CINXE.COM

Search results for: Hedfi Hachem

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Hedfi Hachem</title> <meta name="description" content="Search results for: Hedfi Hachem"> <meta name="keywords" content="Hedfi Hachem"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Hedfi Hachem" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Hedfi Hachem"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Hedfi Hachem</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> CO₂ Capture by Clay and Its Adsorption Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jedli%20Hedi">Jedli Hedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedfi%20Hachem"> Hedfi Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Jbara"> Abdessalem Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimi%20Khalifa"> Slimi Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural and modified clay were used as an adsorbent for CO2 capture. Sample of clay was subjected to acid treatments to improve their textural properties, namely, its surface area and pore volume. The modifications were carried out by heating the clays at 120 °C and then by acid treatment with 3M sulphuric acid solution at boiling temperature for 10 h. The CO2 adsorption capacities of the acid-treated clay were performed out in a batch reactor. It was found that the clay sample treated with 3M H2SO4 exhibited the highest Brunauer–Emmett–Teller (BET) surface area (16.29–24.68 m2/g) and pore volume (0.056–0.064 cm3/g). After the acid treatment, the CO2 adsorption capacity of clay increased. The CO2 adsorption capacity of clay increased after the acid treatment. The CO2 adsorption by clay, were characterized by SEM, FTIR, ATD-ATG and BET method. For describing the phenomenon of CO2 adsorption for these materials, the adsorption isotherms were modeled using the Freundlich and Langmuir models. CO2 adsorption isotherm was found attributable to physical adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20treatment" title=" acid treatment"> acid treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title=" adsorption mechanism"> adsorption mechanism</a> </p> <a href="https://publications.waset.org/abstracts/72338/co2-capture-by-clay-and-its-adsorption-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Hachem">Joe Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianne%20Cuif-Sjostrand"> Marianne Cuif-Sjostrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Schuhler"> Thierry Schuhler</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Orhon"> Dominique Orhon</a>, <a href="https://publications.waset.org/abstracts/search?q=Assaad%20Zoughaib"> Assaad Zoughaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbines" title="gas turbines">gas turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas%20recirculation" title=" exhaust gas recirculation"> exhaust gas recirculation</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20parameters%20optimization" title=" design parameters optimization"> design parameters optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20approach" title=" thermodynamic approach"> thermodynamic approach</a> </p> <a href="https://publications.waset.org/abstracts/135673/design-parameters-optimization-of-a-gas-turbine-with-exhaust-gas-recirculation-an-energy-and-exergy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Evaluation of Adequacy of Caspofungin Prescription in a Tunisian Hospital Cohort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Meddeb%20Sidhom">Mariem Meddeb Sidhom</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayel%20Hedfi"> Souhayel Hedfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rjaibia%20Houda"> Rjaibia Houda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Dridi"> Mehdi Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ali%20Yousfi"> Mohamed Ali Yousfi</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A2adia%20Gargouri"> Sâadia Gargouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the important increase in costs of caspofungin treatments and ahead the evolution of its indication, pharmacy department was prompted to realize a review of the adequacy of prescriptions in the medical intensive care units (ICU). A retrospective observational study was conducted in Tunis military hospital concerning ICU prescriptions of caspofungin from 2008 until 2013. A pharmacist had returned to the patient’s medical records to collect data and to the microbiology department for parasitological results. The adequacy of prescriptions was evaluated by a pharmacist and an infectiologist parasitologist, referring to predefined scale of criteria resuming the indications of the marketing authorization (MA) and grade AI-AII of the guidelines of the Infectious Diseases Society of America (IDSA). Sixty two ICU patients have been treated with caspofungin during the period of study; however, 8 files were lost. Thus, 54 patients were included in the study having received 55 prescriptions of caspofungin. Males were a majority with 64.8% of the population. Mean age was 51 years. Caspofungin was indicated in accordance with the IDSA recommendations in 43.6% of the cases. The most case of non respect to the guidelines was the indication of caspofungin as empirical treatment in non neutropenic patients. Caspofungin was utilized as a first line treatment in 9 cases where it was possible to give fluconazole first, as germs were fluconazole- sensitive. Caspofungin was indicated in 2 patients with good renal function and in which nor amphotericin B, liposomal ampho B neither itraconazole had been previously used, as indicates the MA. The posology of caspofungin was respected in all prescriptions with a loading dose of 70 mg in the first day and a maintenance dose of 50 mg daily. Seven patients had received a daily dose of 70 mg, the recommended dose for people weighing more than 80 Kg. Caspofungin prescriptions are far to be adequately done. There is a clear need of optimization in indicating this molecule and that must be done in collaboration between the pharmacy department, the ICUs and parasitology department. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caspofungin" title="caspofungin">caspofungin</a>, <a href="https://publications.waset.org/abstracts/search?q=prescription" title=" prescription"> prescription</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20units" title=" intensive care units"> intensive care units</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20authorization" title=" marketing authorization"> marketing authorization</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisian%20hospital%20cohort" title=" Tunisian hospital cohort"> Tunisian hospital cohort</a> </p> <a href="https://publications.waset.org/abstracts/20758/evaluation-of-adequacy-of-caspofungin-prescription-in-a-tunisian-hospital-cohort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20El%20Hachem">Anthony El Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosam%20Salman"> Hosam Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20challenges" title="construction challenges">construction challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title=" deep foundations"> deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20shafts" title=" drilled shafts"> drilled shafts</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20sands%20underwater%20table" title=" loose sands underwater table"> loose sands underwater table</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20casing" title=" permanent casing"> permanent casing</a> </p> <a href="https://publications.waset.org/abstracts/143625/case-study-drilled-shafts-installation-in-difficult-site-conditions-loose-sand-and-high-water-table" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Localized Analysis of Cellulosic Fibrous Insulation Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chady%20El%20Hachem">Chady El Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan%20Ye"> Pan Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamilia%20Abahri"> Kamilia Abahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Bennacer"> Rachid Bennacer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considered as a building construction material, and regarding its environmental benefits, wood fiber insulation is the material of interest in this work. The definition of adequate elementary representative volume that guarantees reliable understanding of the hygrothermal macroscopic phenomena is very critical. At the microscopic scale, when subjected to hygric solicitations, fibers undergo local dimensionless variations. It is therefore necessary to master this behavior, which affects the global response of the material. This study consists of an experimental procedure using the non-destructive method, X-ray tomography, followed by morphological post-processing analysis using ImageJ software. A refine investigation took place in order to identify the representative elementary volume and the sufficient resolution for accurate structural analysis. The second part of this work was to evaluate the microscopic hygric behavior of the studied material. Many parameters were taken into consideration, like the evolution of the fiber diameters, distribution along the sorption cycle and the porosity, and the water content evolution. In addition, heat transfer simulations based on the energy equation resolution were achieved on the real structure. Further, the problematic of representative elementary volume was elaborated for such heterogeneous material. Moreover, the material’s porosity and its fibers’ thicknesses show very big correlation with the water content. These results provide the literature with very good understanding of wood fiber insulation’s behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hygric%20behavior" title="hygric behavior">hygric behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20characterization" title=" morphological characterization"> morphological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fiber%20insulation%20material" title=" wood fiber insulation material"> wood fiber insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20tomography" title=" x-ray tomography"> x-ray tomography</a> </p> <a href="https://publications.waset.org/abstracts/44406/localized-analysis-of-cellulosic-fibrous-insulation-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Hachem">Melissa Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Bensefa-Colas"> Lynda Bensefa-Colas</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Momas"> Isabelle Momas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20carbon" title="black carbon">black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=France" title=" France"> France</a>, <a href="https://publications.waset.org/abstracts/search?q=lockdown" title=" lockdown"> lockdown</a>, <a href="https://publications.waset.org/abstracts/search?q=taxis" title=" taxis"> taxis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20particles" title=" ultrafine particles"> ultrafine particles</a> </p> <a href="https://publications.waset.org/abstracts/139489/changes-in-air-quality-inside-vehicles-and-in-working-conditions-of-professional-drivers-during-covid-19-pandemic-in-paris-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solaine%20Hachem">Solaine Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Bourquin"> Frédéric Bourquin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Siegert"> Dominique Siegert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%E2%80%99s%20piers" title="bridge’s piers">bridge’s piers</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20sensitivity" title=" modal sensitivity"> modal sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=scour%20detection" title=" scour detection"> scour detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/162836/scour-damaged-detection-of-bridge-piers-using-vibration-analysis-numerical-study-of-a-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=My%20Hachem%20Aouragh">My Hachem Aouragh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20Ragragui"> Hind Ragragui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20El-Hmaidi"> Abdellah El-Hmaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Essahlaoui"> Ali Essahlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20El%20Ouali"> Abdelhadi El Ouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title="soil erosion">soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikkes%20Watershed" title=" Mikkes Watershed"> Mikkes Watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/193099/modeling-and-mapping-of-soil-erosion-risk-using-geographic-information-systems-remote-sensing-and-deep-learning-algorithms-case-of-the-oued-mikkes-watershed-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Short-Term Association of In-vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Hachem">Melissa Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Loizeau"> Maxime Loizeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadine%20%20Saleh"> Nadine Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Momas"> Isabelle Momas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Bensefa-Colas"> Lynda Bensefa-Colas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm³ and BC concentrations from 2.2 to 3.9 μg/m³, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25–75% by −7.44% [95% CI: −12.63 to −2.24], forced expiratory volume in one second by −4.46% [95% CI: −6.99 to −1.93] and forced vital capacity by −3.31% [95% CI: −5.82 to −0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. This study is the first to show a significant association, within a short-period of time, between in-vehicle UFP exposure and acute respiratory effects in professional drivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20carbon" title="black carbon">black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20function" title=" lung function"> lung function</a>, <a href="https://publications.waset.org/abstracts/search?q=mucosal%20irritation" title=" mucosal irritation"> mucosal irritation</a>, <a href="https://publications.waset.org/abstracts/search?q=taxi%20drivers" title=" taxi drivers"> taxi drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20particles" title=" ultrafine particles"> ultrafine particles</a> </p> <a href="https://publications.waset.org/abstracts/139490/short-term-association-of-in-vehicle-ultrafine-particles-and-black-carbon-concentrations-with-respiratory-health-in-parisian-taxi-drivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10