D information from a single X-ray exposure at high-brilliance sources, such as X-ray free-electron lasers (XFELs) [1] or diffraction-limited storage rings [2], allows the study of fast dynamical processes in their native environment. However, current X-ray 3D methodologies are either not compatible with single-shot approaches because they rely on multiple exposures, such as confocal microscopy [3, 4] and tomography [5, 6]; or they record a single projection per pulse [7] and are therefore restricted to approximately two-dimensional objects [8]. Here we propose and verify experimentally a novel imaging approach named X-ray multi-projection imaging (XMPI), which simultaneously acquires several projections without rotating the sample at significant tomographic angles. When implemented at high-brilliance sources it can provide volumetric information using a single pulse. Moreover, XMPI at MHz repetition XFELs could allow a way to record 3D movies of deterministic or stochastic natural processes in the micrometer to nanometer resolution range, and at time scales from microseconds down to femtoseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05434v1-abstract-full').style.display = 'none'; document.getElementById('1808.05434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.09424">arXiv:1707.09424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.09424">pdf</a>, <a href="https://arxiv.org/format/1707.09424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-018-0110-y">10.1038/s41566-018-0110-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gorkhover%2C+T">Tais Gorkhover</a>, <a href="/search/physics?searchtype=author&amp;query=Ulmer%2C+A">Anatoli Ulmer</a>, <a href="/search/physics?searchtype=author&amp;query=Ferguson%2C+K">Ken Ferguson</a>, <a href="/search/physics?searchtype=author&amp;query=Bucher%2C+M">Max Bucher</a>, <a href="/search/physics?searchtype=author&amp;query=Maia%2C+F">Filipe Maia</a>, <a href="/search/physics?searchtype=author&amp;query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&amp;query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&amp;query=Hantke%2C+M+F">Max F. Hantke</a>, <a href="/search/physics?searchtype=author&amp;query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&amp;query=Nettelblad%2C+C">Carl Nettelblad</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">Jakob Andreasson</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bruza%2C+P">Petr Bruza</a>, <a href="/search/physics?searchtype=author&amp;query=Carron%2C+S">Sebastian Carron</a>, <a href="/search/physics?searchtype=author&amp;query=Hasse%2C+D">Dirk Hasse</a>, <a href="/search/physics?searchtype=author&amp;query=Krzywinski%2C+J">Jacek Krzywinski</a>, <a href="/search/physics?searchtype=author&amp;query=Larsson%2C+D+S+D">Daniel S. D. Larsson</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Muehlig%2C+K">Kerstin Muehlig</a>, <a href="/search/physics?searchtype=author&amp;query=Mueller%2C+M">Maria Mueller</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">Kenta Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Pietrini%2C+A">Alberto Pietrini</a>, <a href="/search/physics?searchtype=author&amp;query=Rupp%2C+D">Daniela Rupp</a>, <a href="/search/physics?searchtype=author&amp;query=Sauppe%2C+M">Mario Sauppe</a>, <a href="/search/physics?searchtype=author&amp;query=van+der+Schot%2C+G">Gijs van der Schot</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.09424v2-abstract-short" style="display: inline;"> Ultrafast X-ray imaging provides high resolution information on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimen, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always unique&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09424v2-abstract-full').style.display = 'inline'; document.getElementById('1707.09424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.09424v2-abstract-full" style="display: none;"> Ultrafast X-ray imaging provides high resolution information on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimen, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely-defined. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers in order to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lat- eral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond time scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.09424v2-abstract-full').style.display = 'none'; document.getElementById('1707.09424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.08677">arXiv:1705.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.08677">pdf</a>, <a href="https://arxiv.org/format/1705.08677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.053401">10.1103/PhysRevLett.119.053401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incoherent Diffractive Imaging via Intensity Correlations of hard X-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Classen%2C+A">Anton Classen</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%B6hlsberger%2C+R">Ralf R枚hlsberger</a>, <a href="/search/physics?searchtype=author&amp;query=von+Zanthier%2C+J">Joachim von Zanthier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.08677v1-abstract-short" style="display: inline;"> Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures or even single molecules. While these techniques rely on coherent scattering, incoherent processes like Compton scattering or fluorescence emission -- often the predominant scattering mechanisms -- are generally considered detrimental for imaging applications. Here w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08677v1-abstract-full').style.display = 'inline'; document.getElementById('1705.08677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.08677v1-abstract-full" style="display: none;"> Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures or even single molecules. While these techniques rely on coherent scattering, incoherent processes like Compton scattering or fluorescence emission -- often the predominant scattering mechanisms -- are generally considered detrimental for imaging applications. Here we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D structure of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08677v1-abstract-full').style.display = 'none'; document.getElementById('1705.08677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 053401 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05173">arXiv:1705.05173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.05173">pdf</a>, <a href="https://arxiv.org/format/1705.05173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Continuous Diffraction of Molecules and Disordered Molecular Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O+M">Oleksandr M. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&amp;query=White%2C+T+A">Thomas A. White</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Oberthuer%2C+D">Dominik Oberthuer</a>, <a href="/search/physics?searchtype=author&amp;query=Pande%2C+K">Kanupriya Pande</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05173v1-abstract-short" style="display: inline;"> The diffraction pattern of a single non-periodic compact object, such as a molecule, is continuous and is proportional to the square modulus of the Fourier transform of that object. When arrayed in a crystal, the coherent sum of the continuous diffracted wave-fields from all objects gives rise to strong Bragg peaks that modulate the single-object transform. Wilson statistics describe the distribut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05173v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05173v1-abstract-full" style="display: none;"> The diffraction pattern of a single non-periodic compact object, such as a molecule, is continuous and is proportional to the square modulus of the Fourier transform of that object. When arrayed in a crystal, the coherent sum of the continuous diffracted wave-fields from all objects gives rise to strong Bragg peaks that modulate the single-object transform. Wilson statistics describe the distribution of continuous diffraction intensities to the same extent that they apply to Bragg diffraction. The continuous diffraction obtained from translationally-disordered molecular crystals consists of the incoherent sum of the wave-fields from the individual rigid units (such as molecules) in the crystal, which is proportional to the incoherent sum of the diffraction from the rigid units in each of their crystallographic orientations. This sum over orientations modifies the statistics in a similar way that crystal twinning modifies the distribution of Bragg intensities. These statistics are applied to determine parameters of continuous diffraction such as its scaling, the beam coherence, and the number of independent wave-fields or object orientations contributing. Continuous diffraction is generally much weaker than Bragg diffraction and may be accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities to guide the subtraction of the background it is shown how all measured values can be utilised to estimate the background, noise, and signal, by employing a modified &#34;noisy Wilson&#34; distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously-published continuous diffraction data measured from imperfect crystals of photosystem II. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05173v1-abstract-full').style.display = 'none'; document.getElementById('1705.05173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures, 2 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04014">arXiv:1702.04014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04014">pdf</a>, <a href="https://arxiv.org/format/1702.04014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600576717018131">10.1107/S1600576717018131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond x-ray diffraction from an aerosolized beam of protein nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Wiedorn%2C+M+O">Max O. Wiedorn</a>, <a href="/search/physics?searchtype=author&amp;query=Beyerlein%2C+K+R">Kenneth R. Beyerlein</a>, <a href="/search/physics?searchtype=author&amp;query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&amp;query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&amp;query=Oberth%C3%BCr%2C+D">Dominik Oberth眉r</a>, <a href="/search/physics?searchtype=author&amp;query=Knoska%2C+J">Juraj Knoska</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Tolstikova%2C+A">Alexandra Tolstikova</a>, <a href="/search/physics?searchtype=author&amp;query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A">Andrew Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Roy-Chowdhury%2C+S">Shatabdi Roy-Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=James%2C+D">Daniel James</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+J+S">Joseph S. Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">Uwe Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04014v3-abstract-short" style="display: inline;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'inline'; document.getElementById('1702.04014v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04014v3-abstract-full" style="display: none;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to study the weak diffuse or lattice-transform signal arising from small crystals. The high speed of the particles is particularly well suited to upcoming MHz-repetition-rate x-ray free-electron lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'none'; document.getElementById('1702.04014v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03517">arXiv:1606.03517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.03517">pdf</a>, <a href="https://arxiv.org/format/1606.03517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/120/16003">10.1209/0295-5075/120/16003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal x-ray diffraction and near-field phase contrast imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Classen%2C+A">Anton Classen</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+T">Tao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Medvedev%2C+N">Nikita Medvedev</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Fenglin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+Y">Yanhua Shih</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03517v4-abstract-short" style="display: inline;"> Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such scheme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03517v4-abstract-full').style.display = 'inline'; document.getElementById('1606.03517v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03517v4-abstract-full" style="display: none;"> Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03517v4-abstract-full').style.display = 'none'; document.getElementById('1606.03517v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhys. Letters (EPL) 120, 16003 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06231">arXiv:1512.06231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.06231">pdf</a>, <a href="https://arxiv.org/format/1512.06231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.24.006507">10.1364/OE.24.006507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing aerosol-particle injection for diffractive-imaging experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&amp;query=Eckerskorn%2C+N">Niko Eckerskorn</a>, <a href="/search/physics?searchtype=author&amp;query=Wiedorn%2C+M">Max Wiedorn</a>, <a href="/search/physics?searchtype=author&amp;query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&amp;query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06231v1-abstract-short" style="display: inline;"> Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06231v1-abstract-full').style.display = 'inline'; document.getElementById('1512.06231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06231v1-abstract-full" style="display: none;"> Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the amount of time and sample consumed during measurements. We have developed in-situ non-destructive imaging diagnostics to aid real-time particle injector optimization and x-ray/particle-beam alignment, based on laser illumination schemes and fast imaging detectors. Our diagnostics are constructed to provide a non-invasive rapid feedback on injector performance during measurements, and have been demonstrated during diffraction measurements at the FLASH free-electron laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06231v1-abstract-full').style.display = 'none'; document.getElementById('1512.06231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics express 24.6 (2016): 6507-6521 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03650">arXiv:1506.03650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03650">pdf</a>, <a href="https://arxiv.org/format/1506.03650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/48/20/204002">10.1088/0953-4075/48/20/204002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly aligned gas-phase molecules at Free-Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kierspel%2C+T">Thomas Kierspel</a>, <a href="/search/physics?searchtype=author&amp;query=Wiese%2C+J">Joss Wiese</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terry Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+J">Joseph Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A">Andy Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Boutet%2C+S">S茅bastien Boutet</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P">Philip Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+L">Lauge Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Fry%2C+A">Alan Fry</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M">Mark Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=Koglin%2C+J+E">Jason E. Koglin</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+M">Mengning Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Natan%2C+A">Adi Natan</a>, <a href="/search/physics?searchtype=author&amp;query=Petrovic%2C+V">Vladimir Petrovic</a>, <a href="/search/physics?searchtype=author&amp;query=Rolles%2C+D">Daniel Rolles</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Schnorr%2C+K">Kirsten Schnorr</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+S">Stephan Stern</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03650v3-abstract-short" style="display: inline;"> We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03650v3-abstract-full').style.display = 'inline'; document.getElementById('1506.03650v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03650v3-abstract-full" style="display: none;"> We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\left&lt;\cos^2\!胃_{2D}\right&gt;$ = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03650v3-abstract-full').style.display = 'none'; document.getElementById('1506.03650v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 204002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.7782">arXiv:1407.7782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.7782">pdf</a>, <a href="https://arxiv.org/format/1407.7782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C4FD00037D">10.1039/C4FD00037D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boll%2C+R">R. Boll</a>, <a href="/search/physics?searchtype=author&amp;query=Rouzee%2C+A">A. Rouzee</a>, <a href="/search/physics?searchtype=author&amp;query=Adolph%2C+M">M. Adolph</a>, <a href="/search/physics?searchtype=author&amp;query=Anielski%2C+D">D. Anielski</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A">A. Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+S">S. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bomme%2C+C">C. Bomme</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">C. Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Bozek%2C+J+D">J. D. Bozek</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R">R. Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=Coppola%2C+N">N. Coppola</a>, <a href="/search/physics?searchtype=author&amp;query=De%2C+S">S. De</a>, <a href="/search/physics?searchtype=author&amp;query=Decleva%2C+P">P. Decleva</a>, <a href="/search/physics?searchtype=author&amp;query=Epp%2C+S+W">S. W. Epp</a>, <a href="/search/physics?searchtype=author&amp;query=Erk%2C+B">B. Erk</a>, <a href="/search/physics?searchtype=author&amp;query=Filsinger%2C+F">F. Filsinger</a>, <a href="/search/physics?searchtype=author&amp;query=Foucar%2C+L">L. Foucar</a>, <a href="/search/physics?searchtype=author&amp;query=Gorkhover%2C+T">T. Gorkhover</a>, <a href="/search/physics?searchtype=author&amp;query=Gumprecht%2C+L">L. Gumprecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hoemke%2C+A">A. Hoemke</a>, <a href="/search/physics?searchtype=author&amp;query=Holmegaard%2C+L">L. Holmegaard</a>, <a href="/search/physics?searchtype=author&amp;query=Johnsson%2C+P">P. Johnsson</a>, <a href="/search/physics?searchtype=author&amp;query=Kienitz%2C+J+S">J. S. Kienitz</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.7782v1-abstract-short" style="display: inline;"> This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7782v1-abstract-full').style.display = 'inline'; document.getElementById('1407.7782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.7782v1-abstract-full" style="display: none;"> This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.7782v1-abstract-full').style.display = 'none'; document.getElementById('1407.7782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures, Faraday Discussions 171</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2553">arXiv:1403.2553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2553">pdf</a>, <a href="https://arxiv.org/format/1403.2553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C4FD00028E">10.1039/C4FD00028E <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stern%2C+S">Stephan Stern</a>, <a href="/search/physics?searchtype=author&amp;query=Holmegaard%2C+L">Lotte Holmegaard</a>, <a href="/search/physics?searchtype=author&amp;query=Filsinger%2C+F">Frank Filsinger</a>, <a href="/search/physics?searchtype=author&amp;query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Johnsson%2C+P">Per Johnsson</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+A+V">Andrew V. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Bozek%2C+J+D">John D. Bozek</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R+N">Ryan N. Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=Epp%2C+S">Sascha Epp</a>, <a href="/search/physics?searchtype=author&amp;query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&amp;query=Foucar%2C+L">Lutz Foucar</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+R">Robert Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Kimmel%2C+N">Nils Kimmel</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BChnel%2C+K">Kai-Uwe K眉hnel</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+J">Jochen Maurer</a>, <a href="/search/physics?searchtype=author&amp;query=Messerschmidt%2C+M">Marc Messerschmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Rudek%2C+B">Benedikt Rudek</a>, <a href="/search/physics?searchtype=author&amp;query=Starodub%2C+D+G">Dmitri G. Starodub</a>, <a href="/search/physics?searchtype=author&amp;query=Th%C3%B8gersen%2C+J">Jan Th酶gersen</a>, <a href="/search/physics?searchtype=author&amp;query=Weidenspointner%2C+G">Georg Weidenspointner</a>, <a href="/search/physics?searchtype=author&amp;query=White%2C+T+A">Thomas A. White</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2553v1-abstract-short" style="display: inline;"> We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coheren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2553v1-abstract-full').style.display = 'inline'; document.getElementById('1403.2553v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2553v1-abstract-full" style="display: none;"> We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2553v1-abstract-full').style.display = 'none'; document.getElementById('1403.2553v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Faraday Discussions 171 &#34;Emerging Photon Technologies for Chemical Dynamics&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discuss., 2014,171, 393-418 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.4577">arXiv:1307.4577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.4577">pdf</a>, <a href="https://arxiv.org/format/1307.4577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.083002">10.1103/PhysRevLett.112.083002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+S">Stephan Stern</a>, <a href="/search/physics?searchtype=author&amp;query=Holmegaard%2C+L">Lotte Holmegaard</a>, <a href="/search/physics?searchtype=author&amp;query=Filsinger%2C+F">Frank Filsinger</a>, <a href="/search/physics?searchtype=author&amp;query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&amp;query=Rudenko%2C+A">Artem Rudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Johnsson%2C+P">Per Johnsson</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+A+V">Andrew V. Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Adolph%2C+M">Marcus Adolph</a>, <a href="/search/physics?searchtype=author&amp;query=Aquila%2C+A">Andrew Aquila</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Bozek%2C+J">John Bozek</a>, <a href="/search/physics?searchtype=author&amp;query=Caleman%2C+C">Carl Caleman</a>, <a href="/search/physics?searchtype=author&amp;query=Coffee%2C+R">Ryan Coffee</a>, <a href="/search/physics?searchtype=author&amp;query=Coppola%2C+N">Nicola Coppola</a>, <a href="/search/physics?searchtype=author&amp;query=Delmas%2C+T">Tjark Delmas</a>, <a href="/search/physics?searchtype=author&amp;query=Epp%2C+S">Sascha Epp</a>, <a href="/search/physics?searchtype=author&amp;query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&amp;query=Foucar%2C+L">Lutz Foucar</a>, <a href="/search/physics?searchtype=author&amp;query=Gorkhover%2C+T">Tais Gorkhover</a>, <a href="/search/physics?searchtype=author&amp;query=Gumprecht%2C+L">Lars Gumprecht</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+A">Andreas Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+R">Robert Hartmann</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.4577v2-abstract-short" style="display: inline;"> We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4577v2-abstract-full').style.display = 'inline'; document.getElementById('1307.4577v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.4577v2-abstract-full" style="display: none;"> We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4577v2-abstract-full').style.display = 'none'; document.getElementById('1307.4577v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 083002 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.3489">arXiv:1305.3489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.3489">pdf</a>, <a href="https://arxiv.org/ps/1305.3489">ps</a>, <a href="https://arxiv.org/format/1305.3489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/46/16/164015">10.1088/0953-4075/46/16/164015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of multiwavelength anomalous diffraction coefficients at high x-ray intensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Son%2C+S">Sang-Kil Son</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Santra%2C+R">Robin Santra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.3489v1-abstract-short" style="display: inline;"> The high-intensity version of multiwavelength anomalous diffraction (MAD) has a potential for solving the phase problem in femtosecond crystallography with x-ray free-electron lasers (XFELs). For MAD phasing, it is required to calculate or measure the MAD coefficients involved in the key equation, which depend on XFEL pulse parameters. In the present work, we revisit the generalized Karle-Hendrick&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3489v1-abstract-full').style.display = 'inline'; document.getElementById('1305.3489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.3489v1-abstract-full" style="display: none;"> The high-intensity version of multiwavelength anomalous diffraction (MAD) has a potential for solving the phase problem in femtosecond crystallography with x-ray free-electron lasers (XFELs). For MAD phasing, it is required to calculate or measure the MAD coefficients involved in the key equation, which depend on XFEL pulse parameters. In the present work, we revisit the generalized Karle-Hendrickson equation to clarify the importance of configurational fluctuations of heavy atoms induced by intense x-ray pulses, and investigate the high-intensity cases of transmission and fluorescence measurements of samples containing heavy atoms. Based on transmission/fluorescence and diffraction experiments with crystalline samples of known structures, we propose an experimental procedure to determine all MAD coefficients at high x-ray intensity, which can be used in \emph{ab initio} phasing for unknown structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3489v1-abstract-full').style.display = 'none'; document.getElementById('1305.3489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures. This is an author-created, un-copyedited version of an article accepted for publication in the special issue of &#34;Frontiers of FEL science&#34; in J. Phys. B: At. Mol. Opt. Phys. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B 46, 164015 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.3652">arXiv:1110.3652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.3652">pdf</a>, <a href="https://arxiv.org/ps/1110.3652">ps</a>, <a href="https://arxiv.org/format/1110.3652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.218102">10.1103/PhysRevLett.107.218102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-wavelength anomalous diffraction at high x-ray intensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Son%2C+S">Sang-Kil Son</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Santra%2C+R">Robin Santra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.3652v1-abstract-short" style="display: inline;"> The multi-wavelength anomalous diffraction (MAD) method is used to determine phase information in x-ray crystallography by employing dispersion corrections from heavy atoms on coherent x-ray scattering. X-ray free-electron lasers (FELs) show promise for revealing the structure of single molecules or nanocrystals within femtoseconds, but the phase problem remains largely unsolved. Due to the ultrab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.3652v1-abstract-full').style.display = 'inline'; document.getElementById('1110.3652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.3652v1-abstract-full" style="display: none;"> The multi-wavelength anomalous diffraction (MAD) method is used to determine phase information in x-ray crystallography by employing dispersion corrections from heavy atoms on coherent x-ray scattering. X-ray free-electron lasers (FELs) show promise for revealing the structure of single molecules or nanocrystals within femtoseconds, but the phase problem remains largely unsolved. Due to the ultrabrightness of x-ray FEL, samples experience severe electronic radiation damage, especially to heavy atoms, which hinders direct implementation of the MAD method with x-ray FELs. We propose a generalized version of the MAD phasing method at high x-ray intensity. We demonstrate the existence of a Karle--Hendrickson-type equation for the MAD method in the high-intensity regime and calculate relevant coefficients with detailed electronic damage dynamics of heavy atoms. Our results show that the bleaching effect on the scattering strength of the heavy atoms can be advantageous to the phasing method. The present method offers a potential for \textit{ab initio} structural determination in femtosecond x-ray nanocrystallography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.3652v1-abstract-full').style.display = 'none'; document.getElementById('1110.3652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, to be published in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 107, 218102 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0871">arXiv:1009.0871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0871">pdf</a>, <a href="https://arxiv.org/format/1009.0871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/c0cp01585g">10.1039/c0cp01585g <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State- and conformer-selected beams of aligned and oriented molecules for ultrafast diffraction studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Filsinger%2C+F">Frank Filsinger</a>, <a href="/search/physics?searchtype=author&amp;query=Meijer%2C+G">Gerard Meijer</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0871v2-abstract-short" style="display: inline;"> The manipulation of the motion of neutral molecules with electric or magnetic fields has seen tremendous progress over the last decade. Recently, these techniques have been extended to the manipulation of large and complex molecules. In this article we introduce experimental approaches to the manipulation of large molecules, i.e., the deflection, focusing and deceleration using electric fields. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0871v2-abstract-full').style.display = 'inline'; document.getElementById('1009.0871v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0871v2-abstract-full" style="display: none;"> The manipulation of the motion of neutral molecules with electric or magnetic fields has seen tremendous progress over the last decade. Recently, these techniques have been extended to the manipulation of large and complex molecules. In this article we introduce experimental approaches to the manipulation of large molecules, i.e., the deflection, focusing and deceleration using electric fields. We detail how these methods can be exploited to spatially separate quantum states and how to select individual conformers of complex molecules. We briefly describe mixed-field orientation experiments made possible by the quantum-state selection. Moreover, we provide an outlook on ultrafast diffraction experiments using these highly controlled samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0871v2-abstract-full').style.display = 'none'; document.getElementById('1009.0871v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Chem.Chem.Phys.13:2076-2087,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.4431">arXiv:1006.4431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1006.4431">pdf</a>, <a href="https://arxiv.org/format/1006.4431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> On the feasibility of nanocrystal imaging using intense and ultrashort 1.5 脜 X-ray pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Caleman%2C+C">C. Caleman</a>, <a href="/search/physics?searchtype=author&amp;query=Huldt%2C+G">G. Huldt</a>, <a href="/search/physics?searchtype=author&amp;query=Maia%2C+F+R+N+C">F. R. N. C. Maia</a>, <a href="/search/physics?searchtype=author&amp;query=Ortiz%2C+C">C. Ortiz</a>, <a href="/search/physics?searchtype=author&amp;query=Parak%2C+F+G">F. G. Parak</a>, <a href="/search/physics?searchtype=author&amp;query=Hajdu%2C+J">J. Hajdu</a>, <a href="/search/physics?searchtype=author&amp;query=van+der+Spoel%2C+D">D. van der Spoel</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Timneanu%2C+N">N. Timneanu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.4431v1-abstract-short" style="display: inline;"> Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest. X-ray lasers, such as the recently built LINAC Coherent Light Source (LCLS), offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.4431v1-abstract-full').style.display = 'inline'; document.getElementById('1006.4431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.4431v1-abstract-full" style="display: none;"> Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest. X-ray lasers, such as the recently built LINAC Coherent Light Source (LCLS), offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate primary and secondary ionization dynamics in the crystalline sample. Our results establish conditions for ultrafast nanocrystallography diffraction experiments as a function of fluence and pulse duration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.4431v1-abstract-full').style.display = 'none'; document.getElementById('1006.4431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 color figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.0846">arXiv:1003.0846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.0846">pdf</a>, <a href="https://arxiv.org/ps/1003.0846">ps</a>, <a href="https://arxiv.org/format/1003.0846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.225501">10.1103/PhysRevLett.104.225501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Loh%2C+N+D">N. D. Loh</a>, <a href="/search/physics?searchtype=author&amp;query=Bogan%2C+M">M. Bogan</a>, <a href="/search/physics?searchtype=author&amp;query=Elser%2C+V">V. Elser</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Boutet%2C+S">S. Boutet</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">S. Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Hajdu%2C+J">J. Hajdu</a>, <a href="/search/physics?searchtype=author&amp;query=Ekeberg%2C+T">T. Ekeberg</a>, <a href="/search/physics?searchtype=author&amp;query=Maia%2C+F+R+N+C">F. R. N. C. Maia</a>, <a href="/search/physics?searchtype=author&amp;query=Schulz%2C+J">J. Schulz</a>, <a href="/search/physics?searchtype=author&amp;query=Seibert%2C+M+M">M. M. Seibert</a>, <a href="/search/physics?searchtype=author&amp;query=Iwan%2C+B">B. Iwan</a>, <a href="/search/physics?searchtype=author&amp;query=Timneanu%2C+N">N. Timneanu</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Schlichting%2C+I">I. Schlichting</a>, <a href="/search/physics?searchtype=author&amp;query=Shoeman%2C+R+L">R. L. Shoeman</a>, <a href="/search/physics?searchtype=author&amp;query=Lomb%2C+L">L. Lomb</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+M">M. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+M">M. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.0846v2-abstract-short" style="display: inline;"> We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESY&#39;s FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0846v2-abstract-full').style.display = 'inline'; document.getElementById('1003.0846v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.0846v2-abstract-full" style="display: none;"> We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESY&#39;s FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0846v2-abstract-full').style.display = 'none'; document.getElementById('1003.0846v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0801.4969">arXiv:0801.4969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0801.4969">pdf</a>, <a href="https://arxiv.org/format/0801.4969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphoton.2008.154">10.1038/nphoton.2008.154 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast, ultrabright, X-ray holography using a uniformly-redundant array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Boutet%2C+S">S. Boutet</a>, <a href="/search/physics?searchtype=author&amp;query=Sakdinawat%2C+A+E">A. E. Sakdinawat</a>, <a href="/search/physics?searchtype=author&amp;query=Bogan%2C+M+J">M. J. Bogan</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">S. Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+M">M. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Hau-Riege%2C+S+P">S. P. Hau-Riege</a>, <a href="/search/physics?searchtype=author&amp;query=Szoke%2C+A">A. Szoke</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D+A">D. A. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Shaevitz%2C+J+W">J. W. Shaevitz</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+Y">J. Y. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Hajdu%2C+J">J. Hajdu</a>, <a href="/search/physics?searchtype=author&amp;query=Seibert%2C+M+M">M. M. Seibert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0801.4969v3-abstract-short" style="display: inline;"> Advances in the development of free-electron lasers offer the realistic prospect of high-resolution imaging to study the nanoworld on the time-scale of atomic motions. We identify X-ray Fourier Transform holography, (FTH) as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array (URA) placed next to the sample, multiplies the efficiency of X-ray FTH by m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4969v3-abstract-full').style.display = 'inline'; document.getElementById('0801.4969v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0801.4969v3-abstract-full" style="display: none;"> Advances in the development of free-electron lasers offer the realistic prospect of high-resolution imaging to study the nanoworld on the time-scale of atomic motions. We identify X-ray Fourier Transform holography, (FTH) as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array (URA) placed next to the sample, multiplies the efficiency of X-ray FTH by more than one thousand (approaching that of a perfect lens) and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell at a soft X-ray free-electron-laser, where illumination by a single 15 fs pulse was successfully used in producing the holographic image. We expect with upcoming hard X-ray lasers to achieve considerably higher spatial resolution and to obtain ultrafast movies of excited states of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4969v3-abstract-full').style.display = 'none'; document.getElementById('0801.4969v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, revtex</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-234707 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 2, 560 - 563 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0708.4035">arXiv:0708.4035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0708.4035">pdf</a>, <a href="https://arxiv.org/format/0708.4035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.101.055501">10.1103/PhysRevLett.101.055501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D+A">D. A. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Minor%2C+A+M">A. M. Minor</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Ilavsky%2C+J">J. Ilavsky</a>, <a href="/search/physics?searchtype=author&amp;query=Noy%2C+A">A. Noy</a>, <a href="/search/physics?searchtype=author&amp;query=Hau-Riege%2C+S+P">S. P. Hau-Riege</a>, <a href="/search/physics?searchtype=author&amp;query=Artyukhin%2C+A+B">A. B. Artyukhin</a>, <a href="/search/physics?searchtype=author&amp;query=Baumann%2C+T">T. Baumann</a>, <a href="/search/physics?searchtype=author&amp;query=Willey%2C+T">T. Willey</a>, <a href="/search/physics?searchtype=author&amp;query=Stolken%2C+J">J. Stolken</a>, <a href="/search/physics?searchtype=author&amp;query=van+Buuren%2C+T">T. van Buuren</a>, <a href="/search/physics?searchtype=author&amp;query=Kinney%2C+J+H">J. H. Kinney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0708.4035v2-abstract-short" style="display: inline;"> Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.4035v2-abstract-full').style.display = 'inline'; document.getElementById('0708.4035v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0708.4035v2-abstract-full" style="display: none;"> Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.4035v2-abstract-full').style.display = 'none'; document.getElementById('0708.4035v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 30 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-231416 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 101, 055501 (2008). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0706.3427">arXiv:0706.3427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0706.3427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Dose, exposure time, and resolution in Serial X-ray Crystallography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Starodub%2C+D">D. Starodub</a>, <a href="/search/physics?searchtype=author&amp;query=Rez%2C+P">P. Rez</a>, <a href="/search/physics?searchtype=author&amp;query=Hembree%2C+G">G. Hembree</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M">M. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D">D. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Fromme%2C+P">P. Fromme</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+K">K. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Doak%2C+R+B">R. B. Doak</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0706.3427v1-abstract-short" style="display: inline;"> The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.3427v1-abstract-full').style.display = 'inline'; document.getElementById('0706.3427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0706.3427v1-abstract-full" style="display: none;"> The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 0.7 nm should be possible with short exposures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.3427v1-abstract-full').style.display = 'none'; document.getElementById('0706.3427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0610044">arXiv:physics/0610044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0610044">pdf</a>, <a href="https://arxiv.org/ps/physics/0610044">ps</a>, <a href="https://arxiv.org/format/physics/0610044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys461">10.1038/nphys461 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond Diffractive Imaging with a Soft-X-ray Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Bogan%2C+M+J">Michael J. Bogan</a>, <a href="/search/physics?searchtype=author&amp;query=Boutet%2C+S">Sebastien Boutet</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+M">Matthias Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Hau-Riege%2C+S+P">Stefan P. Hau-Riege</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">Stefano Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Woods%2C+B+W">Bruce W. Woods</a>, <a href="/search/physics?searchtype=author&amp;query=Bajt%2C+S">Sasa Bajt</a>, <a href="/search/physics?searchtype=author&amp;query=Benner%2C+W+H">W. Henry Benner</a>, <a href="/search/physics?searchtype=author&amp;query=London%2C+R+A">Richard A. London</a>, <a href="/search/physics?searchtype=author&amp;query=Plonjes%2C+E">Elke Plonjes</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhlmann%2C+M">Marion Kuhlmann</a>, <a href="/search/physics?searchtype=author&amp;query=Treusch%2C+R">Rolf Treusch</a>, <a href="/search/physics?searchtype=author&amp;query=Dusterer%2C+S">Stefan Dusterer</a>, <a href="/search/physics?searchtype=author&amp;query=Tschentscher%2C+T">Thomas Tschentscher</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+J+R">Jochen R. Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Spiller%2C+E">Eberhard Spiller</a>, <a href="/search/physics?searchtype=author&amp;query=Moller%2C+T">Thomas Moller</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Hoener%2C+M">Matthias Hoener</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D+A">David A. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Hodgson%2C+K+O">Keith O. Hodgson</a>, <a href="/search/physics?searchtype=author&amp;query=van+der+Spoel%2C+D">David van der Spoel</a>, <a href="/search/physics?searchtype=author&amp;query=Burmeister%2C+F">Florian Burmeister</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0610044v2-abstract-short" style="display: inline;"> Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 10^13 W/cm^2 pulse, containing 10&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0610044v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0610044v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0610044v2-abstract-full" style="display: none;"> Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 10^13 W/cm^2 pulse, containing 10^12 photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0610044v2-abstract-full').style.display = 'none'; document.getElementById('physics/0610044v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revtex, 6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-219848 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 2, 839 - 843 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0510033">arXiv:physics/0510033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0510033">pdf</a>, <a href="https://arxiv.org/ps/physics/0510033">ps</a>, <a href="https://arxiv.org/format/physics/0510033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Phase Aberrations in Diffraction Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Minor%2C+A+M">A. M. Minor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0510033v2-abstract-short" style="display: inline;"> In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0510033v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0510033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0510033v2-abstract-full" style="display: none;"> In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm&#39;s ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0510033v2-abstract-full').style.display = 'none'; document.getElementById('physics/0510033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, X-Ray Microscopy 2005, Himeji, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-PROC-215873 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IPAP Conf. Series 7 pp.380-382, 2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0510032">arXiv:physics/0510032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0510032">pdf</a>, <a href="https://arxiv.org/ps/physics/0510032">ps</a>, <a href="https://arxiv.org/format/physics/0510032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Noy%2C+A">A. Noy</a>, <a href="/search/physics?searchtype=author&amp;query=Hau-Riege%2C+S+P">S. P. Hau-Riege</a>, <a href="/search/physics?searchtype=author&amp;query=Kinney%2C+J+M">J. M. Kinney</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Rosen%2C+R">R. Rosen</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D">D. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Beetz%2C+T">T. Beetz</a>, <a href="/search/physics?searchtype=author&amp;query=Jacobsen%2C+C">C. Jacobsen</a>, <a href="/search/physics?searchtype=author&amp;query=Lima%2C+E">E. Lima</a>, <a href="/search/physics?searchtype=author&amp;query=Minor%2C+A+M">A. M. Minor</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">H. He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0510032v2-abstract-short" style="display: inline;"> The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in phase retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0510032v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0510032v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0510032v2-abstract-full" style="display: none;"> The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in phase retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test pattern, infinite depth of focus image of a thick object, and its high-resolution (~10 nm resolution) three-dimensional image. Developments on the structural imaging of low density aerogel samples are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0510032v2-abstract-full').style.display = 'none'; document.getElementById('physics/0510032v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, X-Ray Microscopy 2005, Himeji, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-PROC-215874 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IPAP Conf. Series 7 pp.353-356, 2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0509066">arXiv:physics/0509066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0509066">pdf</a>, <a href="https://arxiv.org/ps/physics/0509066">ps</a>, <a href="https://arxiv.org/format/physics/0509066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAA.23.001179">10.1364/JOSAA.23.001179 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution ab initio three-dimensional X-ray diffraction microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Barty%2C+A">A. Barty</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Noy%2C+A">A. Noy</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Rosen%2C+R">R. Rosen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">H. He</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Beetz%2C+T">T. Beetz</a>, <a href="/search/physics?searchtype=author&amp;query=Jacobsen%2C+C">C. Jacobsen</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D">D. Shapiro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0509066v1-abstract-short" style="display: inline;"> Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0509066v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0509066v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0509066v1-abstract-full" style="display: none;"> Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0509066v1-abstract-full').style.display = 'none'; document.getElementById('physics/0509066v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-214796 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Opt. Soc. Am. A 23, 1179-1200 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0502059">arXiv:physics/0502059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0502059">pdf</a>, <a href="https://arxiv.org/ps/physics/0502059">ps</a>, <a href="https://arxiv.org/format/physics/0502059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.elspec.2008.10.008">10.1016/j.elspec.2008.10.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Beetz%2C+T">T. Beetz</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+C">C. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Holton%2C+J+M">J. M. Holton</a>, <a href="/search/physics?searchtype=author&amp;query=Jacobsen%2C+C+J">C. J. Jacobsen</a>, <a href="/search/physics?searchtype=author&amp;query=Lima%2C+J+K+E">J. Kirz E. Lima</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">H. Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Sayre%2C+D">D. Sayre</a>, <a href="/search/physics?searchtype=author&amp;query=Shapiro%2C+D+A">D. A. Shapiro</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0502059v1-abstract-short" style="display: inline;"> X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502059v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0502059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0502059v1-abstract-full" style="display: none;"> X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called &#34;dose fractionation theorem&#34; of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with &#34;Rose-criterion&#34; image quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502059v1-abstract-full').style.display = 'none'; document.getElementById('physics/0502059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-208398 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journ. of El. Spect. &amp; Rel. Phen. 170, pp 4-12 (2009). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0405036">arXiv:physics/0405036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0405036">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1795360">10.1063/1.1795360 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Use of extended and prepared reference objects in experimental Fourier transform X-ray holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+H">H. He</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M">M. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Padmore%2C+H+A">H. A. Padmore</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0405036v1-abstract-short" style="display: inline;"> The use of one or more gold nanoballs as reference objects for Fourier Transform holography (FTH) is analysed using experimental soft X-ray diffraction from objects consisting of separated clusters of these balls. The holograms are deconvoluted against ball reference objects to invert to images, in combination with a Wiener filter to control noise. A resolution of ~30nm, smaller than one ball, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405036v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0405036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0405036v1-abstract-full" style="display: none;"> The use of one or more gold nanoballs as reference objects for Fourier Transform holography (FTH) is analysed using experimental soft X-ray diffraction from objects consisting of separated clusters of these balls. The holograms are deconvoluted against ball reference objects to invert to images, in combination with a Wiener filter to control noise. A resolution of ~30nm, smaller than one ball, is obtained even if a large cluster of balls is used as the reference, giving the best resolution yet obtained by X-ray FTH. Methods of dealing with missing data due to a beamstop are discussed. Practical prepared objects which satisfy the FTH condition are suggested, and methods of forming them described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405036v1-abstract-full').style.display = 'none'; document.getElementById('physics/0405036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, submitted to Applied Physics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters 85, 2454-2456 (2004) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0404073">arXiv:physics/0404073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0404073">pdf</a>, <a href="https://arxiv.org/ps/physics/0404073">ps</a>, <a href="https://arxiv.org/format/physics/0404073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S0108767304012395">10.1107/S0108767304012395 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phasing diffuse scattering. Application of the SIR2002 algorithm to the non-crystallographic phase problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Carrozzini%2C+B">B. Carrozzini</a>, <a href="/search/physics?searchtype=author&amp;query=Cascarano%2C+G+L">G. L. Cascarano</a>, <a href="/search/physics?searchtype=author&amp;query=De+Caro%2C+L">L. De Caro</a>, <a href="/search/physics?searchtype=author&amp;query=Giacovazzo%2C+C">C. Giacovazzo</a>, <a href="/search/physics?searchtype=author&amp;query=Marchesini%2C+S">S. Marchesini</a>, <a href="/search/physics?searchtype=author&amp;query=Chapman%2C+H+N">H. N. Chapman</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">H. He</a>, <a href="/search/physics?searchtype=author&amp;query=Howells%2C+M+R">M. R. Howells</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+S">J. S. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Weierstall%2C+U">U. Weierstall</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+J+C+H">J. C. H. Spence</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0404073v1-abstract-short" style="display: inline;"> A new phasing algorithm has been used to determine the phases of diffuse elastic X-ray scattering from a non-periodic array of gold balls of 50 nm diameter. Two-dimensional real-space images, showing the charge-density distribution of the balls, have been reconstructed at 50 nm resolution from transmission diffraction patterns recorded at 550 eV energy. The reconstructed image fits well with sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404073v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0404073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0404073v1-abstract-full" style="display: none;"> A new phasing algorithm has been used to determine the phases of diffuse elastic X-ray scattering from a non-periodic array of gold balls of 50 nm diameter. Two-dimensional real-space images, showing the charge-density distribution of the balls, have been reconstructed at 50 nm resolution from transmission diffraction patterns recorded at 550 eV energy. The reconstructed image fits well with scanning electron microscope (SEM) image of the same sample. The algorithm, which uses only the density modification portion of the SIR2002 program, is compared with the results obtained via the Gerchberg-Saxton-Fienup HIO algorithm. In this way the relationship between density modification in crystallography and the HiO algorithm used in signal and image processing is elucidated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0404073v1-abstract-full').style.display = 'none'; document.getElementById('physics/0404073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCRL-JRNL-203071 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Cryst. A60, 331-338 (2004). </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chapman%2C+H+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10