CINXE.COM

Search results for: humidity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: humidity</title> <meta name="description" content="Search results for: humidity"> <meta name="keywords" content="humidity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="humidity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="humidity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 648</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: humidity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Making Heat Pumps More Compatible with Environmental and Climatic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erol%20Sahin">Erol Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20Adiguzel"> Nesrin Adiguzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of air temperature and relative humidity on the operation of the heat pump were examined experimentally. The results were analyzed in an energy and exergetic way. Two heat pumps were used in the experimental system established for experimental analysis. With the first heat pump, the relative humidity and temperature of atmospheric air are reduced. The air at low humidity and temperature is given heat and water vapor to the desired extent on the channel that reaches the other heat pump. Effects of the air reaching the desired humidity and temperature in the 2nd heat pump; temperature, humidity, pressure, flow, and current are detected by meters. The measured values and the exergy yield and thermodynamic favor ratios of the system and its components were determined. In this way, the effects of temperature and relative humidity change in the heat pump and components were tried to be revealed. Relative humidity in the air caused a significant increase in the loss of exergy in the evaporator. This has shown that cooling machines experience greater exergy in areas with high relative humidity. The highest COPSM values were determined to be at 30% and 40%, which is the least relative humidity values. The results showed that heat pump exergy efficiency was affected by increased temperature and relative humidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title="relative humidity">relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20of%20relative%20humidity%20on%20heat%20pumps" title=" effects of relative humidity on heat pumps"> effects of relative humidity on heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis%20in%20heat%20pumps" title=" exergy analysis in heat pumps"> exergy analysis in heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/164432/making-heat-pumps-more-compatible-with-environmental-and-climatic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Advanced Humidity Sensors Using Cobalt and Iron-Doped ZnO-rGO Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wallia%20Majeed">Wallia Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humidity sensors based on doped ZnO-rGO composites have shown promise due to their sensitivity to humidity changes. Here, it report on the hydrothermal synthesis of ZnO-rGO and doped ZnO-rGO nanocomposites, incorporating cobalt and iron dopants at 2% concentration. X-ray diffraction confirmed successful doping, while scanning electron microscopy revealed the composite's layered structure with embedded ZnO rods. To evaluate their performance, humidity sensors were fabricated by depositing aluminum electrodes on silicon substrates coated with the composites. The Fe-doped ZnO-rGO sensor exhibited rapid response (27 s) and recovery times (24 s) across a wide humidity range (11% to 97% RH), surpassing ZnO-rGO and Co-doped ZnO-rGO variants in sensitivity (2.2k at 100 Hz). These findings highlight Fe-doped ZnO-rGO composites as ideal candidates for humidity sensing applications, offering enhanced performance crucial for environmental monitoring and industrial processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensors" title="humidity sensors">humidity sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/187356/advanced-humidity-sensors-using-cobalt-and-iron-doped-zno-rgo-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> A Fabrication Method for PEDOT: PSS Based Humidity Sensor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Tarannum">Nazia Tarannum</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ayaz%20Ahmad"> M. Ayaz Ahmad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this article is to report some interesting features for the fabrication/design of PEDOT:PSS based humidity sensor. Here first we fabricated humidity sensor and then studied its electro-mechanical characteristics. In general the humidity plays an important role in various private and government sectors all over the world. Monitoring and controlling the humidity is a great task for the reliable operation of various systems. The PEDOT:PSS is very much promising humidity sensor and also is fabricated by performing various analyses. The interdigited electrode (IDE) has channel length 200 microns prepared by lithography. Lithography of IDE was done on PPR coated glass substrate using negative mask and exposing it with UV light for 10 secs via DSA. During the above said fabrication, we have taken account for the following steps: •Plasma ashing of IDE •Spincoating of PEDOT:PSS was done @3000 rpm on IDE substrace •Baked the substrace at 130 °C up to time limit 15 mins. •Resistance measurement using Labtracer 2.9 software via Keithley 2400source meter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabrication%20method" title="fabrication method">fabrication method</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT%3APSS%20material" title=" PEDOT:PSS material"> PEDOT:PSS material</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-mechanical" title=" electro-mechanical "> electro-mechanical </a> </p> <a href="https://publications.waset.org/abstracts/38457/a-fabrication-method-for-pedot-pss-based-humidity-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Akande">A. A. Akande</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Dhonge"> B. P. Dhonge</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20W.%20Mwakikunga"> B. W. Mwakikunga</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20J.%20Machatine"> A. G. J. Machatine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH<sub>4</sub>VO<sub>3</sub> precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO<sub>2</sub> (B) with V<sub>2</sub>O<sub>5 </sub>and an amorphous phase. The BET surface area is found to be 67.67 m<sup>2</sup>/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO<sub>2</sub> sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO<sub>2</sub> sensors which normally show response and recovery times of the order of 5 minutes (300 s). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VO2" title="VO2">VO2</a>, <a href="https://publications.waset.org/abstracts/search?q=VO2%28B%29" title=" VO2(B)"> VO2(B)</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20voltage" title=" gate voltage"> gate voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a> </p> <a href="https://publications.waset.org/abstracts/60921/gate-voltage-controlled-humidity-sensing-using-mosfet-of-vo2-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Analysis and Measurement on Indoor Environment of University Dormitories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuechen%20Gui">Xuechen Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Senmiao%20Li"> Senmiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Kan"> Qi Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dormitory" title="dormitory">dormitory</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment" title=" indoor environment"> indoor environment</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20concentration" title=" carbon dioxide concentration"> carbon dioxide concentration</a> </p> <a href="https://publications.waset.org/abstracts/92273/analysis-and-measurement-on-indoor-environment-of-university-dormitories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Zrelli">Amira Zrelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Ezzeddine"> Tahar Ezzeddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Bragg%20Grating%20Sensors%20%28FBGS%29" title="Fiber Bragg Grating Sensors (FBGS)">Fiber Bragg Grating Sensors (FBGS)</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring%20%28SHM%29" title=" structural health monitoring (SHM)"> structural health monitoring (SHM)</a> </p> <a href="https://publications.waset.org/abstracts/69360/measurement-of-temperature-humidity-and-strain-variation-using-bragg-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Jaradat">Mustafa Jaradat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier&rsquo;s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=desiccant" title=" desiccant"> desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20chloride" title=" lithium chloride"> lithium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20bundle" title=" tube bundle"> tube bundle</a> </p> <a href="https://publications.waset.org/abstracts/110391/energy-saving-in-handling-the-air-conditioning-latent-load-using-a-liquid-desiccant-air-conditioner-parametric-experimental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Li">Qian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20smoke" title=" fire smoke"> fire smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=Sn-0.7Cu%20solder" title=" Sn-0.7Cu solder"> Sn-0.7Cu solder</a> </p> <a href="https://publications.waset.org/abstracts/108764/effect-of-relative-humidity-on-corrosion-behavior-of-sn-07cu-solder-under-polyvinyl-chloride-fire-smoke-atmosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> A Method for Calculating Dew Point Temperature in the Humidity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Sa">Wu Sa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Qian"> Zhang Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Qi"> Li Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye"> Wang Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently in humidity tests having not put the Dew point temperature as a control parameter, this paper selects wet and dry bulb thermometer to measure the vapor pressure, and introduces several the saturation vapor pressure formulas easily calculated on the controller. Then establish the Dew point temperature calculation model to obtain the relationship between the Dew point temperature and vapor pressure. Finally check through the 100 groups of sample in the range of 0-100 ℃ from "Psychrometric handbook", find that the average error is small. This formula can be applied to calculate the Dew point temperature in the humidity test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dew%20point%20temperature" title="dew point temperature">dew point temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=psychrometric%20handbook" title=" psychrometric handbook"> psychrometric handbook</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20vapor%20pressure" title=" saturation vapor pressure"> saturation vapor pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20and%20dry%20bulb%20thermometer" title=" wet and dry bulb thermometer"> wet and dry bulb thermometer</a> </p> <a href="https://publications.waset.org/abstracts/30022/a-method-for-calculating-dew-point-temperature-in-the-humidity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Effect of Temperature and Relative Humidity on Aerosol Spread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getu%20Hailu">Getu Hailu</a>, <a href="https://publications.waset.org/abstracts/search?q=Catelynn%20Hettick"> Catelynn Hettick</a>, <a href="https://publications.waset.org/abstracts/search?q=Niklas%20Pieper"> Niklas Pieper</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Kim"> Paul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Hamner"> Augustine Hamner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IAQ" title="IAQ">IAQ</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/148688/effect-of-temperature-and-relative-humidity-on-aerosol-spread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20Girish">T. N. Girish</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20E.%20Pradeep"> B. E. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Parkash"> Ravi Parkash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20or%20humidity%20acclimation" title="heat or humidity acclimation">heat or humidity acclimation</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20changes%20in%20body%20lipids%20and%20starvation%20resistance" title=" plastic changes in body lipids and starvation resistance"> plastic changes in body lipids and starvation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20drosophilid" title=" tropical drosophilid"> tropical drosophilid</a>, <a href="https://publications.waset.org/abstracts/search?q=Wet-%20or%20Dry%20seasons" title=" Wet- or Dry seasons"> Wet- or Dry seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaprionus%20indianus" title=" Zaprionus indianus"> Zaprionus indianus</a> </p> <a href="https://publications.waset.org/abstracts/89400/heat-and-humidity-induced-plastic-changes-in-body-lipids-and-starvation-resistance-in-the-tropical-zaprionus-indianus-of-wet-dry-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresa%20Signes%20Pont">Maria Teresa Signes Pont</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Juan%20Cortes%20Plana"> Jose Juan Cortes Plana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=xylella%20fastidiosa" title="xylella fastidiosa">xylella fastidiosa</a>, <a href="https://publications.waset.org/abstracts/search?q=almod%20tree" title=" almod tree"> almod tree</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20model" title=" environmental model"> environmental model</a> </p> <a href="https://publications.waset.org/abstracts/142986/modelling-and-management-of-vegetal-pest-based-on-case-of-xylella-fastidiosa-in-alicante" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Hasani">Amirhossein Hasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamin%20Houshmand%20Sharifi"> Shamin Houshmand Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a> </p> <a href="https://publications.waset.org/abstracts/13093/humidity-sensing-behavior-of-graphene-oxide-on-porous-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Abdullah%20Alshuhail">Khalid Abdullah Alshuhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrif%20Junidi"> Syrif Junidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ideisan%20Abu-Abdoum"> Ideisan Abu-Abdoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20Aldawoud"> Abdulsalam Aldawoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20material" title="building material">building material</a>, <a href="https://publications.waset.org/abstracts/search?q=continious%20monitoring" title=" continious monitoring"> continious monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=wall" title=" wall"> wall</a>, <a href="https://publications.waset.org/abstracts/search?q=temprature" title=" temprature"> temprature</a> </p> <a href="https://publications.waset.org/abstracts/132571/termite-brick-temperature-and-relative-humidity-by-continuous-monitoring-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanita%20Rubene">Sanita Rubene</a>, <a href="https://publications.waset.org/abstracts/search?q=Martins%20Vilnitis"> Martins Vilnitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Juris%20Noviks"> Juris Noviks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerated%20concrete" title="aerated concrete">aerated concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20impedance%20spectrometry" title=" electrical impedance spectrometry"> electrical impedance spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20distribution" title=" humidity distribution"> humidity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/13188/impact-of-masonry-joints-on-detection-of-humidity-distribution-in-aerated-concrete-masonry-constructions-by-electric-impedance-spectrometry-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Comfort Sensor Using Fuzzy Logic and Arduino</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20John">Samuel John</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharanya"> S. Sharanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arduino" title="arduino">arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=DHT11" title=" DHT11"> DHT11</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20sensor" title=" soft sensor"> soft sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sugeno" title=" sugeno"> sugeno</a> </p> <a href="https://publications.waset.org/abstracts/38151/comfort-sensor-using-fuzzy-logic-and-arduino" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Posani">Magda Posani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Do%20Rosario%20Veiga"> Maria Do Rosario Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasco%20Peixoto%20De%20Freitas"> Vasco Peixoto De Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=books" title="books">books</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title=" historic buildings"> historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hygroscopicity" title=" hygroscopicity"> hygroscopicity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a> </p> <a href="https://publications.waset.org/abstracts/110315/indoor-microclimate-in-a-historic-library-considerations-on-the-positive-effect-of-historic-books-on-the-stability-of-indoor-relative-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Study of Some Epidemiological Factors Influencing the Disease Incidence in Chickpea (Cicer Arietinum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asim%20Nazir">Muhammad Asim Nazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigations reported in this manuscript were carried on the screening of one hundred and seventy-eight chickpea germplasm lines/cultivars against wilt disease, caused by Fusarium oxysporum f. sp. ciceris. The screening was conducted in vivo (field) conditions. The field screening was accompanied with the study of some epidemiological factors affecting the occurrence and severity of the disease. Among the epidemiological factors maximum temperature range (28-40°C), minimum temperature range (12-24°C), relative humidity (19-44%), soil temperature (26-41°C) and soil moisture range (19-34°C) was studied for affecting the disease incidence/severity. The results revealed that air temperature was positively correlated with diseases. Soil temperature data revealed that in all cultivars disease incidence was maximum as 39°C. Most of the plants show 40-50% disease incidence. Disease incidence decreased at 33.5°C. The result of correlation of relative humidity of air and wilt incidence revealed that all cultivars/lines were negatively correlated with relative humidity. With increasing relative humidity wilt incidence decreased and vice versa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiological" title=" epidemiological"> epidemiological</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a> </p> <a href="https://publications.waset.org/abstracts/19669/study-of-some-epidemiological-factors-influencing-the-disease-incidence-in-chickpea-cicer-arietinum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Higher Relative Humidity from Pipping Increases Physical Problems in the Broiler Chicks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nogueira">M. A. Nogueira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Thimotheo"> M. Thimotheo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Ripamonte"> G. C. Ripamonte</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20C.%20Aguiar"> S. C. C. Aguiar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20S.%20Ulian"> M. H. S. Ulian</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Goncalves%20Netto"> J. C. Goncalves Netto</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Boleli"> I. C. Boleli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing in the relative humidity during the last incubation day is a usual practice in the commercial hatchery to facilitate hatching. This study analyzed whether higher relative humidity improves eclodibility as well as chick quality, and alters the hatch window. Fertile eggs (65- 67g) produced by 53 weeks old broiler breeders (Cobb 500®) were incubated at 37.5°C and 31°C in the wet bulb in incubators with automatic control of temperature and egg turning (1 each hour). Two-hundred ten were distributed randomly in three treatments: 31°C in the wet bulb from internal pipping (BI-31), 33°C from internal pipping (BI-33), and 33°C from external pipping (BE-33), all three hatchers maintained at 37.5°C and without egg turning. For this, eggs were checked for internal pipping by ovoscopy and external pipping by visual observation through the transparent cover of the incubators each hour from day 18 of incubation. No significant differences in the hatchability (BI-31:79.61%, BI-33:77.63%, BE-33:80.77%; by Q-square test, P > 0.05). Absence of significant effects of the treatments were also observed for incubation duration (BI-31:488.58 h, BI-33:488.30 h, BE-33:489.04 h), and chick body weight (BI-31: 49.40g, BI-33: 49.74g, BE-33: 49.34g) and quality scores (BI-31: 90.02, BI-33: 87.56, BE-33: 92.28 points), by variance analysis (P > 0.05). However, BI-33 increased the incidence of feathering and leg problems and remaining of alantoic membrane, and BE-33 increased the incidence of problems with feathering, navel and yolk sac and reduced the leg problems, compared to BI-31. In sum, the results show higher relative humidity from internal or external pipping did not influence hatchability and incubation duration, but reduced chick quality, affecting the incubation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chick%20quality" title="chick quality">chick quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hatchability" title=" hatchability"> hatchability</a>, <a href="https://publications.waset.org/abstracts/search?q=hatcher%20humidity" title=" hatcher humidity"> hatcher humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=incubation%20duration" title=" incubation duration"> incubation duration</a> </p> <a href="https://publications.waset.org/abstracts/93975/higher-relative-humidity-from-pipping-increases-physical-problems-in-the-broiler-chicks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20A.%20Labrincha">Joao A. Labrincha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20M.%20Novais"> Rui M. Novais</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Senff"> L. Senff</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Carvalheiras"> J. Carvalheiras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste-based%20geopolymers" title="waste-based geopolymers">waste-based geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20regulation" title=" temperature regulation"> temperature regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20buffer" title=" moisture buffer"> moisture buffer</a> </p> <a href="https://publications.waset.org/abstracts/177998/waste-based-porous-geopolymers-to-regulate-the-temperature-and-humidity-fluctuations-inside-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biruk%20Abate">Biruk Abate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Degree%20of%20cooling" title="Degree of cooling">Degree of cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20surface" title=" porous surface"> porous surface</a> </p> <a href="https://publications.waset.org/abstracts/119789/the-effect-of-wet-cooling-pad-thickness-and-geometric-configuration-to-enhance-evaporative-cooler-saturation-efficiency-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Experimental Set-up for the Thermo-Hydric Study of a Wood Chips Bed Crossed by an Air Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitri%20Bigot">Dimitri Bigot</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Malet-Damour"> Bruno Malet-Damour</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%B4me%20Vigneron"> Jérôme Vigneron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies have been made about using bio-based materials in buildings. The goal is to reduce its environmental footprint by analyzing its life cycle. This can lead to minimize the carbon emissions or energy consumption. A previous work proposed to numerically study the feasibility of using wood chips to regulate relative humidity inside a building. This has shown the capability of a wood chips bed to regulate humidity inside the building, to improve thermal comfort, and so potentially reduce building energy consumption. However, it also shown that some physical parameters of the wood chips must be identified to validate the proposed model and the associated results. This paper presents an experimental setup able to study such a wood chips bed with different solicitations. It consists of a simple duct filled with wood chips and crossed by an air flow with variable temperature and relative humidity. Its main objective is to study the thermal behavior of the wood chips bed by controlling temperature and relative humidity of the air that enters into it and by observing the same parameters at the output. First, the experimental set up is described according to previous results. A focus is made on the particular properties that have to be characterized. Then some case studies are presented in relation to the previous results in order to identify the key physical properties. Finally, the feasibility of the proposed technology is discussed, and some model validation paths are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20chips%20bed" title="wood chips bed">wood chips bed</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20set-up" title=" experimental set-up"> experimental set-up</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20%20material" title=" bio-based material"> bio-based material</a>, <a href="https://publications.waset.org/abstracts/search?q=desiccant" title=" desiccant"> desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behaviour" title=" thermal behaviour"> thermal behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20treatment" title=" air treatment"> air treatment</a> </p> <a href="https://publications.waset.org/abstracts/139654/experimental-set-up-for-the-thermo-hydric-study-of-a-wood-chips-bed-crossed-by-an-air-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Bekkouche">S. M. A. Bekkouche</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Benouaz"> T. Benouaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Cherier"> M. K. Cherier</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamdani"> M. Hamdani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Yaiche"> M. R. Yaiche</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benamrane"> N. Benamrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multizone%20model" title="multizone model">multizone model</a>, <a href="https://publications.waset.org/abstracts/search?q=nodal%20method" title=" nodal method"> nodal method</a>, <a href="https://publications.waset.org/abstracts/search?q=compactness%20index" title=" compactness index"> compactness index</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20humidity" title=" specific humidity"> specific humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/2133/thermo-aeraulic-studies-of-a-multizone-building-influence-of-the-compactness-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedtaghi%20Mirmohammadi">Seyedtaghi Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Yazdani"> Jamshid Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Syavash%20Etemadi%20Nejad"> Syavash Etemadi Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classrooms" title="classrooms">classrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matters" title=" particulate matters"> particulate matters</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/21397/long-term-indoor-air-monitoring-for-students-with-emphasis-on-particulate-matter-pm25-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Smart Irrigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levent%20Seyfi">Levent Seyfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ertan%20Akman"> Ertan Akman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Frul%20C.%20Topak"> Tuğrul C. Topak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smartphone" title="smartphone">smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=Android%20Operating%20System" title=" Android Operating System"> Android Operating System</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20System" title=" irrigation System"> irrigation System</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino" title=" arduino"> arduino</a> </p> <a href="https://publications.waset.org/abstracts/18397/smart-irrigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Ionic Liquid Desiccant for the Dehumidification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Hao%20Chen">Chih-Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Heng%20Fang"> Yu-Heng Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyi-Ching%20Perng"> Jyi-Ching Perng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chih%20Lee"> Wei-Chih Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsiang%20Chen"> Yi-Hsiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Jen%20Chen"> Jiun-Jen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emerging markets are almost in the high temperature and high humidity area. Regardless of industry or domestic fields, the energy consumption of air conditioning systems in buildings is always significant. Moreover, the proportion of latent heat load is high. A liquid desiccant dehumidification system is one kind of energy-saving air conditioning system. However, traditional absorbents such as lithium chloride are hindered in market promotion because they will crystallized and cause metal corrosion. This study used the commercial ionic liquid to build a liquid desiccant dehumidification system with an air volume of 300 CMH. When the absolute humidity of the inlet air was 15g/kg, the absolute humidity of the outlet air was 10g/kg. The operating condition of a hot water temperature is 45 °C, and the cooling water temperature is 15 °C. The test result proves that the ionic liquid desiccant can completely replace the traditional liquid desiccant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid%20desiccant" title="ionic liquid desiccant">ionic liquid desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title=" air conditioning systems"> air conditioning systems</a> </p> <a href="https://publications.waset.org/abstracts/159059/ionic-liquid-desiccant-for-the-dehumidification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Experimental Investigation of Counter-Flow Ranque–Hilsch Vortex Tube Using Humid Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20M.%20Maghrabie">Hussein M. Maghrabie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Attalla"> M. Attalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany.%20A.%20Mohamed"> Hany. A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salem"> M. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Specht"> E. Specht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation is carried out on counter-flow Ranque–Hilsch vortex tube (RHVT). The present work is carried out to study the effect of nozzle aspect ratio, tube length and the inlet pressure (P_i) on the coefficient of performance and energy separation of a RHVT. Further, the effect of moist air with different relative humidity (RH) 40, 60, 80 % is also achieved. The air relative humidity is adjusted using air humidification/dehumidification unit. The experimental study accomplished for number of nozzle N=6, with inner diameter D=7.5 mm., and length of the vortex tube (L) 75, 97.5, and 112.5 mm. The results show that the relative humidity has a significant effect on coefficient of performance and energy separation of a RHVT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COP" title="COP">COP</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-flow%20Ranque%E2%80%93Hilsch%20vortex%20tube" title=" counter-flow Ranque–Hilsch vortex tube"> counter-flow Ranque–Hilsch vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title=" energy separation"> energy separation</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20air" title=" humid air"> humid air</a> </p> <a href="https://publications.waset.org/abstracts/20894/experimental-investigation-of-counter-flow-ranque-hilsch-vortex-tube-using-humid-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Evaluation of Air Movement, Humidity and Temperature Perceptions with the Occupant Satisfaction in Office Buildings in Hot and Humid Climate Regions by Means of Field Surveys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20S.%20Caetano">Diego S. Caetano</a>, <a href="https://publications.waset.org/abstracts/search?q=Doreen%20E.%20Kalz"> Doreen E. Kalz</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20L.%20B.%20Lomardo"> Louise L. B. Lomardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20P.%20Rosa"> Luiz P. Rosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy consumption in non-residential buildings in Brazil has a great impact on the national infrastructure. The growth of the energy consumption has a special role over the building cooling systems, supported by the increased people's requirements on hygrothermal comfort. This paper presents how the occupants of office buildings notice and evaluate the hygrothermic comfort regarding temperature, humidity, and air movement, considering the cooling systems presented at the buildings studied, analyzed by real occupants in areas of hot and humid climate. The paper presents results collected over a long time from 3 office buildings in the cities of Rio de Janeiro and Niteroi (Brazil) in 2015 and 2016, from daily questionnaires with eight questions answered by 114 people between 3 to 5 weeks per building, twice a day (10 a.m. and 3 p.m.). The paper analyses 6 out of 8 questions, emphasizing on the perception of temperature, humidity, and air movement. Statistics analyses were made crossing participant answers and humidity and temperature data related to time high time resolution time. Analyses were made from regressions comparing: internal and external temperature, and then compared with the answers of the participants. The results were put in graphics combining statistic graphics related to temperature and air humidity with the answers of the real occupants. Analysis related to the perception of the participants to humidity and air movements were also analyzed. The hygrothermal comfort statistic model of the European standard DIN EN 15251 and that from the Brazilian standard NBR 16401 were compared taking into account the perceptions of the hygrothermal comfort of the participants, with emphasis on air humidity, taking basis on prior studies published on this same research. The studies point out a relative tolerance for higher temperatures than the ones determined by the standards, besides a variation on the participants' perception concerning air humidity. The paper presents a group of detailed information that permits to improve the quality of the buildings based on the perception of occupants of the office buildings, contributing to the energy reduction without health damages and demands of necessary hygrothermal comfort, reducing the consumption of electricity on cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20standards" title=" energy standards"> energy standards</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20models" title=" comfort models"> comfort models</a> </p> <a href="https://publications.waset.org/abstracts/83193/evaluation-of-air-movement-humidity-and-temperature-perceptions-with-the-occupant-satisfaction-in-office-buildings-in-hot-and-humid-climate-regions-by-means-of-field-surveys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Insight into the Physical Ageing of Poly(Butylene Succinate)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Georgousopoulou">I. Georgousopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vouyiouka"> S. Vouyiouka</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Papaspyrides"> C. Papaspyrides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrolytic%20degradation" title="hydrolytic degradation">hydrolytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20ageing" title=" physical ageing"> physical ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28butylene%20succinate%29" title=" poly(butylene succinate)"> poly(butylene succinate)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a> </p> <a href="https://publications.waset.org/abstracts/18712/insight-into-the-physical-ageing-of-polybutylene-succinate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Determination of the Relative Humidity Profiles in an Internal Micro-Climate Conditioned Using Evaporative Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bonello">M. Bonello</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Micallef"> D. Micallef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Borg"> S. P. Borg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driven by increased comfort standards, but at the same time high energy consciousness, energy-efficient space cooling has become an essential aspect of building design. Its aims are simple, aiming at providing satisfactory thermal comfort for individuals in an interior space using low energy consumption cooling systems. In this context, evaporative cooling is both an energy-efficient and an eco-friendly cooling process. In the past two decades, several academic studies have been performed to determine the resulting thermal comfort produced by an evaporative cooling system, including studies on temperature profiles, air speed profiles, effect of clothing and personnel activity. To the best knowledge of the authors, no studies have yet considered the analysis of relative humidity (RH) profiles in a space cooled using evaporative cooling. Such a study will determine the effect of different humidity levels on a person's thermal comfort and aid in the consequent improvement designs of such future systems. Under this premise, the research objective is to characterise the resulting different RH profiles in a chamber micro-climate using the evaporative cooling system in which the inlet air speed, temperature and humidity content are varied. The chamber shall be modelled using Computational Fluid Dynamics (CFD) in ANSYS Fluent. Relative humidity shall be modelled using a species transport model while the k-ε RNG formulation is the proposed turbulence model that is to be used. The model shall be validated with measurements taken using an identical test chamber in which tests are to be conducted under the different inlet conditions mentioned above, followed by the verification of the model's mesh and time step. The verified and validated model will then be used to simulate other inlet conditions which would be impractical to conduct in the actual chamber. More details of the modelling and experimental approach will be provided in the full paper The main conclusions from this work are two-fold: the micro-climatic relative humidity spatial distribution within the room is important to consider in the context of investigating comfort at occupant level; and the investigation of a human being's thermal comfort (based on Predicted Mean Vote – Predicted Percentage Dissatisfied [PMV-PPD] values) and its variation with different locations of relative humidity values. The study provides the necessary groundwork for investigating the micro-climatic RH conditions of environments cooled using evaporative cooling. Future work may also target the analysis of ways in which evaporative cooling systems may be improved to better the thermal comfort of human beings, specifically relating to the humidity content around a sedentary person. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chamber%20micro-climate" title="chamber micro-climate">chamber micro-climate</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/92315/determination-of-the-relative-humidity-profiles-in-an-internal-micro-climate-conditioned-using-evaporative-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=humidity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10