CINXE.COM

Search results for: mega bracing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mega bracing</title> <meta name="description" content="Search results for: mega bracing"> <meta name="keywords" content="mega bracing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mega bracing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mega bracing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 203</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mega bracing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Omar">Mohamed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=shapes%20memory%20alloy" title=" shapes memory alloy"> shapes memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20bracing" title=" mega bracing"> mega bracing</a> </p> <a href="https://publications.waset.org/abstracts/4180/seismic-response-of-braced-steel-frames-with-shape-memory-alloy-and-mega-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> X-Bracing Configuration and Seismic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rahjoo">Saeed Rahjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20H.%20Mamaqani"> Babak H. Mamaqani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20configuration" title="bracing configuration">bracing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrically%20braced%20frame%20%28CBF%29" title=" concentrically braced frame (CBF)"> concentrically braced frame (CBF)</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20over%20analyses" title=" push over analyses"> push over analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20reduction%20factor" title=" response reduction factor"> response reduction factor</a> </p> <a href="https://publications.waset.org/abstracts/5888/x-bracing-configuration-and-seismic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Al-Qaryouti">Yousef Al-Qaryouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Besan%20Alagawani"> Besan Alagawani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20bracing%20system" title="horizontal bracing system">horizontal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20frames" title=" steel moment frames"> steel moment frames</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20load%20resisting%20system" title=" wind load resisting system"> wind load resisting system</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a> </p> <a href="https://publications.waset.org/abstracts/52051/effect-of-adding-horizontal-steel-bracing-system-to-ordinary-moment-steel-frames-subjected-to-wind-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Earthquake Retrofitting of Concrete Structures Using Steel Bracing with the Results of Linear and Nonlinear Static Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sadie">Ehsan Sadie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of steel braces in concrete structures has been considered by researchers in recent decades due to its easy implementation, economics and the ability to create skylights in braced openings compared to shear wall openings as well as strengthening weak concrete structures to earthquakes. The purpose of this article is to improve and strengthen concrete structures with steel bracing. In addition, cases such as different numbers of steel braces in different openings of concrete structures and interaction between concrete frames and metal braces have been studied. In this paper, by performing static nonlinear analysis and examining ductility, the relative displacement of floors, examining the performance of samples, and determining the coefficient of behavior of composite frames (concrete frames with metal bracing), the behavior of reinforced concrete frames is compared with frame without bracing. The results of analyzes and studies show that the addition of metal bracing increases the strength and stiffness of the frame and reduces the ductility and lateral displacement of the structure. In general, the behavior of the structure against earthquakes will be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior%20coefficient" title="behavior coefficient">behavior coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=bracing" title=" bracing"> bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=convergent%20bracing" title=" convergent bracing"> convergent bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20curve" title=" pushover curve"> pushover curve</a> </p> <a href="https://publications.waset.org/abstracts/145613/earthquake-retrofitting-of-concrete-structures-using-steel-bracing-with-the-results-of-linear-and-nonlinear-static-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Comparison of the Effect of Semi-Rigid Ankle Bracing Performance among Ankle Injured Versus Non-Injured Adolescent Female Hockey Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Ellapen">T. J. Ellapen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Acampora"> N. Acampora</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dawson"> S. Dawson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arling"> J. Arling</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Van%20Niekerk"> C. Van Niekerk</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Van%20Heerden"> H. J. Van Heerden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To determine the comparative proprioceptive performance of injured versus non-injured adolescent female hockey players when wearing an ankle brace. Methods: Data were collected from 100 high school players who belonged to the Highway Secondary School KZN Hockey league via voluntary parental informed consent and player assent. Players completed an injury questionnaire probing the prevalence and nature of hockey injuries (March-August 2013). Subsequently players completed a Biodex proprioceptive test with and without an ankle brace. Probability was set at p≤ 0.05. Results: Twenty-two players sustained ankle injuries within the six months (p<0.001). Injured players performed similarly without bracing Right Anterior Posterior Index (RAPI): 2.8±0.9; Right Medial Lateral Index (RMLI): 1.9±0.7; Left Anterior Posterior Index (LAPI) LAPI: 2.7; Left Medial Lateral Index (LMLI): 1.7±0.6) as compared to bracing (RAPI: 2.7±1.4; RMLI: 1.8±0.6; LAPI: 2.6±1.0; LMLI: 1.5±0.6) (p>0.05). However, bracing (RAPI: 2.2±0.8; RMLI: 1.5±0.5; LAPI: 2.4±0.9; MLI: 1.5±0.5) improved the ankle stability of the non-injured group as compared to their unbraced performance (RAPI: 2.5±1.0; RMLI: 1.8±0.8; LAPI: 2.8±1.1; LMLI: 1.8±0.6) (p<0.05). Conclusion: Ankle bracing did not enhance the stability of injured ankles. However ankle bracing has an ergogenic effect enhancing the stability of healthy ankles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hockey" title="hockey">hockey</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioception" title=" proprioception"> proprioception</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle" title=" ankle"> ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=bracing" title=" bracing"> bracing</a> </p> <a href="https://publications.waset.org/abstracts/7291/comparison-of-the-effect-of-semi-rigid-ankle-bracing-performance-among-ankle-injured-versus-non-injured-adolescent-female-hockey-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Dizangian">Babak Dizangian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ghasemi"> Mohammad Reza Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Ghalandari"> Akram Ghalandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame&rsquo;s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers&rsquo; laboratory test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20wire%20rope%20bracing" title=" delayed wire rope bracing"> delayed wire rope bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20moment%20frame" title=" ductile moment frame"> ductile moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20curve" title=" hysteresis curve"> hysteresis curve</a> </p> <a href="https://publications.waset.org/abstracts/69615/enhancing-seismic-performance-of-ductile-moment-frames-with-delayed-wire-rope-bracing-using-middle-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruoyang%20Tang">Ruoyang Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Nie"> Jianguo Nie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20member" title="bracing member">bracing member</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20stage" title=" construction stage"> construction stage</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title=" lateral-torsional buckling"> lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20girder%20system" title=" steel girder system"> steel girder system</a> </p> <a href="https://publications.waset.org/abstracts/124929/lateral-torsional-buckling-of-steel-girder-systems-braced-by-solid-web-crossbeams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Mega Development Projects Problems and Challenges From a Social Science Perspective: A Critical Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shakir%20Ullah">Shakir Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article reviews social science understanding to explore the challenges megaprojects face before and after implementation. It also sheds light on the problems directly and indirectly caused by mega development projects in the project implemented areas. By Using a qualitative approach such as thematic analysis, the article uses recent literature such as published articles, government reports, and books to cite examples of different mega projects worldwide. The study report that mega development projects are a necessary element of the modern-day infrastructural development process as they represent the perfect example of urban socioeconomic development. They are introduced and implemented by multinational companies with the support of state authorities to produce the common good. However, they are not devoid of their critical challenges and bring implicit and explicit problems to the targeted localities. The article takes insights from social science research for suggestions on how to reduce the challenges faced by project implementers and problems received by local people due to the fault lines of such projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=mega-projects" title=" mega-projects"> mega-projects</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=problems" title=" problems"> problems</a> </p> <a href="https://publications.waset.org/abstracts/152954/mega-development-projects-problems-and-challenges-from-a-social-science-perspective-a-critical-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diyar%20Yousif%20Ali">Diyar Yousif Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title="reinforced concrete structures">reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20shear" title=" base shear"> base shear</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bracing" title=" steel bracing"> steel bracing</a> </p> <a href="https://publications.waset.org/abstracts/160291/bracing-applications-for-improving-the-earthquake-performance-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Baradaran">Mohammad Reza Baradaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Hamzezarghani"> Farhad Hamzezarghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Rastegari%20Ghiri"> Mehdi Rastegari Ghiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Mirsanjari"> Zahra Mirsanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link" title="vertical shear-link">vertical shear-link</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20analysis" title=" cyclic analysis"> cyclic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20beam" title=" honeycomb beam"> honeycomb beam</a> </p> <a href="https://publications.waset.org/abstracts/30924/the-effect-of-vertical-shear-link-in-improving-the-seismic-performance-of-structures-with-eccentrically-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Seismic Assessment of RC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badla%20Oualid">Badla Oualid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A great number of existing buildings are designed without seismic design criteria and detailing rules for dissipative structural behavior. Thus, it is of critical importance that the structures that need seismic retrofitting are correctly identified, and an optimal retrofitting is conducted in a cost effective fashion. Among the retrofitting techniques available, steel braces can be considered as one of the most efficient solution among seismic performance upgrading methods of RC structures. This paper investigates the seismic behavior of RC buildings strengthened with different types of steel braces, X-braced, inverted V braced, ZX braced, and Zipper braced. Static non linear pushover analysis has been conducted to estimate the capacity of three story and six story buildings with different brace-frame systems and different cross sections for the braces. It is found that adding braces enhances the global capacity of the buildings compared to the case with no bracing and that the X and Zipper bracing systems performed better depending on the type and size of the cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bracing" title=" steel bracing"> steel bracing</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a> </p> <a href="https://publications.waset.org/abstracts/21615/seismic-assessment-of-rc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Effect of Wind Braces to Earthquake Resistance of Steel Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gokdemir">H. Gokdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20bracings" title="wind bracings">wind bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20lateral%20loads" title=" vertical and lateral loads"> vertical and lateral loads</a> </p> <a href="https://publications.waset.org/abstracts/23581/effect-of-wind-braces-to-earthquake-resistance-of-steel-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Identification of Social Responsibility Factors within Mega Construction Projects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alotaibi">Ali Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Edum-Fotwe"> Francis Edum-Fotwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Price%20%2F"> Andrew Price /</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation&rsquo;s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20responsibility" title="social responsibility">social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20projects" title=" construction projects"> construction projects</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a>, <a href="https://publications.waset.org/abstracts/search?q=social" title=" social"> social</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=indicators" title=" indicators"> indicators</a> </p> <a href="https://publications.waset.org/abstracts/102940/identification-of-social-responsibility-factors-within-mega-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Practicing Spectacular Urbanism in China: Mega-Events, the City of the Spectacle, and Spatialization of State Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Lin">George Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines a practice in which Chinese municipal governments actively pursue momentary and spectacular urbanism through the hosting of mega-events as an instrument to reproduce urban space for the enhancement of place competitiveness and advancement of political career. Practicing event-driven spectacular urbanism is found to have a short-term impact upon the economy and an effect upon the career advancement of the party secretary more than the mayor. Hosting mega-events has been used as a means to create “a harmonious society” and unified social space whereby grievance and discontents are grossed over, ignored, excluded and marginalized. Geographically, a new urban space has been created for the central city to reassert/consolidate its leading competitive position in the regional and national economy at the expense of the disadvantaged and marginalized. Findings of this research call for a critical re-evaluation of the sophisticated state-space inter-relations in the ongoing processes of planetary urbanization and global urban revolution in which China has taken an important part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20cities" title="Chinese cities">Chinese cities</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20events" title=" mega events"> mega events</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanism" title=" urbanism"> urbanism</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/52104/practicing-spectacular-urbanism-in-china-mega-events-the-city-of-the-spectacle-and-spatialization-of-state-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Earthquake Resistant Sustainable Steel Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arup%20Saha%20Chaudhuri">Arup Saha Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title="steel building">steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20and%20sustainable" title=" green and sustainable"> green and sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant" title=" earthquake resistant"> earthquake resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=EBF%20system" title=" EBF system"> EBF system</a> </p> <a href="https://publications.waset.org/abstracts/78519/earthquake-resistant-sustainable-steel-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Hui">Li Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Riyadh%20Hindi"> Riyadh Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20deck%20construction" title="bridge deck construction">bridge deck construction</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20girder%20rotation" title=" exterior girder rotation"> exterior girder rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/176482/optimizing-bridge-deck-construction-a-deep-neural-network-approach-for-limiting-exterior-grider-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chui-Hsin%20Chen">Chui-Hsin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ting%20Chen"> Yu-Ting Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=special%20concentrically%20braced%20frames" title="special concentrically braced frames">special concentrically braced frames</a>, <a href="https://publications.waset.org/abstracts/search?q=HSS" title=" HSS"> HSS</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20reinforcement" title=" infill reinforcement"> infill reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEQ" title=" PEEQ"> PEEQ</a> </p> <a href="https://publications.waset.org/abstracts/157991/finite-element-analysis-of-hollow-structural-shape-hss-steel-brace-with-infill-reinforcement-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Submodeling of Mega-Shell Reinforced Concrete Solar Chimneys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areeg%20Shermaddo">Areeg Shermaddo</a>, <a href="https://publications.waset.org/abstracts/search?q=Abedulgader%20Baktheer"> Abedulgader Baktheer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar updraft power plants (SUPPs) made from reinforced concrete (RC) are an innovative technology to generate solar electricity. An up to 1000 m high chimney represents the major part of each SUPP ensuring the updraft of the warmed air from the ground. Numerical simulation of nonlinear behavior of such large mega shell concrete structures is a challenging task, and computationally expensive. A general finite element approach to simulate reinforced concrete bearing behavior is presented and verified on a simply supported beam, as well as the technique of submodeling. The verified numerical approach is extended and consecutively transferred to a more complex chimney structure of a SUPP. The obtained results proved the reliability of submodeling technique in analyzing critical regions of simple and complex mega concrete structures with high accuracy and dramatic decrease in the computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=submodeling" title=" submodeling"> submodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SUPP" title=" SUPP"> SUPP</a> </p> <a href="https://publications.waset.org/abstracts/73560/submodeling-of-mega-shell-reinforced-concrete-solar-chimneys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Vosoughifar">H. R. Vosoughifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Zeinab.%20Hosseininejad"> Seyedeh Zeinab. Hosseininejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Shabazi"> Nahid Shabazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohialdin%20Hosseininejad"> Seyed Mohialdin Hosseininejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20bracing%20system" title="optimal bracing system">optimal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20structure" title=" high-rise structure"> high-rise structure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20stress" title=" seismic stress"> seismic stress</a> </p> <a href="https://publications.waset.org/abstracts/45332/evaluating-the-seismic-stress-distribution-in-the-high-rise-structures-connections-with-optimal-bracing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Mega Sporting Events and Branding: Marketing Implications for the Host Country’s Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20Wysong">Scott Wysong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Qatar will spend billions of dollars to host the 2022 World Cup. While football fans around the globe get excited to cheer on their favorite team every four years, critics debate the merits of a country hosting such an expensive and large-scale event. That is, the host countries spend billions of dollars on stadiums and infrastructure to attract these mega sporting events with the hope of equitable returns in economic impact and creating jobs. Yet, in many cases, the host countries are left in debt with decaying venues. There are benefits beyond the economic impact of hosting mega-events. For example, citizens are often proud of their city/country to host these famous events. Yet, often overlooked in the literature is the proposition that serving as the host for a mega-event may enhance the country’s brand image, not only as a tourist destination but for the products made in that country of origin. This research aims to explore this phenomenon by taking an exploratory look at consumer perceptions of three host countries of a mega-event in sports. In 2014, the U.S., Chinese and Finn (Finland) consumer attitudes toward Brazil and its products were measured before and after the World Cup via surveys (n=89). An Analysis of Variance (ANOVA) revealed that there were no statistically significant differences in the pre-and post-World Cup perceptions of Brazil’s brand personality or country-of-origin image. After the World Cup in 2018, qualitative interviews were held with U.S. sports fans (n=17) in an effort to further explore consumer perceptions of products made in the host country: Russia. A consistent theme of distrust and corruption with Russian products emerged despite their hosting of this prestigious global event. In late 2021, U.S. football (soccer) fans (n=42) and non-fans (n=37) were surveyed about the upcoming 2022 World Cup. A regression analysis revealed that how much an individual indicated that they were a soccer fan did not significantly influence their desire to visit Qatar or try products from Qatar in the future even though the country was hosting the World Cup—in the end, hosting a mega-event as grand as the World Cup showcases the country to the world. However, it seems to have little impact on consumer perceptions of the country, as a whole, or its brands. That is, the World Cup appeared to enhance already pre-existing stereotypes about Brazil (e.g., beaches, partying and fun, yet with crime and poverty), Russia (e.g., cold weather, vodka and business corruption) and Qatar (desert and oil). Moreover, across all three countries, respondents could rarely name a brand from the host country. Because mega-events cost a lot of time and money, countries need to do more to market their country and its brands when hosting. In addition, these countries would be wise to measure the impact of the event from different perspectives. Hence, we put forth a comprehensive future research agenda to further the understanding of how countries, and their brands, can benefit from hosting a mega sporting event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=branding" title="branding">branding</a>, <a href="https://publications.waset.org/abstracts/search?q=country-of-origin%20effects" title=" country-of-origin effects"> country-of-origin effects</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20sporting%20events" title=" mega sporting events"> mega sporting events</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20on%20investment" title=" return on investment"> return on investment</a> </p> <a href="https://publications.waset.org/abstracts/146221/mega-sporting-events-and-branding-marketing-implications-for-the-host-countrys-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> The Effects of 2016 Rio Olympics as Nation&#039;s Soft Power Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunsu%20Han">Keunsu Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sports has been used as a valuable tool for countries to enhance brand image and to pursue higher political interests. Olympic games are one of the best examples as a mega sport event to achieve such nations’ purposes. The term, “soft power,” coined by Nye, refers to country’s ability to persuade and attract foreign audiences through non-coercive ways such as cultural, diplomatic, and economic means. This concept of soft power provides significant answers about why countries are willing to host a mega sport event such as Olympics. This paper reviews the concept of soft power by Nye as a theoretical framework of this study to understand critical motivation for countries to host Olympics and examines the effects of 2016 Rio Olympics as the state’s soft power strategy. Thorough data analysis including media, government and private-sector documents, this research analyzes both negative and positive aspects of the nation’s image created during Rio Olympics and discusses the effects of Rio Olympics as Brazil’s chance to showcase its soft power by highlighting the best the state has to present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=country%20brand" title="country brand">country brand</a>, <a href="https://publications.waset.org/abstracts/search?q=olympics" title=" olympics"> olympics</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20power" title=" soft power"> soft power</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20diplomacy" title=" sport diplomacy"> sport diplomacy</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20sport%20event" title=" mega sport event"> mega sport event</a> </p> <a href="https://publications.waset.org/abstracts/65192/the-effects-of-2016-rio-olympics-as-nations-soft-power-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Information Communication Technology in Early Childhood Education: An Assessment of the Quality of ICT in the New Mega Primary Schools in Ondo State, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluyemi%20Christianah%20Ojo">Oluyemi Christianah Ojo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to investigate the quality of ICT provided in the new Caring Heart schools in Ondo State, Nigeria. The population for the study was all caring Heart Mega Schools in Ondo State, Nigeria. Research questions were generated; two instruments CCCMS and TQCUC were used to elicit information from the schools and the teachers. The study adopts descriptive survey approach. The studies revealed and concluded that ICT components were available and adequate in these schools, Charts showing ICT components and other forms of computer devices used as instructional materials were available but were not adequate; teachers teaching computer studies are competent in the delivery of instructions and in handling computer gadgets in the laboratory. The study recommended the provision of steady electricity, uninterrupted internet facilities and provision of adequate ICT components and charts for effective teaching delivery and learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facilities" title="facilities">facilities</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20communication%20technology" title=" information communication technology"> information communication technology</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20primary%20school" title=" mega primary school"> mega primary school</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20education" title=" primary education"> primary education</a> </p> <a href="https://publications.waset.org/abstracts/36457/information-communication-technology-in-early-childhood-education-an-assessment-of-the-quality-of-ict-in-the-new-mega-primary-schools-in-ondo-state-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Cost Overrun in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailu%20Kebede%20%20Bekele">Hailu Kebede Bekele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction delays are suitable where project events occur at a certain time expected due to causes related to the client, consultant, and contractor. Delay is the major cause of the cost overrun that leads to the poor efficiency of the project. The cost difference between completion and the originally estimated is known as cost overrun. The common ways of cost overruns are not simple issues that can be neglected, but more attention should be given to prevent the organization from being devastated to be failed, and financial expenses to be extended. The reasons that may raised in different studies show that the problem may arise in construction projects due to errors in budgeting, lack of favorable weather conditions, inefficient machinery, and the availability of extravagance. The study is focused on the pace of mega projects that can have a significant change in the cost overrun calculation.15 mega projects are identified to study the problem of the cost overrun in the site. The contractor, consultant, and client are the principal stakeholders in the mega projects. 20 people from each sector were selected to participate in the investigation of the current mega construction project. The main objective of the study on the construction cost overrun is to prioritize the major causes of the cost overrun problem. The methodology that was employed in the construction cost overrun is the qualitative methodology that mostly rates the causes of construction project cost overrun. Interviews, open-ended and closed-ended questions group discussions, and rating qualitative methods are the best methodologies to study construction projects overrun. The result shows that design mistakes, lack of labor, payment delay, old equipment and scheduling, weather conditions, lack of skilled labor, payment delays, transportation, inflation, and order variations, market price fluctuation, and people's thoughts and philosophies, the prior cause of the cost overrun that fail the project performance. The institute shall follow the scheduled activities to bring a positive forward in the project life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20overrun" title="cost overrun">cost overrun</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20projects" title=" mega projects"> mega projects</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/179404/cost-overrun-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> A Theoretical Study of Multi-Leaf Spring in Seismic Response Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ezati%20Kooshki">M. Ezati Kooshki </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pourmohamad"> H. Pourmohamad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20system" title="bracing system">bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20spring" title=" leaf spring"> leaf spring</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/33648/a-theoretical-study-of-multi-leaf-spring-in-seismic-response-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> “BUM629” Special Hybrid Reinforcement Materials for Mega Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gautam">Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun"> Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sharma"> V. R. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BUM629" title="BUM629">BUM629</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20edge%20technology" title=" cutting edge technology"> cutting edge technology</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20application" title=" mechanical application"> mechanical application</a>, <a href="https://publications.waset.org/abstracts/search?q=draft" title=" draft"> draft</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20and%20design" title=" analysis and design"> analysis and design</a>, <a href="https://publications.waset.org/abstracts/search?q=mega%20structures" title=" mega structures "> mega structures </a> </p> <a href="https://publications.waset.org/abstracts/17055/bum629-special-hybrid-reinforcement-materials-for-mega-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> A Risk Management Framework for Selling a Mega Power Plant Project in a New Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Ganjouhaghighi">Negar Ganjouhaghighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirali%20Dolatshahi"> Amirali Dolatshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The origin of most risks of a mega project usually takes place in the phases before closing the contract. As a practical point of view, using project risk management techniques for preparing a proposal is not a total solution for managing the risks of a contract. The objective of this paper is to cover all those activities associated with risk management of a mega project sale’s processes; from entrance to a new market to awarding activities and the review of contract performance. In this study, the risk management happens in six consecutive steps that are divided into three distinct but interdependent phases upstream of the award of the contract: pre-tendering, tendering and closing. In the first step, by preparing standard market risk report, risks of the new market are identified. The next step is the bid or no bid decision making based on the previous gathered data. During the next three steps in tendering phase, project risk management techniques are applied for determining how much contingency reserve must be added or reduced to the estimated cost in order to put the residual risk to an acceptable level. Finally, the last step which happens in closing phase would be an overview of the project risks and final clarification of residual risks. The sales experience of more than 20,000 MW turn-key power plant projects alongside this framework, are used to develop a software that assists the sales team to have a better project risk management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project%20marketing" title="project marketing">project marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=tendering" title=" tendering"> tendering</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20management" title=" project management"> project management</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-key%20projects" title=" turn-key projects"> turn-key projects</a> </p> <a href="https://publications.waset.org/abstracts/34206/a-risk-management-framework-for-selling-a-mega-power-plant-project-in-a-new-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aran%20Dezhban">Aran Dezhban</a>, <a href="https://publications.waset.org/abstracts/search?q=Hooshang%20Dolatshahi%20Pirooz"> Hooshang Dolatshahi Pirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed-type%20jacket%20structure" title="fixed-type jacket structure">fixed-type jacket structure</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity%20management" title=" structural integrity management"> structural integrity management</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20pushover%20analysis" title=" nonlinear pushover analysis"> nonlinear pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20and%20damaged%20structure" title=" robust and damaged structure"> robust and damaged structure</a>, <a href="https://publications.waset.org/abstracts/search?q=reserve%20strength%20ration" title=" reserve strength ration"> reserve strength ration</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20curve" title=" capacity curve"> capacity curve</a> </p> <a href="https://publications.waset.org/abstracts/151947/comparison-of-reserve-strength-ratio-and-capacity-curve-parameters-of-offshore-platforms-with-distinct-bracing-arrangements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> The Predictive Value of Extensor Grip Test for the Effectiveness of Treatment for Tennis Elbow: A Randomized Controlled Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Zehtab">Mohammad Javad Zehtab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alireza%20Mirghasemi"> S. Alireza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Majlesara"> Ali Majlesara</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Tajik"> Parvin Tajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Siavashi"> Babak Siavashi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: There are different modalities proposed for tennis elbow treatment with few randomized trials comparing them. We designed a study to compare the effectiveness of five different modalities and determine the usefulness of recently proposed extensor grip test (EGT) in predicting the response to treatment. Methods: In a randomized controlled clinical trial 92 of 98 tennis elbow patients in Sina hospital of Tehran, Iran between 2006 and 2007 fulfill trial entry criteria, among these patients 56 (60.9%) had positive EGT result. Stratified on EGT result, patients allocated randomly to 5 treatment groups: Brace (B) group, physiotherapy (P), brace + physiotherapy (BP), injection (I) and injection + physiotherapy (IP). Results: Patients who had positive result of EGT had better response to treatments: less SOC (p = 0.06), less PFFQ and patients’ satisfaction scores (p < 0.001). Among the treatment IP was the most successful, then BP, P and B, respectively; injection was the worst treatment modality. Response to treatment was comparable in all groups between EGT positive and negative patients except bracing; in which positive EGT was correlated with a dramatic response to treatment. Conclusion: In all patients IP and then BP is recommended but in EGT negatives, bracing seems to be of no use. Injection alone is not recommended in either group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tennis%20elbow" title="tennis elbow">tennis elbow</a>, <a href="https://publications.waset.org/abstracts/search?q=extensor%20grip%20test" title=" extensor grip test"> extensor grip test</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tennis%20elbow%20treatment" title=" tennis elbow treatment"> tennis elbow treatment</a> </p> <a href="https://publications.waset.org/abstracts/34774/the-predictive-value-of-extensor-grip-test-for-the-effectiveness-of-treatment-for-tennis-elbow-a-randomized-controlled-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arif%20Armagan%20Gozutok">Arif Armagan Gozutok</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kule"> Alper Kule</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Tos"> Burak Tos</a>, <a href="https://publications.waset.org/abstracts/search?q=Selman%20Demirel"> Selman Demirel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HARQ" title="HARQ">HARQ</a>, <a href="https://publications.waset.org/abstracts/search?q=LEO" title=" LEO"> LEO</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20constellation" title=" satellite constellation"> satellite constellation</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a> </p> <a href="https://publications.waset.org/abstracts/134154/capacity-estimation-of-hybrid-automated-repeat-request-protocol-for-low-earth-orbit-mega-constellations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Reflections of Nocturnal Librarian: Attaining a Work-Life Balance in a Mega-City of Lagos State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Durodolu">Oluwole Durodolu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rationale for this study is to explore the adaptive strategy that librarians adopt in performing night shifts in a mega-city like Lagos state. Maslach Burnout Theory would be used to measure the three proportions of burnout in understanding emotional exhaustion, depersonalisation, and individual accomplishment to scrutinise job-related burnout syndrome allied with longstanding, unsolved stress. The qualitative methodology guided by a phenomenological research paradigm, which is an approach that focuses on the commonality of real-life experience in a particular group, would be used, focus group discussion adopted as a method of data collection from library staff who are involved in night-shift. The participant for the focus group discussion would be selected using a convenience sampling technique in which staff at the cataloguing unit would be included in the sample because of the representative characteristics of the unit. This would be done to enable readers to understand phenomena as it is reasonable than from a remote perspective. The exploratory interviews which will be in focus group method to shed light on issues relating to security, housing, transportation, budgeting, energy supply, employee duties, time management, information access, and sustaining professional levels of service and how all these variables affect the productivity of all the 149 library staff and their work-life balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nightshift" title="nightshift">nightshift</a>, <a href="https://publications.waset.org/abstracts/search?q=work-life%20balance" title=" work-life balance"> work-life balance</a>, <a href="https://publications.waset.org/abstracts/search?q=mega-city" title=" mega-city"> mega-city</a>, <a href="https://publications.waset.org/abstracts/search?q=academic%20library" title=" academic library"> academic library</a>, <a href="https://publications.waset.org/abstracts/search?q=Maslach%20Burnout%20Theory" title=" Maslach Burnout Theory"> Maslach Burnout Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagos%20State" title=" Lagos State"> Lagos State</a>, <a href="https://publications.waset.org/abstracts/search?q=University%20of%20Lagos" title=" University of Lagos"> University of Lagos</a> </p> <a href="https://publications.waset.org/abstracts/117402/reflections-of-nocturnal-librarian-attaining-a-work-life-balance-in-a-mega-city-of-lagos-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mega%20bracing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10