CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 71 results for author: <span class="mathjax">Zheng, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Zheng%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zheng, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zheng%2C+P&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zheng, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08394">arXiv:2408.08394</a> <span> [<a href="https://arxiv.org/pdf/2408.08394">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51255-3">10.1038/s41467-024-51255-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A topological Hund nodal line antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+C">Che-Min Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhaohu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+T">Tong Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Shengwei Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08394v1-abstract-short" style="display: inline;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08394v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08394v1-abstract-full" style="display: none;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'none'; document.getElementById('2408.08394v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 7052 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05996">arXiv:2404.05996</a> <span> [<a href="https://arxiv.org/pdf/2404.05996">pdf</a>, <a href="https://arxiv.org/format/2404.05996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> First-Order Vortex Lattice Melting in Bilayer Ice: A Monte Carlo Method Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+T">Telun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+H">Heyang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Peijun Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wanzhou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05996v2-abstract-short" style="display: inline;"> Inspired by the stable bilayer water ice grown in the laboratory (Nature 577, 60, 2020), we propose a model representing water ice as a two-layer six-vertex model. Using the loop update Monte Carlo method, we unveil meaningful findings. While the square lattice six-vertex model exhibits an antiferromagnetic to disordered phase transition known as the Berezinskii-Kosterlitz-Thouless transition, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05996v2-abstract-full').style.display = 'inline'; document.getElementById('2404.05996v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05996v2-abstract-full" style="display: none;"> Inspired by the stable bilayer water ice grown in the laboratory (Nature 577, 60, 2020), we propose a model representing water ice as a two-layer six-vertex model. Using the loop update Monte Carlo method, we unveil meaningful findings. While the square lattice six-vertex model exhibits an antiferromagnetic to disordered phase transition known as the Berezinskii-Kosterlitz-Thouless transition, we observe a different scenario for the bilayer six-vertex model, where the transition type transforms into an Ising transition. We discover the emergence of vortices in the disordered phase, and to stabilize them, vortex excitation is induced. This leads to the presence of distinct 1/2 filling and 2/3 filling vortex lattice phases. More importantly, we identify the phase transitions between the vortex lattice phase and the disordered phase, as well as between the 1/2 and 2/3 vortex lattices, as being of first order. We also propose an experimental scheme for realizing a two-layer six-vertex model based on the artificial ice of particles in a double well trap array. Our findings provide valuable insight into the nature of phase transitions occurring in layered water ice and artificial spin ice systems in experimental setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05996v2-abstract-full').style.display = 'none'; document.getElementById('2404.05996v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 17 figures, accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03339">arXiv:2404.03339</a> <span> [<a href="https://arxiv.org/pdf/2404.03339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Significantly Enhanced Vacancy Diffusion in Mn-containing Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guan%2C+H">Huaqing Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+H">Hanwen Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+N">Ning Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+K">Kuo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Siqi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sui%2C+Y">Yanfei Sui</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuanyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+F">Fuyang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shuai Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengfei Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C">Chenyang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Q">Qiu Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Vitos%2C+L">Levente Vitos</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shaosong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03339v1-abstract-short" style="display: inline;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03339v1-abstract-full" style="display: none;"> Manipulating point defects for tailored macroscopic properties remains a formidable challenge in materials science. This study demonstrates a proof-of-principle for a universal law involving element Mn, significantly enhancing vacancy diffusion through an unprecedented anomalous Friedel Oscillations phenomenon, across most metals in the periodic table. The correlation between Mn-induced point-defect dynamic changes and intrinsic macro-properties is robustly validated through the first-principles theory and well-designed experiments. The physical origin stems from Mn's exceptionally large effective intra-elemental 3d electron interactions, surpassing the Coulomb attraction induced by vacancy and disrupting the electron screening effect. Given the ubiquitous nature of vacancies and their recognition as the most crucial defects influencing nearly all physical and mechanical properties of crystalline materials, this outcome may drive advances in a broad domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03339v1-abstract-full').style.display = 'none'; document.getElementById('2404.03339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12113">arXiv:2302.12113</a> <span> [<a href="https://arxiv.org/pdf/2302.12113">pdf</a>, <a href="https://arxiv.org/format/2302.12113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of Kondo lattice and Kondo-enhanced anomalous Hall effect in an itinerant ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+W">Wenlong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12113v1-abstract-short" style="display: inline;"> The interplay between Kondo screening and magnetic interactions is central to comprehending the intricate phases in heavy-fermion compounds. However, the role of the itinerant magnetic order, which is driven by the conducting (c) electrons, has been largely uncharted in the context of heavy-fermion systems due to the scarcity of material candidates. Here we demonstrate the coexistence of the coher… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12113v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12113v1-abstract-full" style="display: none;"> The interplay between Kondo screening and magnetic interactions is central to comprehending the intricate phases in heavy-fermion compounds. However, the role of the itinerant magnetic order, which is driven by the conducting (c) electrons, has been largely uncharted in the context of heavy-fermion systems due to the scarcity of material candidates. Here we demonstrate the coexistence of the coherent Kondo screening and d-orbital ferromagnetism in material system La$_{1-x}$Ce$_x$Co$_2$As$_2$, through comprehensive thermodynamic and electrical transport measurements. Additionally, using angle-resolved photoemission spectroscopy (ARPES), we further observe the f-orbit-dominated bands near the Fermi level ($E_f$) and signatures of the f-c hybridization below the magnetic transition temperature, providing strong evidence of Kondo lattice state in the presence of ferromagnetic order. Remarkably, by changing the ratio of Ce/La, we observe a substantial enhancement of the anomalous Hall effect (AHE) in the Kondo lattice regime. The value of the Hall conductivity quantitatively matches with the first-principle calculation that optimized with our ARPES results and can be attributed to the large Berry curvature (BC) density engendered by the topological nodal rings composed of the Ce-4f and Co-3d orbitals at $E_f$. Our findings point to the realization of a new platform for exploring correlation-driven topological responses in a novel Kondo lattice environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12113v1-abstract-full').style.display = 'none'; document.getElementById('2302.12113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figs and 22 pages. This is the submitted version and the work will be presented in March meeting (section T19). All comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05793">arXiv:2211.05793</a> <span> [<a href="https://arxiv.org/pdf/2211.05793">pdf</a>, <a href="https://arxiv.org/format/2211.05793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.20.044002">10.1103/PhysRevApplied.20.044002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient and quantum-adaptive machine learning with fermion neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pei-Lin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jia-Bao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05793v3-abstract-short" style="display: inline;"> Classical artificial neural networks have witnessed widespread successes in machine-learning applications. Here, we propose fermion neural networks (FNNs) whose physical properties, such as local density of states or conditional conductance, serve as outputs, once the inputs are incorporated as an initial layer. Comparable to back-propagation, we establish an efficient optimization, which entitles… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05793v3-abstract-full').style.display = 'inline'; document.getElementById('2211.05793v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05793v3-abstract-full" style="display: none;"> Classical artificial neural networks have witnessed widespread successes in machine-learning applications. Here, we propose fermion neural networks (FNNs) whose physical properties, such as local density of states or conditional conductance, serve as outputs, once the inputs are incorporated as an initial layer. Comparable to back-propagation, we establish an efficient optimization, which entitles FNNs to competitive performance on challenging machine-learning benchmarks. FNNs also directly apply to quantum systems, including hard ones with interactions, and offer in-situ analysis without preprocessing or presumption. Following machine learning, FNNs precisely determine topological phases and emergent charge orders. Their quantum nature also brings various advantages: quantum correlation entitles more general network connectivity and insight into the vanishing gradient problem, quantum entanglement opens up novel avenues for interpretable machine learning, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05793v3-abstract-full').style.display = 'none'; document.getElementById('2211.05793v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 20, 044002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01695">arXiv:2210.01695</a> <span> [<a href="https://arxiv.org/pdf/2210.01695">pdf</a>, <a href="https://arxiv.org/format/2210.01695">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.106006">10.1103/PhysRevD.107.106006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Keldysh Wormholes and Anomalous Relaxation in the Dissipative Sachdev-Ye-Kitaev Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garc%C3%ADa-Garc%C3%ADa%2C+A+M">Antonio M. Garc铆a-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&query=S%C3%A1%2C+L">Lucas S谩</a>, <a href="/search/cond-mat?searchtype=author&query=Verbaarschot%2C+J+J+M">Jacobus J. M. Verbaarschot</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+J+P">Jie Ping Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01695v3-abstract-short" style="display: inline;"> We study the out-of-equilibrium dynamics of a Sachdev-Ye-Kitaev (SYK) model, $N$ fermions with a $q$-body interaction of infinite range, coupled to a Markovian environment. Close to the infinite-temperature steady state, the real-time Lindbladian dynamics of this system is identical to the near-zero-temperature dynamics in Euclidean time of a two-site non-Hermitian SYK with intersite coupling whos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01695v3-abstract-full').style.display = 'inline'; document.getElementById('2210.01695v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01695v3-abstract-full" style="display: none;"> We study the out-of-equilibrium dynamics of a Sachdev-Ye-Kitaev (SYK) model, $N$ fermions with a $q$-body interaction of infinite range, coupled to a Markovian environment. Close to the infinite-temperature steady state, the real-time Lindbladian dynamics of this system is identical to the near-zero-temperature dynamics in Euclidean time of a two-site non-Hermitian SYK with intersite coupling whose gravity dual has been recently related to wormhole configurations. We show that the saddle-point equations in the real-time formulation are identical to those in Euclidean time. Indeed, an explicit calculation of Green's functions at low temperature, numerical for $q = 4$ and analytical for $q = 2$ and large $q$, illustrates this equivalence. Only for very strong coupling does the decay rate approach the linear dependence on the coupling characteristic of a dissipation-driven approach to the steady state. For $q > 2$, we identify a potential gravity dual of the real-time dissipative SYK model: a double-trumpet configuration in a near-de Sitter space in two dimensions with matter. This configuration, which we term a Keldysh wormhole, is responsible for a finite decay rate even in the absence of coupling to the environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01695v3-abstract-full').style.display = 'none'; document.getElementById('2210.01695v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 9 figures. v2: added comments to explain a possible connection with dS$_2$ and improved the finite-$N$ calculations and their interpretation. v3: minor corrections, references added, version as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 106006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04776">arXiv:2209.04776</a> <span> [<a href="https://arxiv.org/pdf/2209.04776">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115114">10.1103/PhysRevB.106.115114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation-corrected band topology and topological surface states in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaobo Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tianye Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04776v1-abstract-short" style="display: inline;"> Iron-based superconductors offer an ideal platform for studying topological superconductivity and Majorana fermions. In this paper, we carry out a comprehensive study of the band topology and topological surface states of a number of iron-based superconductors using a combination of density functional theory (DFT) and dynamical mean field theory. We find that the strong electronic correlation of F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04776v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04776v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04776v1-abstract-full" style="display: none;"> Iron-based superconductors offer an ideal platform for studying topological superconductivity and Majorana fermions. In this paper, we carry out a comprehensive study of the band topology and topological surface states of a number of iron-based superconductors using a combination of density functional theory (DFT) and dynamical mean field theory. We find that the strong electronic correlation of Fe 3d electrons plays a crucial role in determining the band topology and topological surface states of iron-based superconductors. Electronic correlation not only strongly renormalizes the bandwidth of Fe 3d electrons, but also shifts the band positions of both Fe 3d and As/Se p electrons. As a result, electronic correlation moves the DFT-calculated topological surface states of many iron-based superconductors much closer to the Fermi level, which is crucial for realizing topological superconducting surface states and observing Majorana zero modes as well as achieving practical applications, such as quantum computation. More importantly, electronic correlation can change the band topology and make some iron-based superconductors topologically nontrivial with topological surface states whereas they have trivial band topology and no topological surface states in DFT calculations. Our paper demonstrates that it is important to take into account electronic correlation effects in order to accurately determine the band topology and topological surface states of iron-based superconductors and other strongly correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04776v1-abstract-full').style.display = 'none'; document.getElementById('2209.04776v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03654">arXiv:2207.03654</a> <span> [<a href="https://arxiv.org/pdf/2207.03654">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Special spin behavior of rare earth ions at the A site of polycrystalline ErFe1-xCrxO3 (x = 0.1, 0.9) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shen%2C+J">Jiyu Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+J">Jiajun Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zeyi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zhongjin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chenying Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+K">Kaiyang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pinglu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Min Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+Y">Yanfang Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03654v1-abstract-short" style="display: inline;"> Thermally induced spin control is one of the main directions for future spin devices. In this study, we synthesized single-phase polycrystalline ErFe1-xCrxO3 and combined the magnetization curves and M枚ssbauer spectra to determine the macroscopic magnetism at room temperature. The magnetization of the system at various temperatures is well simulated by molecular field theory. And it is found that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03654v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03654v1-abstract-full" style="display: none;"> Thermally induced spin control is one of the main directions for future spin devices. In this study, we synthesized single-phase polycrystalline ErFe1-xCrxO3 and combined the magnetization curves and M枚ssbauer spectra to determine the macroscopic magnetism at room temperature. The magnetization of the system at various temperatures is well simulated by molecular field theory. And it is found that under the DM interaction, not only the B-site ions undergo a reorientation process, but the spins of the A-site ions also change at the same time. The effective spin is defined as the projection of Er3+ on the Fe3+/Cr3+ spin plane, and the whole reorientation process is obtained by fitting. This study will complement the actual process of ErFe1-xCrxO3 spin reorientation and will lay a theoretical foundation for the fabrication of future spin-controlled devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03654v1-abstract-full').style.display = 'none'; document.getElementById('2207.03654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.13926">arXiv:2206.13926</a> <span> [<a href="https://arxiv.org/pdf/2206.13926">pdf</a>, <a href="https://arxiv.org/format/2206.13926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Floquet-Anderson Insulator with Quasiperiodic Temporal Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P+P">Peng Peng Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Timms%2C+C+I">Christopher I. Timms</a>, <a href="/search/cond-mat?searchtype=author&query=Kolodrubetz%2C+M+H">Michael H. Kolodrubetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.13926v2-abstract-short" style="display: inline;"> Time-periodic (Floquet) drive can give rise to novel symmetry breaking and topological phases of matter. Recently, we showed that a quintessential Floquet topological phase known as the anomalous Floquet-Anderson insulator is stable to noise on the timing of its Floquet drive. Here, we perturb the anomalous Floquet-Anderson insulator at a single incommensurate frequency, resulting in a quasiperiod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13926v2-abstract-full').style.display = 'inline'; document.getElementById('2206.13926v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.13926v2-abstract-full" style="display: none;"> Time-periodic (Floquet) drive can give rise to novel symmetry breaking and topological phases of matter. Recently, we showed that a quintessential Floquet topological phase known as the anomalous Floquet-Anderson insulator is stable to noise on the timing of its Floquet drive. Here, we perturb the anomalous Floquet-Anderson insulator at a single incommensurate frequency, resulting in a quasiperiodic 2-tone drive. Our numerics indicate that a robust topological phase survives at weak noise with topological pumping that is more stable than the case of white noise. Within the topological phase, we show that particles move subdiffusively, which is directly responsible for stabilizing topological transport. Surprisingly, we discover that when quasiperiodic noise is sufficiently strong to kill topology, the system appears to exhibit diffusive dynamics, suggesting that the correlated structure of the quasiperiodic noise becomes irrelevant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13926v2-abstract-full').style.display = 'none'; document.getElementById('2206.13926v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08558">arXiv:2204.08558</a> <span> [<a href="https://arxiv.org/pdf/2204.08558">pdf</a>, <a href="https://arxiv.org/format/2204.08558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.046008">10.1103/PhysRevD.106.046008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Euclidean-to-Lorentzian wormhole transition and gravitational symmetry breaking in the Sachdev-Ye-Kitaev model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garc%C3%ADa-Garc%C3%ADa%2C+A+M">Antonio M. Garc铆a-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&query=Godet%2C+V">Victor Godet</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+C">Can Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+J+P">Jie Ping Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08558v2-abstract-short" style="display: inline;"> We study a two-site Sachdev-Ye-Kitaev model with complex couplings and a weak inter-site interaction. At low temperatures, the system is dual to a Euclidean wormhole in Jackiw-Teitelboim gravity plus matter. Interestingly, the energy spectrum becomes real for sufficiently strong inter-site coupling despite the Hamiltonian being non-Hermitian. In gravity, this complex-to-real transition corresponds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08558v2-abstract-full').style.display = 'inline'; document.getElementById('2204.08558v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08558v2-abstract-full" style="display: none;"> We study a two-site Sachdev-Ye-Kitaev model with complex couplings and a weak inter-site interaction. At low temperatures, the system is dual to a Euclidean wormhole in Jackiw-Teitelboim gravity plus matter. Interestingly, the energy spectrum becomes real for sufficiently strong inter-site coupling despite the Hamiltonian being non-Hermitian. In gravity, this complex-to-real transition corresponds to a Euclidean-to-Lorentzian transition: a dynamical restoration of the gravitational SL(2,R) symmetry of the Lorentzian wormhole, broken to U(1) in the Euclidean wormhole. We show this by identifying an order parameter for the symmetry breaking and by matching the oscillating patterns of the Green's functions. Above the transition, the system can be continued to Lorentzian signature and is dual to an eternal traversable wormhole. Additionally, we observe a thermal phase transition from the wormhole to two black holes and provide a detailed matching of the associated physical quantities. The analysis of level statistics reveals that in a broad range of parameters the dynamics is quantum chaotic in the universality class of systems with time reversal invariance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08558v2-abstract-full').style.display = 'none'; document.getElementById('2204.08558v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, v2: published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06811">arXiv:2204.06811</a> <span> [<a href="https://arxiv.org/pdf/2204.06811">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165127">10.1103/PhysRevB.105.165127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and magnetism of the Hund insulator CrI3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tianye Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Huican Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaobo Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06811v1-abstract-short" style="display: inline;"> CrI3 is a two-dimensional ferromagnetic van der Waals material with a charge gap of 1.1-1.2 eV. In this study, the electronic structure and magnetism of CrI3 are investigated by using density functional theory and dynamical mean-field theory. Our calculations successfully reproduce a charge gap of 1.1 eV in the paramagnetic state when a Hund coupling JH = 0.7 eV is included with an on-site Hubbard… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06811v1-abstract-full').style.display = 'inline'; document.getElementById('2204.06811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06811v1-abstract-full" style="display: none;"> CrI3 is a two-dimensional ferromagnetic van der Waals material with a charge gap of 1.1-1.2 eV. In this study, the electronic structure and magnetism of CrI3 are investigated by using density functional theory and dynamical mean-field theory. Our calculations successfully reproduce a charge gap of 1.1 eV in the paramagnetic state when a Hund coupling JH = 0.7 eV is included with an on-site Hubbard U = 5 eV. In contrast, with a large U value of 8 eV and negligible Hund coupling JH, CrI3 is predicted to be a moderately correlated metal in the paramagnetic state. We conclude that CrI3 is a Mott-Hund insulator due to the half-filled configuration of the Cr 3d t2g orbitals. The Cr 3d eg orbitals are occupied by approximately one electron, which leads to strong valence fluctuations so that the Cr 3d orbitals cannot be described by a single state. Moreover, at finite temperature, the calculated ordered static magnetic moment in the ferromagnetic state is significantly larger in the R3 phase than in the C2/m phase. This observation indicates that the structural phase transition from the C2/m phase to the R3 phase with decreasing temperature is driven by ferromagnetic spin fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06811v1-abstract-full').style.display = 'none'; document.getElementById('2204.06811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10178">arXiv:2201.10178</a> <span> [<a href="https://arxiv.org/pdf/2201.10178">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.014517">10.1103/PhysRevB.105.014517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation-enhanced electron-phonon coupling and superconductivity in (Ba,K)SbO$_3$ superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaobo Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tianye Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10178v1-abstract-short" style="display: inline;"> The electronic structure, lattice dynamics, and electron-phonon coupling (EPC) of the newly discovered (Ba,K)SbO$_3$ superconductors are investigated by first-principles calculations. The EPC of (Ba,K)SbO$_3$ is significantly enhanced by considering non-local electronic correlation using the Heyd-Scuseria-Ernzerhof hybrid exchange-correlation functional (HSE06). The EPC strength 位 of Ba$_{0.35}$K… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10178v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10178v1-abstract-full" style="display: none;"> The electronic structure, lattice dynamics, and electron-phonon coupling (EPC) of the newly discovered (Ba,K)SbO$_3$ superconductors are investigated by first-principles calculations. The EPC of (Ba,K)SbO$_3$ is significantly enhanced by considering non-local electronic correlation using the Heyd-Scuseria-Ernzerhof hybrid exchange-correlation functional (HSE06). The EPC strength 位 of Ba$_{0.35}$K$_{0.65}$SbO$_3$ is strongly increased from 0.33 in local-density approximation calculations to 0.59 in HSE06 calculations, resulting in a superconducting transition temperature Tc of about 14.9 K, which is in excellent agreement with experimental value of ~ 15 K. Our findings suggest (Ba,K)SbO$_3$ are extraordinary conventional superconductors, where non-local electronic correlation expands the bandwidth, enhances the EPC, and boosts the Tc. Moreover, we find both 位 and Tc depend crucially on the K-doping level for (Ba,K)SbO$_3$ and (Ba,K)SbO$_3$ compounds. (Ba,K)SbO$_3$ have stronger EPC strength and higher Tc than those of (Ba,K)SbO$_3$ at the same K-doping level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10178v1-abstract-full').style.display = 'none'; document.getElementById('2201.10178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07750">arXiv:2201.07750</a> <span> [<a href="https://arxiv.org/pdf/2201.07750">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.035138">10.1103/PhysRevB.105.035138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ta2NiSe5: a candidate topological excitonic insulator with multiple band inversions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaobo Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+H">Huican Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tianye Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07750v1-abstract-short" style="display: inline;"> The electronic structures and topological properties of the orthorhombic and monoclinic phases of the quasi-one-dimensional excitonic insulator Ta2NiSe5 are investigated based on density functional theory. In contrast to a single parity or band inversion across the Fermi level in many topological insulators studied previously, there are multiple parity and band inversions with or without spin-orbi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07750v1-abstract-full').style.display = 'inline'; document.getElementById('2201.07750v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07750v1-abstract-full" style="display: none;"> The electronic structures and topological properties of the orthorhombic and monoclinic phases of the quasi-one-dimensional excitonic insulator Ta2NiSe5 are investigated based on density functional theory. In contrast to a single parity or band inversion across the Fermi level in many topological insulators studied previously, there are multiple parity and band inversions with or without spin-orbit coupling in both phases of Ta2NiSe5, resulting in more complex and topologically nontrivial electronic structures. The Dirac cone type surface states of the low-temperature monoclinic phase are also obtained. In this paper, we demonstrate that Ta2NiSe5 is a promising candidate as a three-dimensional topological excitonic insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07750v1-abstract-full').style.display = 'none'; document.getElementById('2201.07750v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.15288">arXiv:2112.15288</a> <span> [<a href="https://arxiv.org/pdf/2112.15288">pdf</a>, <a href="https://arxiv.org/ps/2112.15288">ps</a>, <a href="https://arxiv.org/format/2112.15288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac422c">10.1088/1674-1056/ac422c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tri-Hexagonal charge order in kagome metal CsV$_{3}$Sb$_{5}$ revealed by $^{121}$Sb NQR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mu%2C+C">Chao Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Q">Qiangwei Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+Z">Zhijun Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chunsheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Ping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zheng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.15288v1-abstract-short" style="display: inline;"> We report $^{121}$Sb nuclear quadrupole resonance (NQR) measurements on kagome superconductor CsV$_3$Sb$_5$ with $T_{\rm c}=2.5$ K. $^{121}$Sb NQR spectra split after a charge density wave (CDW) transition at $94$ K, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first order phase transit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15288v1-abstract-full').style.display = 'inline'; document.getElementById('2112.15288v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.15288v1-abstract-full" style="display: none;"> We report $^{121}$Sb nuclear quadrupole resonance (NQR) measurements on kagome superconductor CsV$_3$Sb$_5$ with $T_{\rm c}=2.5$ K. $^{121}$Sb NQR spectra split after a charge density wave (CDW) transition at $94$ K, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first order phase transition. The CDW order exhibits Tri-Hexagonal deformation with a lateral shift between the adjacent kagome layers, which is consistent with $2 \times 2 \times 2$ superlattice modulation. The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15288v1-abstract-full').style.display = 'none'; document.getElementById('2112.15288v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 31, 017105 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10687">arXiv:2112.10687</a> <span> [<a href="https://arxiv.org/pdf/2112.10687">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D1CP05518F">10.1039/D1CP05518F <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Computational design of a new layered superconductor LaOTlF2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhihong Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+J">Jingjing Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiaobo Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+T">Tianye Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10687v1-abstract-short" style="display: inline;"> A new layered compound LaOTlF2 is designed and investigated using first-principles calculations in this work. The parent compound is an insulator with an indirect band gap of 2.65 eV. Electron-doping of the parent compound makes the material metallic. In the meantime, several lattice vibrational modes couple strongly to the conduction band, leading to a large electron-phonon coupling constant and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10687v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10687v1-abstract-full" style="display: none;"> A new layered compound LaOTlF2 is designed and investigated using first-principles calculations in this work. The parent compound is an insulator with an indirect band gap of 2.65 eV. Electron-doping of the parent compound makes the material metallic. In the meantime, several lattice vibrational modes couple strongly to the conduction band, leading to a large electron-phonon coupling constant and conventional superconductivity. The highest superconducting transition temperature Tc is predicted to be approximately 8.6 K with 位 about 1.25 in the optimally doped LaO0.95F0.05TlF2, where 位 is calculated using the Wannier interpolation technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10687v1-abstract-full').style.display = 'none'; document.getElementById('2112.10687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09947">arXiv:2105.09947</a> <span> [<a href="https://arxiv.org/pdf/2105.09947">pdf</a>, <a href="https://arxiv.org/format/2105.09947">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.L032043">10.1103/PhysRevResearch.4.L032043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-state properties via machine learning quantum constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pei-Lin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+S">Si-Jing Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09947v3-abstract-short" style="display: inline;"> Ground-state properties are central to our understanding of quantum many-body systems. At first glance, it seems natural and essential to obtain the ground state before analyzing its properties; however, its exponentially large Hilbert space has made such studies costly, if not prohibitive, on sufficiently large system sizes. Here, we propose an alternative strategy based upon the expectation valu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09947v3-abstract-full').style.display = 'inline'; document.getElementById('2105.09947v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09947v3-abstract-full" style="display: none;"> Ground-state properties are central to our understanding of quantum many-body systems. At first glance, it seems natural and essential to obtain the ground state before analyzing its properties; however, its exponentially large Hilbert space has made such studies costly, if not prohibitive, on sufficiently large system sizes. Here, we propose an alternative strategy based upon the expectation values of an ensemble of operators and the elusive yet vital quantum constraints between them, where the search for ground-state properties simply equates to classical constrained minimization. These quantum constraints are generally obtainable via sampling and then machine learning on a large number of systematically consistent quantum many-body states. We showcase our perspective on 1D fermion chains and spin chains for applicability, effectiveness, caveats, and unique advantages, especially for strongly correlated systems, thermodynamic-limit systems, property designs, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09947v3-abstract-full').style.display = 'none'; document.getElementById('2105.09947v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, L032043 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02432">arXiv:2101.02432</a> <span> [<a href="https://arxiv.org/pdf/2101.02432">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1591/abc4b3">10.1088/2053-1591/abc4b3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in Scandium Borocarbide with orbital hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J+H">J. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z+H">Z. H. Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z+Y">Z. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H+X">H. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">C. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">K. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+T">T. Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02432v1-abstract-short" style="display: inline;"> Exploration of superconductivity in light element compounds has drawn considerable attention because those materials can easily realize the high $T_{c}$ superconductivity, such as ${\mathrm{LnNi}}_{2}{\mathrm{B}_{2}}{\mathrm{C}}$ ($T_{c}$ =17 K), ${\mathrm{Mg}}{\mathrm{B}}_{2}$ ($T_{c}$ =39 K), and very recently super-hydrides under pressure ($T_{c}$ =250 K). Here we report the discovery of bulk s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02432v1-abstract-full').style.display = 'inline'; document.getElementById('2101.02432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02432v1-abstract-full" style="display: none;"> Exploration of superconductivity in light element compounds has drawn considerable attention because those materials can easily realize the high $T_{c}$ superconductivity, such as ${\mathrm{LnNi}}_{2}{\mathrm{B}_{2}}{\mathrm{C}}$ ($T_{c}$ =17 K), ${\mathrm{Mg}}{\mathrm{B}}_{2}$ ($T_{c}$ =39 K), and very recently super-hydrides under pressure ($T_{c}$ =250 K). Here we report the discovery of bulk superconductivity at 7.8 K in scandium borocarbide ${\mathrm{Sc}}_{20}{\mathrm{B}}{\mathrm{C}}_{27}$ with a tetragonal lattice which structure changes based on the compound of ${\mathrm{Sc}}_{3}{\mathrm{C}}_{4}$ with very little B doping. Magnetization and specific heat measurements show bulk superconductivity. An upper critical field of Hc2(0) ~ 8 T is determined. Low temperature specific-heat shows that this system is a BCS fully gapped s-wave superconductor. Electronic structure calculations demonstrate that compared with ${\mathrm{Sc}}_{3}{\mathrm{C}}_{4}$ there are more orbital overlap and hybridization between Sc 3d electrons and 2p electrons of C-C(B)-C fragment in ${\mathrm{Sc}}_{20}{\mathrm{B}}{\mathrm{C}}_{27}$, which form a new electric conduction path of Sc-C(B)-Sc. Those changes influence the band structure at the Fermi level and may be the reason of superconductivity in ${\mathrm{Sc}}_{20}{\mathrm{B}}{\mathrm{C}}_{27}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02432v1-abstract-full').style.display = 'none'; document.getElementById('2101.02432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mater. Res. Express 7 (2020) 116001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00039">arXiv:2008.00039</a> <span> [<a href="https://arxiv.org/pdf/2008.00039">pdf</a>, <a href="https://arxiv.org/format/2008.00039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.106023">10.1103/PhysRevD.103.106023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram of a two-site coupled complex Sachdev-Ye-Kitaev model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garc%C3%ADa-Garc%C3%ADa%2C+A+M">Antonio M. Garc铆a-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+J+P">Jie Ping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Ziogas%2C+V">Vaios Ziogas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00039v1-abstract-short" style="display: inline;"> We study the thermodynamic properties of a two-site coupled complex Sachdev-Ye-Kitaev (SYK) model in the large $N$ limit by solving the saddle-point Schwinger-Dyson (SD) equations. We find that its phase diagram is richer than in the Majorana case. In the grand canonical ensemble, we identify a region of small chemical potential, and weak coupling between the two SYKs, for which two first order th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2008.00039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00039v1-abstract-full" style="display: none;"> We study the thermodynamic properties of a two-site coupled complex Sachdev-Ye-Kitaev (SYK) model in the large $N$ limit by solving the saddle-point Schwinger-Dyson (SD) equations. We find that its phase diagram is richer than in the Majorana case. In the grand canonical ensemble, we identify a region of small chemical potential, and weak coupling between the two SYKs, for which two first order thermodynamic phase transitions occur as a function of temperature. First, we observe a transition from a cold wormhole phase to an intermediate phase that may correspond to a charged wormhole. For a higher temperature, there is another first order transition to the black hole phase. As in the Majorana case, the low temperature wormhole phase is gapped and, for sufficiently large coupling between the two complex SYK, or chemical potential, the first order transitions become crossovers. The total charge is good indicator to study the phase diagram of the model: it is zero in the cold wormhole phase and jumps discontinuously at the temperatures at which the transitions take place. Based on the approximate conformal symmetry of the ground state, expected to be close to a thermofield double state, we identify the effective low energy action of the model. It is a generalized Schwarzian action with $SL(2,R)\times U(1)$ symmetry with an additional potential and a extra degree of freedom related to the charge. In the large $N$ limit, results from this low energy action are consistent with those from the solution of the SD equations. Our findings are a preliminary step towards the characterization of traversable wormholes by its field theory dual, a strongly interacting fermionic system with charger, that is easier to model experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00039v1-abstract-full').style.display = 'none'; document.getElementById('2008.00039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 106023 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04743">arXiv:2004.04743</a> <span> [<a href="https://arxiv.org/pdf/2004.04743">pdf</a>, <a href="https://arxiv.org/format/2004.04743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.170501">10.1103/PhysRevLett.125.170501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Quantum Compiling with Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yuan-Hang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pei-Lin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+D">Dong-Ling Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04743v2-abstract-short" style="display: inline;"> Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04743v2-abstract-full').style.display = 'inline'; document.getElementById('2004.04743v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04743v2-abstract-full" style="display: none;"> Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate sequences with given accuracy and is generally applicable to various scenarios, independent of the hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04743v2-abstract-full').style.display = 'none'; document.getElementById('2004.04743v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures; Supplementary Material: 4 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 170501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12614">arXiv:1912.12614</a> <span> [<a href="https://arxiv.org/pdf/1912.12614">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Emergence of superconductivity in strongly correlated hole-dominated Fe1-xSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ni%2C+S+L">S. L. Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J+P">J. P. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S+B">S. B. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+J">J. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+L">Li Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+M+W">M. W. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+L">L. Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+P+P">P. P. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+D+E">D. E. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G+B">G. B. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J+L">J. L. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G+M">G. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+K">K. Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J+-">J. -G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">F. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X+L">X. L. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z+X">Z. X. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12614v1-abstract-short" style="display: inline;"> Here we establish a more complete phase diagram for FeSe system, based on experimental results of nonstoichiometric Fe1-xSe single crystals that we have developed recently, as well as nearly stoichiometric FeSe single crystals. The electronic correlation is found to be strongly enhanced in hole-dominated Fe1-xSe, as compared with electron-dominated FeSe, from the magnetic susceptibility and electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12614v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12614v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12614v1-abstract-full" style="display: none;"> Here we establish a more complete phase diagram for FeSe system, based on experimental results of nonstoichiometric Fe1-xSe single crystals that we have developed recently, as well as nearly stoichiometric FeSe single crystals. The electronic correlation is found to be strongly enhanced in hole-dominated Fe1-xSe, as compared with electron-dominated FeSe, from the magnetic susceptibility and electrical transport measurements in the normal state. A superconducting dome is found to emerge starting from the strongly correlated hole-dominated regime with electron doping, while the tetragonal-orthorhombic phase transition at ~90 K is observed only at higher electron-doping levels in the electron-dominated regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12614v1-abstract-full').style.display = 'none'; document.getElementById('1912.12614v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures. First submitted on May 24, 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.00684">arXiv:1909.00684</a> <span> [<a href="https://arxiv.org/pdf/1909.00684">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Shear-wave manipulation by embedded soft devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Linli Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pingping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+Z">Zheng Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.00684v1-abstract-short" style="display: inline;"> Hyperelastic transformation theory has proven shear-wave manipulation devices with various functions can be designed by utilizing neo-Hookean material with appropriate pre-deformation. However, it is still elusive that how can such devices match with the background medium in which they embedded. In this work, we present a systematic formulation of the transmission and reflection of elastic waves a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00684v1-abstract-full').style.display = 'inline'; document.getElementById('1909.00684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.00684v1-abstract-full" style="display: none;"> Hyperelastic transformation theory has proven shear-wave manipulation devices with various functions can be designed by utilizing neo-Hookean material with appropriate pre-deformation. However, it is still elusive that how can such devices match with the background medium in which they embedded. In this work, we present a systematic formulation of the transmission and reflection of elastic waves at the interface between un-deformed and pre-deformed hyperelastic materials. With the combination of theoretical analyses and numerical simulations, we specifically investigate the shear-wave propagation from an un-deformed neo-Hookean material to the one subject to different homogeneous deformations. Among three typical deformation modes, we found "constrained" uniaxial tension and simple shear guarantee total transmission, whereas "ordinary" uniaxial tension and hydrostatic compression cause wave reflection. On this basis, three embedded shear-wave manipulation devices, including a unidirectional cloak, a splicable beam bend, and a concave lens, are proposed and verified through numerical simulations. This work may pave the way for the design and realization of soft-matter-based wave control devices. Potential applications can be anticipated in nondestructive testing, structure impact protection, biomedical imaging, and soft robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00684v1-abstract-full').style.display = 'none'; document.getElementById('1909.00684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01495">arXiv:1901.01495</a> <span> [<a href="https://arxiv.org/pdf/1901.01495">pdf</a>, <a href="https://arxiv.org/ps/1901.01495">ps</a>, <a href="https://arxiv.org/format/1901.01495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.100.012131">10.1103/PhysRevE.100.012131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The template-specific fidelity of DNA replication with high-order neighbor effects: a first-passage approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiu-Shi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pei-Dong Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shu%2C+Y">Yao-Gen Shu</a>, <a href="/search/cond-mat?searchtype=author&query=Ou-Yang%2C+Z">Zhong-Can Ou-Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Ming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01495v2-abstract-short" style="display: inline;"> DNA replication fidelity is a critical issue in molecular biology. Biochemical experiments have provided key insights on the mechanism of fidelity control by DNAP in the past decades, whereas systematic theoretical studies on this issue began only recently. Because of the underlying difficulties of mathematical treatment, comprehensive surveys on the template-specific replication kinetics are stil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01495v2-abstract-full').style.display = 'inline'; document.getElementById('1901.01495v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01495v2-abstract-full" style="display: none;"> DNA replication fidelity is a critical issue in molecular biology. Biochemical experiments have provided key insights on the mechanism of fidelity control by DNAP in the past decades, whereas systematic theoretical studies on this issue began only recently. Because of the underlying difficulties of mathematical treatment, comprehensive surveys on the template-specific replication kinetics are still rare. Here we proposed a first-passage approach to address this problem, in particular the positional fidelity, for complicated processes with high-order neighbor effects. Under biologically-relevant conditions, we derived approximate analytical expressions of the positional fidelity which shows intuitively how some key kinetic pathways are coordinated to guarantee the high fidelity, as well as the high velocity, of the replication processes. It was also shown that the fidelity at any template position is dominantly determined by the nearest-neighbor template sequences, which is consistent with the idea that replication mutations are randomly distributed in the genome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01495v2-abstract-full').style.display = 'none'; document.getElementById('1901.01495v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 100, 012131 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08007">arXiv:1803.08007</a> <span> [<a href="https://arxiv.org/pdf/1803.08007">pdf</a>, <a href="https://arxiv.org/format/1803.08007">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b04731">10.1021/acs.nanolett.8b04731 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Landau levels of strongly interacting massive Dirac electrons in layer-polarized MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+J">Jiangxiazi Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+T">Tianyi Han</a>, <a href="/search/cond-mat?searchtype=author&query=Piot%2C+B+A">Benjamin A. Piot</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shuigang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Long%2C+G">Gen Long</a>, <a href="/search/cond-mat?searchtype=author&query=An%2C+L">Liheng An</a>, <a href="/search/cond-mat?searchtype=author&query=Cheung%2C+P+K+M">Patrick Ka Man Cheung</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Peng-Peng Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Plochocka%2C+P">Paulina Plochocka</a>, <a href="/search/cond-mat?searchtype=author&query=Maude%2C+D+K">Duncan K. Maude</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08007v1-abstract-short" style="display: inline;"> Monolayer transition metal dichalcogenides are recently emerged 2D electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effects, Ising superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Although recent hole transport measurements in WSe$_2$ indicate strong i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08007v1-abstract-full').style.display = 'inline'; document.getElementById('1803.08007v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08007v1-abstract-full" style="display: none;"> Monolayer transition metal dichalcogenides are recently emerged 2D electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effects, Ising superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Although recent hole transport measurements in WSe$_2$ indicate strong interactions in the valence bands, many-body interaction effects, particularly in the conduction bands, remain elusive to date. Here, for the first time, we perform transport measurements up to a magnetic field of $29$T to study the massive Dirac electron Landau levels (LL) in layer-polarized MoS$_2$ samples with mobilities of $22000$cm$^2$/(V$\cdot$s) at $1.5$K and densities of $\sim10^{12}$cm$^{-2}$. With decreasing the density, we observe LL crossing induced valley ferrimagnet-to-ferromagnet transitions, as a result of the interaction enhancement of the g-factor from $5.64$ to $21.82$. Near integer ratios of Zeeman-to-cyclotron energies, we discover LL anticrossings due to the formation of quantum Hall Ising ferromagnets, the valley polarizations of which appear to be reversible by tuning the density or an in-plane magnetic field. Our results provide compelling evidence for many-body interaction effects in the conduction bands of monolayer MoS$_2$ and establish a fertile ground for exploring strongly correlated phenomena of massive Dirac electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08007v1-abstract-full').style.display = 'none'; document.getElementById('1803.08007v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.07556">arXiv:1701.07556</a> <span> [<a href="https://arxiv.org/pdf/1701.07556">pdf</a>, <a href="https://arxiv.org/ps/1701.07556">ps</a>, <a href="https://arxiv.org/format/1701.07556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa7023">10.1088/1361-648X/aa7023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles calculations of the magnetic and electronic structures of MnP under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Min Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Ping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiangrong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jin-guang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Wenhui Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi-feng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.07556v2-abstract-short" style="display: inline;"> Manganese monophosphide (MnP) shows complicated magnetic states varying with both temperature and pressure. We calculate the magnetic and electronic structures of MnP at different pressures using first-principles methods and obtain spiral ground states whose propagation vector changes from the c-axis at low pressure to the b-axis at high pressure. In between, we find a ferromagnetic state, as obse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07556v2-abstract-full').style.display = 'inline'; document.getElementById('1701.07556v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.07556v2-abstract-full" style="display: none;"> Manganese monophosphide (MnP) shows complicated magnetic states varying with both temperature and pressure. We calculate the magnetic and electronic structures of MnP at different pressures using first-principles methods and obtain spiral ground states whose propagation vector changes from the c-axis at low pressure to the b-axis at high pressure. In between, we find a ferromagnetic state, as observed in the experimental phase diagram. The propagation vector of the spiral states is found to vary nonmonotonically with pressure, consistent with neutron measurements. Our results indicate that the complicated magnetic phase diagram originates from a delicate competition between neighboring exchange interactions between the Mn-ions. At all pressures, the electronic structures indicate the existence of quasi-one-dimensional charge carriers, which appear in the ferromagnetic state and become gapped in the spiral state, and anisotropic three-dimensional charge carriers. We argue that this two-fluid behavior originates from the special crystal structure of MnP and may be relevant for understanding the pairing mechanism of the superconductivity at the border of the high pressure spiral phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07556v2-abstract-full').style.display = 'none'; document.getElementById('1701.07556v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 29 (2017) 244001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02347">arXiv:1610.02347</a> <span> [<a href="https://arxiv.org/pdf/1610.02347">pdf</a>, <a href="https://arxiv.org/ps/1610.02347">ps</a>, <a href="https://arxiv.org/format/1610.02347">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.065301">10.1103/PhysRevLett.118.065301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical Velocity in the Presence of Surface Bound States in Superfluid $^3$He-B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W+G">W. G. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Barquist%2C+C+S">C. S. Barquist</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+H+B">H. B. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02347v2-abstract-short" style="display: inline;"> A microelectromechanical oscillator with a gap of 1.25 $渭$m was immersed in superfluid $^3$He-B and cooled below 250 $渭$K at various pressures. Mechanical resonances of its shear motion were measured at various levels of driving force. The oscillator enters into a nonlinear regime above a certain threshold velocity. The damping increases rapidly in the nonlinear region and eventually prevents the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02347v2-abstract-full').style.display = 'inline'; document.getElementById('1610.02347v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02347v2-abstract-full" style="display: none;"> A microelectromechanical oscillator with a gap of 1.25 $渭$m was immersed in superfluid $^3$He-B and cooled below 250 $渭$K at various pressures. Mechanical resonances of its shear motion were measured at various levels of driving force. The oscillator enters into a nonlinear regime above a certain threshold velocity. The damping increases rapidly in the nonlinear region and eventually prevents the velocity of the oscillator from increasing beyond the critical velocity which is much lower than the Landau critical velocity. We propose that this peculiar nonlinear behavior stems from the escape of quasiparticles from the surface bound states into the bulk fluid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02347v2-abstract-full').style.display = 'none'; document.getElementById('1610.02347v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 065301 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02853">arXiv:1607.02853</a> <span> [<a href="https://arxiv.org/pdf/1607.02853">pdf</a>, <a href="https://arxiv.org/ps/1607.02853">ps</a>, <a href="https://arxiv.org/format/1607.02853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-14648-7">10.1038/s41598-017-14648-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital-dependent charge dynamics in MnP revealed by optical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y+J">Y. J. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+J+L">J. L. Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+F+K">F. K. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">P. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi-feng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02853v2-abstract-short" style="display: inline;"> Unconventional superconductivity often emerges at the border of long-range magnetic orders. Understanding the low-energy charge dynamics may provide crucial information on the formation of superconductivity. Here we report the unpolarized/polarized optical conductivity study of high quality MnP single crystals at ambient pressure. Our data reveal two types of charge carriers with very different li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02853v2-abstract-full').style.display = 'inline'; document.getElementById('1607.02853v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02853v2-abstract-full" style="display: none;"> Unconventional superconductivity often emerges at the border of long-range magnetic orders. Understanding the low-energy charge dynamics may provide crucial information on the formation of superconductivity. Here we report the unpolarized/polarized optical conductivity study of high quality MnP single crystals at ambient pressure. Our data reveal two types of charge carriers with very different lifetimes. In combination with the first-principles calculations, we show that the short-lifetime carriers have flat Fermi sheets which become gapped in the helimagnetic phase, causing a dramatic change in the low-frequency optical spectra, while the long-lifetime carriers are anisotropic three-dimensional like which are little affected by the magnetic transitions and provide major contributions to the transport properties. This orbital-dependent charge dynamics originates from the special crystal structure of MnP and may have an influence on the unconventional superconductivity and its interplay with helimagnetism at high pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02853v2-abstract-full').style.display = 'none'; document.getElementById('1607.02853v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 14178 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04483">arXiv:1606.04483</a> <span> [<a href="https://arxiv.org/pdf/1606.04483">pdf</a>, <a href="https://arxiv.org/ps/1606.04483">ps</a>, <a href="https://arxiv.org/format/1606.04483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.195301">10.1103/PhysRevLett.117.195301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Damping of a Micro-electro-mechanical Oscillator in Superfluid $^3$He-B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W+G">W. G. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Barquist%2C+C+S">C. S. Barquist</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+H+B">H. B. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04483v2-abstract-short" style="display: inline;"> The mechanical resonance properties of a micro-electro-mechanical oscillator with a gap of 1.25 $渭$m was studied in superfluid $^3$He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the oscillator velocity. The quality factor of the oscillator remains low ($Q\approx 80$) down to 0.1 $T_c$, 4 orders of magnitude less tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04483v2-abstract-full').style.display = 'inline'; document.getElementById('1606.04483v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04483v2-abstract-full" style="display: none;"> The mechanical resonance properties of a micro-electro-mechanical oscillator with a gap of 1.25 $渭$m was studied in superfluid $^3$He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the oscillator velocity. The quality factor of the oscillator remains low ($Q\approx 80$) down to 0.1 $T_c$, 4 orders of magnitude less than the intrinsic quality factor measured in vacuum at 4 K. In addition to the Boltzmann temperature dependent contribution to the damping, a damping proportional to temperature was found to dominate at low temperatures. We propose a multiple scattering mechanism of the surface Andreev bound states to be a possible cause for the anomalous damping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04483v2-abstract-full').style.display = 'none'; document.getElementById('1606.04483v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 195301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.08554">arXiv:1604.08554</a> <span> [<a href="https://arxiv.org/pdf/1604.08554">pdf</a>, <a href="https://arxiv.org/ps/1604.08554">ps</a>, <a href="https://arxiv.org/format/1604.08554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.014505">10.1103/PhysRevB.94.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature Dependence of Viscosity in Normal Fluid $^3$He Below 800mK Determined by a Micro-electro-mechanical Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gonzalez%2C+M">M. Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+W+G">W. G. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Barquist%2C+C+S">C. S. Barquist</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+H+B">H. B. Chan</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.08554v1-abstract-short" style="display: inline;"> A micro-electro-mechanical system vibrating in its shear mode was used to study the viscosity of normal liquid $^3$He from 20mK to 770mK at 3bar, 21bar, and 29bar. The damping coefficient of the oscillator was determined by frequency sweeps through its resonance at each temperature. Using a slide film damping model, the viscosity of the fluid was obtained. Our viscosity values are compared with pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08554v1-abstract-full').style.display = 'inline'; document.getElementById('1604.08554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.08554v1-abstract-full" style="display: none;"> A micro-electro-mechanical system vibrating in its shear mode was used to study the viscosity of normal liquid $^3$He from 20mK to 770mK at 3bar, 21bar, and 29bar. The damping coefficient of the oscillator was determined by frequency sweeps through its resonance at each temperature. Using a slide film damping model, the viscosity of the fluid was obtained. Our viscosity values are compared with previous measurements and with calculated values from Fermi liquid theory. The crossover from the classical to the Fermi liquid regime is manifest in the temperature dependence of viscosity. In the Fermi liquid regime, the temperature dependence of viscosity changes from $T^{-1}$ to $T^{-2}$ on cooling, indicating a transition from the Stokes flow to the Couette flow regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08554v1-abstract-full').style.display = 'none'; document.getElementById('1604.08554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted for publication to Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 014505 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.01544">arXiv:1503.01544</a> <span> [<a href="https://arxiv.org/pdf/1503.01544">pdf</a>, <a href="https://arxiv.org/ps/1503.01544">ps</a>, <a href="https://arxiv.org/format/1503.01544">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.125101">10.1103/PhysRevB.91.125101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical study of phase transitions in single-crystalline RuP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R+Y">R. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.01544v1-abstract-short" style="display: inline;"> RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01544v1-abstract-full').style.display = 'inline'; document.getElementById('1503.01544v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.01544v1-abstract-full" style="display: none;"> RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01544v1-abstract-full').style.display = 'none'; document.getElementById('1503.01544v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 91, 125101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04688">arXiv:1502.04688</a> <span> [<a href="https://arxiv.org/pdf/1502.04688">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.064515">10.1103/PhysRevB.92.064515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> (Li0.84Fe0.16)OHFe0.98Se superconductor: Ion-exchange synthesis of large single crystal and highly two-dimensional electron properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xiaoli Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+K">Kui Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+D">Dongna Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huaxue Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+J">Jie Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yulong Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+W">Wei Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J">Junliang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Ping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Wei Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Y">Yiyuan Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+M">Mingwei Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Guangming Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Fang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Z">Zhongxian Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04688v2-abstract-short" style="display: inline;"> A large and high-quality single crystal (Li0.84Fe0.16)OHFe0.98Se, the optimal superconductor of newly reported (Li1-xFex)OHFe1-ySe system, has been successfully synthesized via a hydrothermal ion-exchange technique. The superconducting transition temperature (Tc) of 42 K is determined by magnetic susceptibility and electric resistivity measurements, and the zero-temperature upper critical magnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04688v2-abstract-full').style.display = 'inline'; document.getElementById('1502.04688v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04688v2-abstract-full" style="display: none;"> A large and high-quality single crystal (Li0.84Fe0.16)OHFe0.98Se, the optimal superconductor of newly reported (Li1-xFex)OHFe1-ySe system, has been successfully synthesized via a hydrothermal ion-exchange technique. The superconducting transition temperature (Tc) of 42 K is determined by magnetic susceptibility and electric resistivity measurements, and the zero-temperature upper critical magnetic fields are evaluated as 79 and 313 Tesla for the field along the c-axis and the ab-plane, respectively. The ratio of out-of-plane to in-plane electric resistivity,\r{ho}c/\r{ho}ab, is found to increases with decreasing temperature and to reach a high value of 2500 at 50 K, with an evident kink occurring at a characteristic temperature T*=120 K. The negative in-plane Hall coefficient indicates that electron carriers dominate in the charge transport, and the hole contribution is significantly reduced as the temperature is lowered to approach T*. From T* down to Tc, we observe the linear temperature dependences of the in-plane electric resistivity and the magnetic susceptibility for the FeSe layers. Our findings thus reveal that the normal state of (Li0.84Fe0.16)OHFe0.98Se becomes highly two-dimensional and anomalous prior to the superconducting transition, providing a new insight into the mechanism of high-Tc superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04688v2-abstract-full').style.display = 'none'; document.getElementById('1502.04688v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, supplementary information is not uploaded</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 064515 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1616">arXiv:1411.1616</a> <span> [<a href="https://arxiv.org/pdf/1411.1616">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.075120">10.1103/PhysRevB.91.075120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo effect in a novel 5d quasi-skutterudite Yb3Os4Ge13 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C+L">C. L. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+D+S">D. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">M. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+J+Y">J. Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+Z">Z. Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y+F">Y. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1616v1-abstract-short" style="display: inline;"> We report the crystal growth of a new compound, Yb3Os4Ge13, by using a Bi-flux method. X-ray diffraction measurement shows that it crystallizes in the quasi-skutterudite-type caged structure with a cubic space group of Pm-3n (No. 223). Magnetic measurements reveal almost fully localized Yb f-moments above 120 K. The resistivity exhibits a crossover from metallic to insulating behavior with a logar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1616v1-abstract-full').style.display = 'inline'; document.getElementById('1411.1616v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1616v1-abstract-full" style="display: none;"> We report the crystal growth of a new compound, Yb3Os4Ge13, by using a Bi-flux method. X-ray diffraction measurement shows that it crystallizes in the quasi-skutterudite-type caged structure with a cubic space group of Pm-3n (No. 223). Magnetic measurements reveal almost fully localized Yb f-moments above 120 K. The resistivity exhibits a crossover from metallic to insulating behavior with a logarithmic increase below ~ 40 K. The specific heat coefficient shows a rapid upturn below ~5 K and exceeds 2 J mol-1 K-2 at 2 K. Our experimental analysis and electronic band structure calculations demonstrate that Yb3Os4Ge13 exhibits the Kondo effect due to strong hybridization of the localized Yb f-moments with the p-electrons of the surrounding Ge-cages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1616v1-abstract-full').style.display = 'none'; document.getElementById('1411.1616v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 075120 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.7148">arXiv:1406.7148</a> <span> [<a href="https://arxiv.org/pdf/1406.7148">pdf</a>, <a href="https://arxiv.org/ps/1406.7148">ps</a>, <a href="https://arxiv.org/format/1406.7148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.035115">10.1103/PhysRevB.90.035115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional charge-density wave in Sr3Ir4Sn13 cubic superconductor revealed by optical spectroscopy study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+B">X. B. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.7148v1-abstract-short" style="display: inline;"> Sr3Ir4Sn13 is an interesting compound showing a coexistence of structural phase transition and superconductivity. The structural phase transition at 147 K leads to the formation of a superlattice. We performed optical spectroscopy measurements across the structural phase transition on single crystal sample of Sr3Ir4Sn13. The optical spectroscopy study reveals an unusual temperature induced spectra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7148v1-abstract-full').style.display = 'inline'; document.getElementById('1406.7148v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.7148v1-abstract-full" style="display: none;"> Sr3Ir4Sn13 is an interesting compound showing a coexistence of structural phase transition and superconductivity. The structural phase transition at 147 K leads to the formation of a superlattice. We performed optical spectroscopy measurements across the structural phase transition on single crystal sample of Sr3Ir4Sn13. The optical spectroscopy study reveals an unusual temperature induced spectral weight transfer over broad energy scale, yielding evidence for the presence of electron correlation effect. Below the structural phase transition temperature an energy gap-like suppression in optical conductivity was observed, leading to the removal of partial itinerant carriers near Fermi level. Unexpectedly, the suppression appears at much higher energy scale than that expected for a usual charge density wave phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.7148v1-abstract-full').style.display = 'none'; document.getElementById('1406.7148v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Publication in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 035115 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.5851">arXiv:1406.5851</a> <span> [<a href="https://arxiv.org/pdf/1406.5851">pdf</a>, <a href="https://arxiv.org/ps/1406.5851">ps</a>, <a href="https://arxiv.org/format/1406.5851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.054507">10.1103/PhysRevB.90.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical spectroscopy study of Nd(O,F)BiS2 single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X+B">X. B. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+S+M">S. M. Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H+P">H. P. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+P">P. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H+M">H. M. Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.5851v1-abstract-short" style="display: inline;"> We present an optical spectroscopy study on F-substituted NdOBiS$_2$ superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5851v1-abstract-full').style.display = 'inline'; document.getElementById('1406.5851v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.5851v1-abstract-full" style="display: none;"> We present an optical spectroscopy study on F-substituted NdOBiS$_2$ superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7$\%$ of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.5851v1-abstract-full').style.display = 'none'; document.getElementById('1406.5851v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B. 90, 054507 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.7853">arXiv:1401.7853</a> <span> [<a href="https://arxiv.org/pdf/1401.7853">pdf</a>, <a href="https://arxiv.org/ps/1401.7853">ps</a>, <a href="https://arxiv.org/format/1401.7853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.155120">10.1103/PhysRevB.89.155120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing multiple density wave orders in non-superconducting titanium oxypnictide Na$_2$Ti$_2$As$_2$O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H+P">H. P. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R+Y">R. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.7853v1-abstract-short" style="display: inline;"> We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Belo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.7853v1-abstract-full').style.display = 'inline'; document.getElementById('1401.7853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.7853v1-abstract-full" style="display: none;"> We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Below 42 K, another density wave phase transition with smaller energy gap scale occurs and drives the compound into semiconducting ground state. These experiments thus enable us to shed light on the complex electronic structure in the titanium oxypnictides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.7853v1-abstract-full').style.display = 'none'; document.getElementById('1401.7853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 155120 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.5844">arXiv:1211.5844</a> <span> [<a href="https://arxiv.org/pdf/1211.5844">pdf</a>, <a href="https://arxiv.org/ps/1211.5844">ps</a>, <a href="https://arxiv.org/format/1211.5844">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.144512">10.1103/PhysRevB.87.144512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-Coupling Superconductivity in NaFe$_{1-x}$Co$_x$As: the Eliashberg Theory and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+G">Guotai Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Ping Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yanchao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiaotian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Netherton%2C+T">Tucker Netherton</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chenglin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shiliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.5844v1-abstract-short" style="display: inline;"> We study the normal-state and superconducting properties of NaFe$_{1-x}$Co$_x$As system by specific heat measurements. Both the normal-state Sommerfeld coefficient and superconducting condensation energy are strongly suppressed in the underdoped and heavily overdoped samples. The low-temperature electronic specific heat can be well fitted by either an one-gap or a two-gap BCS-type function for all… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5844v1-abstract-full').style.display = 'inline'; document.getElementById('1211.5844v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.5844v1-abstract-full" style="display: none;"> We study the normal-state and superconducting properties of NaFe$_{1-x}$Co$_x$As system by specific heat measurements. Both the normal-state Sommerfeld coefficient and superconducting condensation energy are strongly suppressed in the underdoped and heavily overdoped samples. The low-temperature electronic specific heat can be well fitted by either an one-gap or a two-gap BCS-type function for all the superconducting samples. The ratio $纬_NT_c^2/H_c^2(0)$ can nicely associate the neutron spin resonance as the bosons in the standard Eliashberg model. However, the value of $螖C/T_c纬_N$ near optimal doping is larger than the maximum value the model can obtain. Our results suggest that the high-$T_c$ superconductivity in the Fe-based superconductors may be understood within the framework of boson-exchange mechanism but significant modification may be needed to account for the finite-temperature properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.5844v1-abstract-full').style.display = 'none'; document.getElementById('1211.5844v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 144512 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.1870">arXiv:1211.1870</a> <span> [<a href="https://arxiv.org/pdf/1211.1870">pdf</a>, <a href="https://arxiv.org/ps/1211.1870">ps</a>, <a href="https://arxiv.org/format/1211.1870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.205123">10.1103/PhysRevB.86.205123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of disorder in the charge-density-wave compounds LaTe$_{1.95}$ and CeTe$_{1.95-x}$Se$_x$ (x=0 and 0.16) as revealed by optical spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.1870v1-abstract-short" style="display: inline;"> We present optical spectroscopy measurements on rare-earth ditelluride single crystals of LaTe$_{1.95}$ and CeTe$_{1.95-x}$Se$_x$ (x=0 and 0.16). The measurements reveal formation of charge density wave energy gaps at rather high energy levels, e.g. 2$螖\sim$ 8500 \cm for LaTe$_{1.95}$, and 6800 \cm for CeTe$_{1.95}$. More strikingly, the study reveals that, different from the rare-earth tri-tellur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1870v1-abstract-full').style.display = 'inline'; document.getElementById('1211.1870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.1870v1-abstract-full" style="display: none;"> We present optical spectroscopy measurements on rare-earth ditelluride single crystals of LaTe$_{1.95}$ and CeTe$_{1.95-x}$Se$_x$ (x=0 and 0.16). The measurements reveal formation of charge density wave energy gaps at rather high energy levels, e.g. 2$螖\sim$ 8500 \cm for LaTe$_{1.95}$, and 6800 \cm for CeTe$_{1.95}$. More strikingly, the study reveals that, different from the rare-earth tri-tellurides, the Te vacancies and disorder effect play a key role in the low-energy charge excitations of ditelluride systems. Although an eminent peak is observed between 800 and 1500 \cm in conductivity spectra for LaTe$_{1.95}$, and CeTe$_{1.95-x}$Se$_x$ (x=0. 0.16), our analysis indicates that it could not be attributed to the formation of a small energy gap, instead it could be well accounted for by the localization modified Drude model. Our study also indicates that the low-tempreature optical spectroscopic features are distinctly different from a semiconducting CDW state with entirely gapped Fermi surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.1870v1-abstract-full').style.display = 'none'; document.getElementById('1211.1870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, Accepted for publication in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 205123 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.7571">arXiv:1210.7571</a> <span> [<a href="https://arxiv.org/pdf/1210.7571">pdf</a>, <a href="https://arxiv.org/ps/1210.7571">ps</a>, <a href="https://arxiv.org/format/1210.7571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.195108">10.1103/PhysRevB.86.195108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuous magnetic phase transition in half-frustrated Ca2Os2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q+S">Q. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yamaura%2C+K">K. Yamaura</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.7571v1-abstract-short" style="display: inline;"> We present the specific heat, magnetization, optical spectroscopy measurements and the firstprinciple calculations on the Weberite structure Ca2Os2O7 single crystal/polycrystalline sample. The Ca2Os2O7 shows a Curie-Weiss nature at high temperature and goes into a ferrimagnetic insulating state at 327 K on cooling. A 位-like peak is observed at 327 K in the specific heat implying a second-order pha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.7571v1-abstract-full').style.display = 'inline'; document.getElementById('1210.7571v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.7571v1-abstract-full" style="display: none;"> We present the specific heat, magnetization, optical spectroscopy measurements and the firstprinciple calculations on the Weberite structure Ca2Os2O7 single crystal/polycrystalline sample. The Ca2Os2O7 shows a Curie-Weiss nature at high temperature and goes into a ferrimagnetic insulating state at 327 K on cooling. A 位-like peak is observed at 327 K in the specific heat implying a second-order phase transition. The vanishing electronic specific heat at low temperature suggests a full energy gap. At high temperature above the transition, small amount of itinerant carriers with short life time 蟿are observed, which is gapped at 20 K with a direct gap of 0:24 eV . Our first principle calculations indicate that the anti-ferromagnetic (AFM) correlation with intermediate Coulomb repulsion U could effectively split Os(4b) t2g bands and push them away from Fermi level(EF). On the other hand, a non-collinear magnetic interaction is needed to push the Os(4c) bands away from EF, which could be induced by Os(4c)-Os(4c) frustration. Therefore, AFM correlation, Coulomb repulsion U and non-collinear interaction all play important roles for the insulating ground state in Ca2Os2O7. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.7571v1-abstract-full').style.display = 'none'; document.getElementById('1210.7571v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 11 figures, accepted for publication in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.4841">arXiv:1209.4841</a> <span> [<a href="https://arxiv.org/pdf/1209.4841">pdf</a>, <a href="https://arxiv.org/ps/1209.4841">ps</a>, <a href="https://arxiv.org/format/1209.4841">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.134503">10.1103/PhysRevB.86.134503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic properties of 3d transitional metal pnictides : A comparative study by optical spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R+Y">R. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.4841v1-abstract-short" style="display: inline;"> Single-crystalline KFe2As2 and CaT2As2 (T = Fe, Co, Ni, Cu) are synthesized and investigated by resistivity, susceptibility and optical spectroscopy. It is found that CaCu2As2 exhibits a similar transition to the lattice abrupt collapse transitions discovered in CaFe2(As1-xPx)2 and Ca1-xRexFe2As2 (Re-rare earth element). The resistivity of KFe2As2 and CaT2As2 (T = Fe, Co, Ni, Cu) approximately fol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4841v1-abstract-full').style.display = 'inline'; document.getElementById('1209.4841v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.4841v1-abstract-full" style="display: none;"> Single-crystalline KFe2As2 and CaT2As2 (T = Fe, Co, Ni, Cu) are synthesized and investigated by resistivity, susceptibility and optical spectroscopy. It is found that CaCu2As2 exhibits a similar transition to the lattice abrupt collapse transitions discovered in CaFe2(As1-xPx)2 and Ca1-xRexFe2As2 (Re-rare earth element). The resistivity of KFe2As2 and CaT2As2 (T = Fe, Co, Ni, Cu) approximately follows the similar T^2 dependence at low temperature, but the magnetic behaviors vary with different samples. Optical measurement reveals the optical response of CaCu2As2 is not sensitive to the transition at 50 K, with no indication of development of a new energy gap below the transition temperature. Using Drude-Lorentz model, We find that two Drude terms, a coherent one and an incoherent one, can fit the low-energy optical conductivity of KFe2As2 and CaT2As2 (T = Fe, Co, Ni) very well. However, in CaCu2As2, which is a sp-band metal, the low-energy optical conductivity can be well described by a coherent Drude term. Lack of the incoherent Drude term in CaCu2As2 may be attributed to the weaker electronic correlation than KFe2As2 and CaT2As2 (T = Fe, Co, Ni). Spectral weight analysis of these samples indicates that the unconventional spectral weight transfer, which is related to Hund's coupling energy J_H, is only observed in iron pnictides, supporting the viewpoint that J_H may be a key clue to seek the mechanism of magnetism and superconductivity in pnictides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.4841v1-abstract-full').style.display = 'none'; document.getElementById('1209.4841v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, 1 table; Accepted as an article in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.0826">arXiv:1209.0826</a> <span> [<a href="https://arxiv.org/pdf/1209.0826">pdf</a>, <a href="https://arxiv.org/ps/1209.0826">ps</a>, <a href="https://arxiv.org/format/1209.0826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Comb-drive MEMS Oscillators for Low Temperature Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gonzalez%2C+M">M. Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Garcell%2C+E">E. Garcell</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Chan%2C+H+B">H. B. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.0826v2-abstract-short" style="display: inline;"> We have designed and characterized micro-electro-mechanical systems (MEMS) for applications at low temperatures. The mechanical resonators were fabricated using a surface micromachining process. The devices consist of a pair of parallel plates with a well defined gap. The top plate can be actuated for shear motion relative to the bottom fixed plate through a set of comb-drive electrodes. Details o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.0826v2-abstract-full').style.display = 'inline'; document.getElementById('1209.0826v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.0826v2-abstract-full" style="display: none;"> We have designed and characterized micro-electro-mechanical systems (MEMS) for applications at low temperatures. The mechanical resonators were fabricated using a surface micromachining process. The devices consist of a pair of parallel plates with a well defined gap. The top plate can be actuated for shear motion relative to the bottom fixed plate through a set of comb-drive electrodes. Details on the operation and fabrication of the devices are discussed. The geometry was chosen to study the transport properties of the fluid entrained in the gap. An atomic force microscopy (AFM) study was performed in order to characterize the surface. A full characterization of their resonance properties in air and at room temperature was conducted as a function of pressure, from 10 mTorr to 760 Torr, ranging from a highly rarefied gas to a hydrodynamic regime. We demonstrate the operation of our resonator at low temperatures immersed in superfluid 4He and in the normal and superfluid states of 3He down to 0.3 mK. These MEMS oscillators show potential for use in a wide range of low temperature experiments, in particular, to probe novel phenomena in quantum fluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.0826v2-abstract-full').style.display = 'none'; document.getElementById('1209.0826v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been accepted for publication at Review of Scientific Instruments. After it is published, it will be found at: http://rsi.aip.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.5984">arXiv:1204.5984</a> <span> [<a href="https://arxiv.org/pdf/1204.5984">pdf</a>, <a href="https://arxiv.org/ps/1204.5984">ps</a>, <a href="https://arxiv.org/format/1204.5984">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.184520">10.1103/PhysRevB.85.184520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single crystal growth and optical conductivity of SrPt$_2$As$_2$ superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H+P">H. P. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J+Q">J. Q. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.5984v2-abstract-short" style="display: inline;"> SrPt$_2$As$_2$ single crystals with CaBe$_2$Ge$_2$-type structure were synthesized by self-melting technique. X-ray diffraction, transmission electron microscopy, electrical resistivity, specific heat and optical spectroscopy measurements were conducted to elucidate the properties of SrPt$_2$As$_2$. SrPt$_2$As$_2$ single crystals exhibit a superconducting transition at 5.2K, experiencing a structu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.5984v2-abstract-full').style.display = 'inline'; document.getElementById('1204.5984v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.5984v2-abstract-full" style="display: none;"> SrPt$_2$As$_2$ single crystals with CaBe$_2$Ge$_2$-type structure were synthesized by self-melting technique. X-ray diffraction, transmission electron microscopy, electrical resistivity, specific heat and optical spectroscopy measurements were conducted to elucidate the properties of SrPt$_2$As$_2$. SrPt$_2$As$_2$ single crystals exhibit a superconducting transition at 5.2K, experiencing a structural phase transition well above room temperature (about 455K). The superconducting and structural phase transition temperatures are both reduced by 6% Iridium doping. Both pure SrPt$_2$As$_2$ and the doped single crystals are revealed to be highly metallic with rather high plasma frequencies. In particular, the optical spectroscopy measurement revealed two gap-like suppression features. We elaborated that the one at higher energy scale could be ascribed to the correlation effect, while the other one at lower energy scale is related to the structural phase transition, leading to the removal of a small portion of the Fermi surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.5984v2-abstract-full').style.display = 'none'; document.getElementById('1204.5984v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 184520 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.1736">arXiv:1204.1736</a> <span> [<a href="https://arxiv.org/pdf/1204.1736">pdf</a>, <a href="https://arxiv.org/ps/1204.1736">ps</a>, <a href="https://arxiv.org/format/1204.1736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.144426">10.1103/PhysRevB.85.144426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two successive field-induced spin-flop transitions in single-crystalline CaCo$_{2}$As$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.1736v1-abstract-short" style="display: inline;"> CaCo$_{2}$As$_{2}$, a ThCr$_{2}$Si$_{2}$-structure compound, undergoes an antiferromagnetic transition at \emph{T$_{N}$}=76K with the magnetic moments being aligned parallel to the \emph{c} axis. Electronic transport measurement reveals that the coupling between conducting carriers and magnetic order in CaCo$_{2}$As$_{2}$ is much weaker comparing to the parent compounds of iron pnictide. Applying… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.1736v1-abstract-full').style.display = 'inline'; document.getElementById('1204.1736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.1736v1-abstract-full" style="display: none;"> CaCo$_{2}$As$_{2}$, a ThCr$_{2}$Si$_{2}$-structure compound, undergoes an antiferromagnetic transition at \emph{T$_{N}$}=76K with the magnetic moments being aligned parallel to the \emph{c} axis. Electronic transport measurement reveals that the coupling between conducting carriers and magnetic order in CaCo$_{2}$As$_{2}$ is much weaker comparing to the parent compounds of iron pnictide. Applying magnetic field along \emph{c} axis induces two successive spin-flop transitions in its magnetic state. The magnetization saturation behaviors with \emph{\textbf{H}$\parallel$c} and \emph{\textbf{H}$\parallel$ab} at 10K indicate that the antiferromagnetic coupling along \emph{c} direction is very weak. The interlayer antiferromagntic coupling constant \emph{J$_{c}$} is estimated to be about 2 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.1736v1-abstract-full').style.display = 'none'; document.getElementById('1204.1736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. B. 5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.4061">arXiv:1203.4061</a> <span> [<a href="https://arxiv.org/pdf/1203.4061">pdf</a>, <a href="https://arxiv.org/ps/1203.4061">ps</a>, <a href="https://arxiv.org/format/1203.4061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep01153">10.1038/srep01153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural phase transition in IrTe$_2$: A combined study of optical spectroscopy and band structure calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.4061v2-abstract-short" style="display: inline;"> Ir$_{1-x}$Pt$_x$Te$_2$ is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4061v2-abstract-full').style.display = 'inline'; document.getElementById('1203.4061v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.4061v2-abstract-full" style="display: none;"> Ir$_{1-x}$Pt$_x$Te$_2$ is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe$_2$ in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (p$_x$, p$_y$) and Te p$_z$ bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.4061v2-abstract-full').style.display = 'none'; document.getElementById('1203.4061v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 3, 1153 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.0264">arXiv:1108.0264</a> <span> [<a href="https://arxiv.org/pdf/1108.0264">pdf</a>, <a href="https://arxiv.org/ps/1108.0264">ps</a>, <a href="https://arxiv.org/format/1108.0264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.155132">10.1103/PhysRevB.84.155132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical study of the multiple charge density wave transitions in ErTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+W+T">W. T. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.0264v1-abstract-short" style="display: inline;"> We present an optical spectroscopy study on singe crystalline ErTe$_3$, a rare-earth-element tri-telluride which experiences two successive charge density wave (CDW) transitions at T$_{c1}$ = 267 K and T$_{c2}$ = 150 K. Two corresponding gap features, centered at 2770 \cm ($\sim$ 343 meV) and 890 \cm ($\sim$ 110 meV) respectively, are clearly seen in ordered state. A pronounced Drude component, wh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.0264v1-abstract-full').style.display = 'inline'; document.getElementById('1108.0264v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.0264v1-abstract-full" style="display: none;"> We present an optical spectroscopy study on singe crystalline ErTe$_3$, a rare-earth-element tri-telluride which experiences two successive charge density wave (CDW) transitions at T$_{c1}$ = 267 K and T$_{c2}$ = 150 K. Two corresponding gap features, centered at 2770 \cm ($\sim$ 343 meV) and 890 \cm ($\sim$ 110 meV) respectively, are clearly seen in ordered state. A pronounced Drude component, which exists at all measurement temperatures, demonstrates the partial gap character of both CDW orders. About half of the unmodulated Fermi surface (FS) remains in the CDW state at the lowest measurement temperature. The study also reveals that fluctuation effect is still prominent in this two-dimensional (2D) material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.0264v1-abstract-full').style.display = 'none'; document.getElementById('1108.0264v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 84, 155132 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.1381">arXiv:1102.1381</a> <span> [<a href="https://arxiv.org/pdf/1102.1381">pdf</a>, <a href="https://arxiv.org/ps/1102.1381">ps</a>, <a href="https://arxiv.org/format/1102.1381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep00221">10.1038/srep00221 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale phase separation of antiferromagnetic order and superconductivity in K$_{0.75}$Fe$_{1.75}$Se$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y+J">Y. J. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+F">G. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J+P">J. P. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J+Q">J. Q. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.1381v4-abstract-short" style="display: inline;"> We report an in-plane optical spectroscopy study on the iron-selenide superconductor K$_{0.75}$Fe$_{1.75}$Se$_2$. The measurement revealed the development of a sharp reflectance edge below T$_c$ at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.1381v4-abstract-full').style.display = 'inline'; document.getElementById('1102.1381v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.1381v4-abstract-full" style="display: none;"> We report an in-plane optical spectroscopy study on the iron-selenide superconductor K$_{0.75}$Fe$_{1.75}$Se$_2$. The measurement revealed the development of a sharp reflectance edge below T$_c$ at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.1381v4-abstract-full').style.display = 'none'; document.getElementById('1102.1381v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 2, 221 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0572">arXiv:1101.0572</a> <span> [<a href="https://arxiv.org/pdf/1101.0572">pdf</a>, <a href="https://arxiv.org/ps/1101.0572">ps</a>, <a href="https://arxiv.org/format/1101.0572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.220507">10.1103/PhysRevB.83.220507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K$_{0.83}$Fe$_{1.53}$Se$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J+G">J. G. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X+L">X. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0572v3-abstract-short" style="display: inline;"> We report an infrared spectroscopy study on K$_{0.83}$Fe$_{1.53}$Se$_2$, a semiconducting parent compound of the new iron-selenide system. The major spectral features are found to be distinctly different from all other Fe-based superconducting systems. Our measurement revealed two peculiar spectral structures: a double peak structure between 4000-6000 cm$^{-1}$ and abundant phonon modes much more… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0572v3-abstract-full').style.display = 'inline'; document.getElementById('1101.0572v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0572v3-abstract-full" style="display: none;"> We report an infrared spectroscopy study on K$_{0.83}$Fe$_{1.53}$Se$_2$, a semiconducting parent compound of the new iron-selenide system. The major spectral features are found to be distinctly different from all other Fe-based superconducting systems. Our measurement revealed two peculiar spectral structures: a double peak structure between 4000-6000 cm$^{-1}$ and abundant phonon modes much more than those expected for a 122 structure. We elaborate that those features could be naturally explained from the blocked antiferromagnetism due to the presence of Fe vacancy ordering as determined by recent neutron diffraction experiments. The double peaks reflect the coexistence of ferromagnetic and antiferromagnetic couplings between the neighboring Fe sites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0572v3-abstract-full').style.display = 'none'; document.getElementById('1101.0572v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised version published in Physical Review B, Rapid Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev B 83, 220507(R) (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.2967">arXiv:1009.2967</a> <span> [<a href="https://arxiv.org/pdf/1009.2967">pdf</a>, <a href="https://arxiv.org/ps/1009.2967">ps</a>, <a href="https://arxiv.org/format/1009.2967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.155113">10.1103/PhysRevB.83.155113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical spectroscopy study on CeTe$_3$: evidence for multiple charge-density-wave orders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+R+H">R. H. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.2967v1-abstract-short" style="display: inline;"> We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and pronounced CDW energy gap being present already at room temperature as observed in earlier studies, the present measurement revealed the formation of anoth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2967v1-abstract-full').style.display = 'inline'; document.getElementById('1009.2967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.2967v1-abstract-full" style="display: none;"> We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and pronounced CDW energy gap being present already at room temperature as observed in earlier studies, the present measurement revealed the formation of another energy gap at smaller energy scale at low temperature. The second CDW gap removes the electrons near E$_F$ which undergo stronger scattering. The study yields evidence for the presence of multiple CDW orders or strong fluctuations in the light rare-earth element tri-telluride. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2967v1-abstract-full').style.display = 'none'; document.getElementById('1009.2967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 155113 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.2239">arXiv:1009.2239</a> <span> [<a href="https://arxiv.org/pdf/1009.2239">pdf</a>, <a href="https://arxiv.org/ps/1009.2239">ps</a>, <a href="https://arxiv.org/format/1009.2239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.144522">10.1103/PhysRevB.83.144522 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three dimensionality of band structure and a large residual quasiparticle population in Ba$_{0.67}$K$_{0.33}$Fe$_2$As$_2$ as revealed by the c-axis polarized optical measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C+L">C. L. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ruan%2C+R+H">R. H. Ruan</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+W+T">W. T. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+S+S">S. S. Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.2239v1-abstract-short" style="display: inline;"> We report on a c-axis polarized optical measurement on a Ba$_{0.67}$K$_{0.33}$Fe$_2$As$_2$ single crystal. We find that the c-axis optical response is significantly different from that of high-T$_c$ cuprates. The experiments reveal an anisotropic three-dimensional optical response with the absence of the Josephson plasma edge in R($蠅$) in the superconducting state. Furthermore, different from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2239v1-abstract-full').style.display = 'inline'; document.getElementById('1009.2239v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.2239v1-abstract-full" style="display: none;"> We report on a c-axis polarized optical measurement on a Ba$_{0.67}$K$_{0.33}$Fe$_2$As$_2$ single crystal. We find that the c-axis optical response is significantly different from that of high-T$_c$ cuprates. The experiments reveal an anisotropic three-dimensional optical response with the absence of the Josephson plasma edge in R($蠅$) in the superconducting state. Furthermore, different from the ab-plane optical response, a large residual quasiparticle population down to $T\sim\frac{1}{5}T_c$ was observed in the c-axis polarized reflectance measurement. We elaborate that there exist nodes for the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2239v1-abstract-full').style.display = 'none'; document.getElementById('1009.2239v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 144522 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.3958">arXiv:1006.3958</a> <span> [<a href="https://arxiv.org/pdf/1006.3958">pdf</a>, <a href="https://arxiv.org/format/1006.3958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/NPHYS1879">10.1038/NPHYS1879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a ubiquitous three-dimensional superconducting gap function in optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y+-">Y. -M. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y+-">Y. -B. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X+-">X. -Y. Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Razzoli%2C+E">E. Razzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+-">G. -F. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+-">N. -L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P+-">P. -C. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J+-">J. -P. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+H">H. Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.3958v2-abstract-short" style="display: inline;"> The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional \cite{3D_SC} (3D) electronic structure of these high-temperature superconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the \KZ-capab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.3958v2-abstract-full').style.display = 'inline'; document.getElementById('1006.3958v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.3958v2-abstract-full" style="display: none;"> The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional \cite{3D_SC} (3D) electronic structure of these high-temperature superconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the \KZ-capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on \BKFAOP samples. We found a marked \KZ dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer $螖_1$ and interlayer $螖_2$ pairing. The anisotropy ratio $螖_2/螖_1$, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling $J_c/J_{ab}$ in the parent compound \cite{NeutronParent}. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrain the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.3958v2-abstract-full').style.display = 'none'; document.getElementById('1006.3958v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 7, 198-202 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.1689">arXiv:1001.1689</a> <span> [<a href="https://arxiv.org/pdf/1001.1689">pdf</a>, <a href="https://arxiv.org/ps/1001.1689">ps</a>, <a href="https://arxiv.org/format/1001.1689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.097003">10.1103/PhysRevLett.105.097003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the c-axis optical reflectance of AFe$_2$As$_2$ (A=Ba, Sr) single crystals: Evidence of different mechanisms for the formation of two energy gaps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+G">Z. G. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">T. Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Ruan%2C+R+H">R. H. Ruan</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+B+F">B. F. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+B">B. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W+Z">W. Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Z">Z. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.1689v2-abstract-short" style="display: inline;"> We present the c-axis optical reflectance measurement on single crystals of BaFe$_2$As$_2$ and SrFe$_2$As$_2$, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}$\parallel$c-axis. The very pronounced energy gap structure seen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.1689v2-abstract-full').style.display = 'inline'; document.getElementById('1001.1689v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.1689v2-abstract-full" style="display: none;"> We present the c-axis optical reflectance measurement on single crystals of BaFe$_2$As$_2$ and SrFe$_2$As$_2$, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}$\parallel$c-axis. The very pronounced energy gap structure seen at a higher energy scale for \textbf{E}$\parallel$ab-plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.1689v2-abstract-full').style.display = 'none'; document.getElementById('1001.1689v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 105, 097003 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.0186">arXiv:0907.0186</a> <span> [<a href="https://arxiv.org/pdf/0907.0186">pdf</a>, <a href="https://arxiv.org/ps/0907.0186">ps</a>, <a href="https://arxiv.org/format/0907.0186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.100507">10.1103/PhysRevB.80.100507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical study on the spin-density wave properties in single crystalline Na$_{1-未}$FeAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W+Z">W. Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">P. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+F">G. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J+L">J. L. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+L">N. L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.0186v1-abstract-short" style="display: inline;"> We report an optical investigation on the in-plane charge dynamics for Na$_{1-未}$FeAs single crystal. A clear optical evidence for the spin-density wave (SDW) gap is observed. As the structural/magnetic transitions are separated in the Na$_{1-未}$FeAs case, we find the SDW gap opens in accordance with the magnetic transition. Comparing with the optical response of other FeAs-based parent compound… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0186v1-abstract-full').style.display = 'inline'; document.getElementById('0907.0186v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.0186v1-abstract-full" style="display: none;"> We report an optical investigation on the in-plane charge dynamics for Na$_{1-未}$FeAs single crystal. A clear optical evidence for the spin-density wave (SDW) gap is observed. As the structural/magnetic transitions are separated in the Na$_{1-未}$FeAs case, we find the SDW gap opens in accordance with the magnetic transition. Comparing with the optical response of other FeAs-based parent compounds, both the gap value 2$螖$ and the energy scale for the gap-induced spectral weight redistribution are smaller in Na$_{1-未}$FeAs. Our findings support the itinerant origin of the antiferromagnetic transition in the FeAs-based system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0186v1-abstract-full').style.display = 'none'; document.getElementById('0907.0186v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 5 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> revised version published in Rev. Phys. B 80, 100507(R), (2009) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zheng%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>