CINXE.COM
homotopy category (Rev #34) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> homotopy category (Rev #34) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> homotopy category (Rev #34) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='homotopy_theory'>Homotopy theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p> <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+homotopy+theory'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p> <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p> <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead's theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> </li> </ul> </div> <h4 id='model_category_theory'>Model category theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></strong>, <a class='existingWikiWord' href='/nlab/show/model+%28%E2%88%9E%2C1%29-category'>model $\infty$-category</a></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a></p> <p>(<a class='existingWikiWord' href='/nlab/show/relative+category'>relative category</a>, <a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a>)</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/fibration'>fibration</a>, <a class='existingWikiWord' href='/nlab/show/cofibration'>cofibration</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/weak+factorization+system'>weak factorization system</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/resolution'>resolution</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/cell+complex'>cell complex</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/small+object+argument'>small object argument</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+%28as+an+operation%29'>homotopy</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a><math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mspace width='thickmathspace'></mspace></mrow><annotation encoding='application/x-tex'>\;</annotation></semantics></math><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+a+model+category'>of a model category</a></p> </li> </ul> <p><strong>Morphisms</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen equivalence</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Quillen+bifunctor'>Quillen bifunctor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/derived+functor'>derived functor</a></p> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+Kan+extension'>homotopy Kan extension</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy limit</a>/<a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a></p> <p><a class='existingWikiWord' href='/nlab/show/homotopy+weighted+colimit'>homotopy weighted (co)limit</a></p> <p><a class='existingWikiWord' href='/nlab/show/homotopy+coend'>homotopy (co)end</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Bousfield-Kan+map'>Bousfield-Kan map</a></p> </li> </ul> <p><strong>Refinements</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/monoidal+model+category'>monoidal model category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/monoidal+Quillen+adjunction'>monoidal Quillen adjunction</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/enriched+model+category'>enriched model category</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/enriched+Quillen+adjunction'>enriched Quillen adjunction</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/enriched+monoidal+model+category'>monoidal enriched model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/simplicial+Quillen+adjunction'>simplicial Quillen adjunction</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/simplicial+monoidal+model+category'>simplicial monoidal model category</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/cofibrantly+generated+model+category'>cofibrantly generated model category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/combinatorial+model+category'>combinatorial model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/cellular+model+category'>cellular model category</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/algebraic+model+category'>algebraic model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/compactly+generated+model+category'>compactly generated model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/proper+model+category'>proper model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/cartesian+model+category'>cartesian closed model category</a>, <a class='existingWikiWord' href='/nlab/show/locally+cartesian+closed+model+category'>locally cartesian closed model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/stable+model+category'>stable model category</a></p> </li> </ul> <p><strong>Producing new model structures</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>on functor categories (global)</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Reedy+model+structure'>Reedy model structure</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/slice+model+structure'>on slice categories</a></p> </li> <li> <p><span class='newWikiWord'>Bousfield localization<a href='/nlab/new/Bousfield+localization+of+model+categories'>?</a></span></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/transferred+model+structure'>transferred model structure</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebraic+fibrant+objects'>on algebraic fibrant objects</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Grothendieck+construction+for+model+categories'>Grothendieck construction for model categories</a></p> </li> </ul> <p><strong>Presentation of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localization</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>(∞,1)-categorical hom-space</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/locally+presentable+%28infinity%2C1%29-category'>presentable (∞,1)-category</a></p> </li> </ul> <p><strong>Model structures</strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Cisinski+model+structure'>Cisinski model structure</a></li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</em></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+infinity-groupoids'>for ∞-groupoids</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+topological+spaces'>on topological spaces</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+compactly+generated+topological+spaces'>on compactly generated spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+Delta-generated+topological+spaces'>on Delta-generated spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+diffeological+spaces'>on diffeological spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Str%C3%B8m+model+structure'>Strøm model structure</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+over+a+test+category'>model structure on presheaves over a test category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>on simplicial sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+semi-simplicial+sets'>on semi-simplicial sets</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/constructive+model+structure+on+simplicial+sets'>constructive model structure</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+left+fibrations'>for right/left fibrations</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groupoids'>model structure on simplicial groupoids</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cubical+sets'>on cubical sets</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-groupoids'>on strict ∞-groupoids</a>, <a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>on groupoids</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+chain+complexes'>on chain complexes</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+abelian+groups'>model structure on cosimplicial abelian groups</a></p> <p>related by the <a class='existingWikiWord' href='/nlab/show/Dold-Kan+correspondence'>Dold-Kan correspondence</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+simplicial+sets'>model structure on cosimplicial simplicial sets</a></p> </li> </ul> <p><em>for equivariant <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/fine+model+structure+on+topological+G-spaces'>fine model structure on topological G-spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Borel+model+structure'>coarse model structure on topological G-spaces</a></p> <p>(<a class='existingWikiWord' href='/nlab/show/Borel+model+structure'>Borel model structure</a>)</p> </li> </ul> <p><em>for rational <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</em></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on dgc-algebras</a></li> </ul> <p><em>for rational equivariant <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+chain+complexes'>model structure on equivariant chain complexes</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+dgc-algebras'>model structure on equivariant dgc-algebras</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-groupoids</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-groupoids</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-types</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>for 1-groupoids</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groups</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groups'>model structure on simplicial groups</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+reduced+simplicial+sets'>model structure on reduced simplicial sets</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-algebras</em></p> <p><em>general <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-algebras</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+monoids+in+a+monoidal+model+category'>on monoids</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+algebras'>on simplicial T-algebras</a>, on <a class='existingWikiWord' href='/nlab/show/homotopy+T-algebra'>homotopy T-algebra</a>s</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+a+monad'>on algebas over a monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p> </li> </ul> <p><em>specific <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-algebras</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on differential-graded commutative algebras</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+differential+graded-commutative+superalgebras'>model structure on differential graded-commutative superalgebras</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras+over+an+operad'>on dg-algebras over an operad</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>on dg-algebras</a> and on <a class='existingWikiWord' href='/nlab/show/simplicial+ring'>on simplicial rings</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+rings'>on cosimplicial rings</a></p> <p>related by the <a class='existingWikiWord' href='/nlab/show/monoidal+Dold-Kan+correspondence'>monoidal Dold-Kan correspondence</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+L-infinity+algebras'>for L-∞ algebras</a>: <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-Lie+algebras'>on dg-Lie algebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-coalgebras'>on dg-coalgebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+Lie+algebras'>on simplicial Lie algebras</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-modules'>model structure on dg-modules</a></p> </li> </ul> <p><em>for stable/spectrum objects</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+spectra'>model structure on spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+ring+spectra'>model structure on ring spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+parameterized+spectra'>model structure on parameterized spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+spectra'>model structure on presheaves of spectra</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+relative+categories'>on categories with weak equivalences</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+quasi-categories'>Joyal model for quasi-categories</a> (and its <a class='existingWikiWord' href='/nlab/show/model+structure+for+cubical+quasicategories'>cubical version</a>)</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-categories'>on sSet-categories</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+complete+Segal+spaces'>for complete Segal spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+Cartesian+fibrations'>for Cartesian fibrations</a></p> </li> </ul> <p><em>for stable <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</em></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-categories'>on dg-categories</a></li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-operads</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+operads'>on operads</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+Segal+operads'>for Segal operads</a></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dendroidal+sets'>on dendroidal sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+complete+Segal+spaces'>for dendroidal complete Segal spaces</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+Cartesian+fibrations'>for dendroidal Cartesian fibrations</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n,r)</annotation></semantics></math>-categories</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/Theta-space'>for (n,r)-categories as ∞-spaces</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+weak+complicial+sets'>for weak ∞-categories as weak complicial sets</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cellular+sets'>on cellular sets</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure'>on higher categories in general</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-categories'>on strict ∞-categories</a></p> </li> </ul> <p><em>for <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-sheaves / <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</em></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+homotopical+presheaves'>on homotopical presheaves</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>on simplicial presheaves</a></p> <p><a class='existingWikiWord' href='/nlab/show/global+model+structure+on+simplicial+presheaves'>global model structure</a>/<a class='existingWikiWord' href='/nlab/show/%C4%8Cech+model+structure+on+simplicial+presheaves'>Cech model structure</a>/<a class='existingWikiWord' href='/nlab/show/local+model+structure+on+simplicial+presheaves'>local model structure</a></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sheaves'>on simplicial sheaves</a></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+simplicial+groupoids'>on presheaves of simplicial groupoids</a></p> <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-enriched+presheaves'>on sSet-enriched presheaves</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+%282%2C1%29-sheaves'>model structure for (2,1)-sheaves</a>/for stacks</p> </li> </ul> </div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#Idea'>Idea</a></li><li><a href='#definition'>Definition</a><ul><li><a href='#for_simplicially_enriched_categories'>For simplicially enriched categories</a></li><li><a href='#for_categories_with_weak_equivalences'>For categories with weak equivalences</a></li></ul></li><li><a href='#properties'>Properties</a></li><li><a href='#examples'>Examples</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='Idea'>Idea</h2> <p>Given a <a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a> <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>𝒞</mi><mo>,</mo><mi>W</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\mathcal{C},W)</annotation></semantics></math>, then its <em>homotopy category</em> <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(\mathcal{C})</annotation></semantics></math> is, if it exists, the result of universally forcing the <a class='existingWikiWord' href='/nlab/show/weak+equivalence'>weak equivalences</a> to become actual <a class='existingWikiWord' href='/nlab/show/isomorphism'>isomorphisms</a>, also called the <em><a class='existingWikiWord' href='/nlab/show/localization'>localization</a></em> at the weak equivalences</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>⟶</mo><mi>Ho</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo>=</mo><mi>𝒞</mi><mo stretchy='false'>[</mo><msup><mi>W</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo stretchy='false'>]</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> \mathcal{C} \longrightarrow Ho(\mathcal{C})= \mathcal{C}[W^{-1}] \,. </annotation></semantics></math></div> <p>The classical example is the category of <a class='existingWikiWord' href='/nlab/show/topological+space'>topological spaces</a> with weak equivalences those <a class='existingWikiWord' href='/nlab/show/continuous+map'>continuous functions</a> which are <em><a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalences</a></em> or <em><a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a></em>. The corresponding homotopy category is often referred to as “the homotopy category”, by default, or the “<a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>classical homotopy category</a>” for emphasis. This turns out to be equivalent to the category of topological spaces or (for weak homotopy equivalences) of just those <a class='existingWikiWord' href='/nlab/show/homeomorphism'>homeomorphic</a> to <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complexes</a> with <a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a>-<a class='existingWikiWord' href='/nlab/show/homotopy+class'>classes</a> of continuous functions between them, whence the name “homotopy category”.</p> <p>The existence of a homotopy category, as well as tractable presentations of it typically require extra <a class='existingWikiWord' href='/nlab/show/stuff%2C+structure%2C+property'>properties</a> of the class of weak equivalences (such as that they admit a <a class='existingWikiWord' href='/nlab/show/calculus+of+fractions'>calculus of fractions</a>) or even extra <a class='existingWikiWord' href='/nlab/show/structure'>structure</a> (such as <a class='existingWikiWord' href='/nlab/show/fibration+category'>fibration category</a>/<a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a> structure, or full <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure, or further enhancements of that to <a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a> structures, etc). See at <em><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+a+model+category'>homotopy category of a model category</a></em> for more on this.</p> <p>More generally, to every <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a> is associated a homotopy category, whose morphisms are literally the <a class='existingWikiWord' href='/nlab/show/homotopy+class'>homotopy classes</a> of the original morphisms. See at <em><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></em> for more on this.</p> <p>These two concepts of “homotopy category” are compatible: to a <a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a> is associated, if it exists, an <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a> obtained by universally forcing the <a class='existingWikiWord' href='/nlab/show/weak+equivalence'>weak equivalences</a> to become actual <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalences</a>, also called the <em><a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localization</a></em> <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>L_W \mathcal{C}</annotation></semantics></math> at the weak equivalences. The homotopy categories of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>𝒞</mi><mo>,</mo><mi>W</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\mathcal{C},W)</annotation></semantics></math> and of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>L_W \mathcal{C}</annotation></semantics></math> coincide, which justifies the terminology “homotopy category” generally.</p> <h2 id='definition'>Definition</h2> <h3 id='for_simplicially_enriched_categories'>For simplicially enriched categories</h3> <p>Given a simplicially enriched category <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>, we can form for each pair of objects, <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>x,y</annotation></semantics></math>, of objects of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>, the set, <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mi>C</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_0C(x,y)</annotation></semantics></math>, of connected components of the ‘function space’ <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C(x,y)</annotation></semantics></math>. As <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\pi_0</annotation></semantics></math> preserves finite limits, this gives a category, denoted <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_0(C)</annotation></semantics></math>. As 1-simplices in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C(x,y)</annotation></semantics></math> can be often interpreted as being homotopies, this category <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\pi_0(C)</annotation></semantics></math> is often called the <em>homotopy category of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math></em>, and then the notation <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> may be used.</p> <p>This notions is closely related to the next, by using, say the <a class='existingWikiWord' href='/nlab/show/simplicial+localization'>hammock localisation</a> of Dwyer and Kan, as then <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\pi_0</annotation></semantics></math> of that simplicially enriched category, coincides with the following.</p> <h3 id='for_categories_with_weak_equivalences'>For categories with weak equivalences</h3> <p>Given a <a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a> (such as a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a>), its <strong>homotopy category</strong> <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> is – if it exists – the <a class='existingWikiWord' href='/nlab/show/category'>category</a> which is universal with the property that there is a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Q</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> Q : C \to Ho(C) </annotation></semantics></math></div> <p>that sends every weak equivalence in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> to an <a class='existingWikiWord' href='/nlab/show/isomorphism'>isomorphism</a> in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math>.</p> <p>One also writes <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo><mo>:</mo><mo>=</mo><msup><mi>W</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mi>C</mi></mrow><annotation encoding='application/x-tex'>Ho(C) := W^{-1}C</annotation></semantics></math> or <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo stretchy='false'>[</mo><msup><mi>W</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>C[W^{-1}]</annotation></semantics></math> and calls it the <a class='existingWikiWord' href='/nlab/show/localization'>localization</a> of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> at the collection <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math> of weak equivalences.</p> <p>More in detail, the universality of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> means the following:</p> <ul> <li>for any (possibly <a class='existingWikiWord' href='/nlab/show/large+category'>large</a>) category <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and functor <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>F : C \to A</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math> sends all <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>w</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>w \in W</annotation></semantics></math> to isomorphisms in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>, there exists a functor <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>F</mi> <mi>Q</mi></msub><mo>:</mo><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo><mo>→</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>F_Q : Ho(C) \to A</annotation></semantics></math> and a natural isomorphism</li> </ul> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mi>C</mi></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>F</mi></mover></mtd> <mtd><mi>A</mi></mtd></mtr> <mtr><mtd><msup><mo stretchy='false'>↓</mo> <mi>Q</mi></msup></mtd> <mtd><msup><mo>⇓</mo> <mo>≃</mo></msup></mtd> <mtd><msub><mo>↗</mo> <mrow><msub><mi>F</mi> <mi>Q</mi></msub></mrow></msub></mtd></mtr> <mtr><mtd><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> \array{ C &&\stackrel{F}{\to}& A \\ \downarrow^Q& \Downarrow^{\simeq}& \nearrow_{F_Q} \\ Ho(C) } </annotation></semantics></math></div> <ul> <li>the functor <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Q</mi> <mo>*</mo></msup><mo>:</mo><mi>Func</mi><mo stretchy='false'>(</mo><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>→</mo><mi>Func</mi><mo stretchy='false'>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Q^* : Func(Ho(C),A) \to Func(C,A)</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/full+and+faithful+functor'>full and faithful functor</a>.</li> </ul> <p>The second condition implies that the functor <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>F</mi> <mi>Q</mi></msub></mrow><annotation encoding='application/x-tex'>F_Q</annotation></semantics></math> in the first condition is unique up to unique isomorphism.</p> <h2 id='properties'>Properties</h2> <ul> <li> <p>If it exists, the homotopy category <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> is unique up to <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalence of categories</a>.</p> </li> <li> <p>As described at <a class='existingWikiWord' href='/nlab/show/localization'>localization</a>, in general, the morphisms of <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> must be constructed using zigzags of morphisms in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> in which the backwards-pointing arrows are weak equivalences. This means that in general, <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> need not be <a class='existingWikiWord' href='/nlab/show/locally+small+category'>locally small</a> even if <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> is. However, in many cases (such as any <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a>) there is a more direct description of the morphisms in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> as <a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a> classes of maps in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> between suitably “good” (fibrant and cofibrant) objects.</p> </li> <li> <p>In <a class='existingWikiWord' href='/nlab/show/2-limit'>2-categorical terms</a>, the homotopy category <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(C)</annotation></semantics></math> is the <em>coinverter</em> of the canonical 2-cell</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd><mo>→</mo></mtd></mtr> <mtr><mtd><mi>W</mi></mtd> <mtd><mo>⇓</mo></mtd> <mtd><mi>C</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>→</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>\array{& \to \\ W & \Downarrow & C\\ & \to}</annotation></semantics></math></div> <p>where <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math> is the category whose objects are morphisms in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> and whose morphisms are commutative squares in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>.</p> </li> </ul> <h2 id='examples'>Examples</h2> <ul> <li> <p>In classical <a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <em>the</em> homotopy category refers to the homotopy category <a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a> of <a class='existingWikiWord' href='/nlab/show/Top'>Top</a> with weak equivalences taken to be <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a>.</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a> is often restricted to the <a class='existingWikiWord' href='/nlab/show/full+subcategory'>full subcategory</a> of spaces of the <a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a> of a <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complex</a> (the full subcategory of CW-complexes in <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><mi>Top</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(Top)</annotation></semantics></math>). This is equivalent to <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Ho</mi><mo stretchy='false'>(</mo><msub><mi>sSet</mi> <mi>Quillen</mi></msub><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Ho(sSet_{Quillen})</annotation></semantics></math>, the homotopy category of the standard Quillen-<a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>model structure on simplicial sets</a>. This equivalence is one aspect of the <a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>.</p> </li> <li> <p>In <a class='existingWikiWord' href='/nlab/show/homological+algebra'>homological algebra</a> the localization of the <a class='existingWikiWord' href='/nlab/show/category+of+chain+complexes'>category of chain complexes</a> at the <a class='existingWikiWord' href='/nlab/show/quasi-isomorphism'>quasi-isomorphisms</a> is called the <em><a class='existingWikiWord' href='/nlab/show/derived+category'>derived category</a></em>. But see also at <em><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+chain+complexes'>homotopy category of chain complexes</a></em>.</p> </li> <li> <p>In <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theory</a> one considers the <a class='existingWikiWord' href='/nlab/show/stable+homotopy+category'>stable homotopy category</a> of <a class='existingWikiWord' href='/nlab/show/spectrum'>spectra</a>.</p> </li> <li> <p>In <a class='existingWikiWord' href='/nlab/show/equivariant+stable+homotopy+theory'>equivariant stable homotopy theory</a> one considers the <a class='existingWikiWord' href='/nlab/show/equivariant+stable+homotopy+category'>equivariant stable homotopy category</a> of spectra.</p> </li> <li> <p>For the homotopy category of <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a>, see <a class='existingWikiWord' href='/nlab/show/Ho%28Cat%29'>Ho(Cat)</a>.</p> </li> <li> <p>For the homotopy category of that of <a class='existingWikiWord' href='/nlab/show/combinatorial+model+category'>combinatorial model categories</a> see <a class='existingWikiWord' href='/nlab/show/CombModCat'>Ho(CombModCat)</a>.</p> </li> </ul> <h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+a+model+category'>homotopy category of a model category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (infinity,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/homotopy+2-category'>homotopy 2-category</a></p> </li> </ul> <h2 id='references'>References</h2> <p>Early discussion:</p> <ul> <li id='Brown65'><a class='existingWikiWord' href='/nlab/show/Edgar+Brown'>Edgar Brown</a>, <em>Abstract homotopy theory</em>, Trans. AMS 119 no. 1 (1965) <math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo></mrow><annotation encoding='application/x-tex'>[</annotation></semantics></math><a href='https://doi.org/10.1090/S0002-9947-1965-0182970-6'>doi:10.1090/S0002-9947-1965-0182970-6</a><math class='maruku-mathml' display='inline' id='mathml_2c70d271c54cae83a170d9447604d1b0838e832e_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>]</annotation></semantics></math></li> </ul> <p>For more see the references at <em><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></em> or <em><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>classical homotopy category</a></em>.</p> <p> </p> </div> <!-- Revision --> <div class="revisedby"> <p> Revision on June 24, 2022 at 10:59:51 by <a href="/nlab/author/Urs+Schreiber" style="color: #005c19">Urs Schreiber</a> See the <a href="/nlab/history/homotopy+category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/show/homotopy+category" accesskey="F" class="navlinkbackintime" id="to_next_revision" rel="nofollow">Next revision</a> (to current)</span><span class="backintime"><a href="/nlab/revision/homotopy+category/33" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a> (33 more)</span><a href="/nlab/show/homotopy+category" class="navlink" id="to_current_revision">Current version of page</a><a href="/nlab/revision/diff/homotopy+category/34" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/homotopy+category" accesskey="S" class="navlink" id="history" rel="nofollow">History (34 revisions)</a><a href="/nlab/rollback/homotopy+category?rev=34" class="navlink" id="rollback" rel="nofollow">Rollback</a> <a href="/nlab/revision/homotopy+category/34/cite" style="color: black">Cite</a> <a href="/nlab/source/homotopy+category/34" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>