CINXE.COM

Search results for: thermophilic strain

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermophilic strain</title> <meta name="description" content="Search results for: thermophilic strain"> <meta name="keywords" content="thermophilic strain"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermophilic strain" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermophilic strain"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1652</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermophilic strain</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1652</span> Clostridium thermocellum DBT-IOC-C19, A Potential CBP Isolate for Ethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Puri"> Munish Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Collin%20Barrow"> Collin Barrow</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Tuli"> Deepak Tuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20S.%20Mathur"> Anshu S. Mathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological conversion of lignocellulosic biomass to ethanol is a promising strategy to solve the present global crisis of exhausting fossil fuels. The existing bioethanol production technologies have cost constraints due to the involvement of mandate pretreatment and extensive enzyme production steps. A unique process configuration known as consolidated bioprocessing (CBP) is believed to be a potential cost-effective process due to its efficient integration of enzyme production, saccharification, and fermentation into one step. Due to several favorable reasons like single step conversion, no need of adding exogenous enzymes and facilitated product recovery, CBP has gained the attention of researchers worldwide. However, there are several technical and economic barriers which need to be overcome for making consolidated bioprocessing a commercially viable process. Finding a natural candidate CBP organism is critically important and thermophilic anaerobes are preferred microorganisms. The thermophilic anaerobes that can represent CBP mainly belong to genus Clostridium, Caldicellulosiruptor, Thermoanaerobacter, Thermoanaero bacterium, and Geobacillus etc. Amongst them, Clostridium thermocellum has received increased attention as a high utility CBP candidate due to its highest growth rate on crystalline cellulose, the presence of highly efficient cellulosome system and ability to produce ethanol directly from cellulose. Recently with the availability of genetic and molecular tools aiding the metabolic engineering of Clostridium thermocellum have further facilitated the viability of commercial CBP process. With this view, we have specifically screened cellulolytic and xylanolytic thermophilic anaerobic ethanol producing bacteria, from unexplored hot spring/s in India. One of the isolates is a potential CBP organism identified as a new strain of Clostridium thermocellum. This strain has shown superior avicel and xylan degradation under unoptimized conditions compared to reported wild type strains of Clostridium thermocellum and produced more than 50 mM ethanol in 72 hours from 1 % avicel at 60°C. Besides, this strain shows good ethanol tolerance and growth on both hexose and pentose sugars. Hence, with further optimization this new strain could be developed as a potential CBP microbe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title="Clostridium thermocellum">Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated%20bioprocessing" title=" consolidated bioprocessing"> consolidated bioprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobes" title=" thermophilic anaerobes"> thermophilic anaerobes</a> </p> <a href="https://publications.waset.org/abstracts/33981/clostridium-thermocellum-dbt-ioc-c19-a-potential-cbp-isolate-for-ethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1651</span> Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Maus">Irena Maus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Gabriella%20Cibis"> Katharina Gabriella Cibis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bremges"> Andreas Bremges</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvonne%20Stolze"> Yvonne Stolze</a>, <a href="https://publications.waset.org/abstracts/search?q=Geizecler%20Tomazetto"> Geizecler Tomazetto</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Wibberg"> Daniel Wibberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20K%C3%B6nig"> Helmut König</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20P%C3%BChler"> Alfred Pühler</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Schl%C3%BCter"> Andreas Schlüter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome%20sequence" title="genome sequence">genome sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20biogas%20plant" title=" thermophilic biogas plant"> thermophilic biogas plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermotogae" title=" Thermotogae"> Thermotogae</a>, <a href="https://publications.waset.org/abstracts/search?q=Defluviitoga%20tunisiensis" title=" Defluviitoga tunisiensis"> Defluviitoga tunisiensis</a> </p> <a href="https://publications.waset.org/abstracts/29463/insights-into-the-annotated-genome-sequence-of-defluviitoga-tunisiensis-l3-isolated-from-a-thermophilic-rural-biogas-producing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1650</span> Fungal Cellulase/Xylanase Complex and Their Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateldze">L. Kutateldze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze"> T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zakariashvili"> N. Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Khokhashvili"> I. Khokhashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sadunishvili"> T. Sadunishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial cellulase/xylanase have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Extremophilic micromycetes and their enzymes that are resistant to critical values of temperature and pH, and retaining enzyme activity for a long time are of great industrial interest. Among strains of microscopic fungi from the collection of S. Durmishidze Institute of Biochemistry and Biotechnology, strains isolated from different ecological niches of Southern Caucasus-active producers of cellulase/xylanase have been selected by means of screening under deep cultivation conditions. Representatives of the genera Aspergillus, Penicillium and Trichoderma are outstanding by relatively high activities of these enzymes. Among the producers were revealed thermophilic strains, representatives of the genus Aspergillus-Aspergillus terreus, Aspergillus versicolor, Aspergillus wentii, also strains of Sporotrichum pulverulentum and Chaetomium thermophile. As a result of optimization of cultivation media and conditions, activities of enzymes produced by the strains have been increased by 4 -189 %. Two strains, active producers of cellulase/xylanase – Penicillium canescence E2 (mesophile) and Aspergillus versicolor Z17 (thermophile) were chosen for further studies. Cellulase/xylanase enzyme preparations from two different genera of microscopic fungi Penicillium canescence E2 and Aspergillus versicolor Z 17 were obtained with activities 220 U/g /1200 U/g and 125 U/g /940 U/g, correspondingly. Main technical characteristics were as follows: the highest enzyme activities were obtained for mesophilic strain Penicillium canescence E2 at 45-500C, while almost the same enzyme activities were fixed for the thermophilic strain Aspergillus versicolor Z 17 at temperature 60-65°C, exceeding the temperature optimum of the mesophile by 150C. Optimum pH of action of the studied cellulase/xylanases from mesophileic and thermophilic strains were similar and equaled to 4.5-5.0 It has been shown that cellulase/xylanase technical preparations from selected strains of Penicillium canescence E2 and Aspergillus versicolor Z17 hydrolyzed cellulose of untreated wheat straw to reducible sugars by 46-52%, and to glucose by 22-27%. However the thermophilic enzyme preparations from the thermophilic A.versicolor strains conducted the process at 600C higher by 100C as compared to mesophlic analogue. Rate of hydrolyses of the pretreated substrate by the same enzyme preparations to reducible sugars and glucose conducted at optimum for their action 60 and 500C was 52-61% and 29-33%, correspondingly. Thus, maximum yield of glucose and reducible sugars form untreated and pretreated wheat straw was achieved at higher temperature (600C) by enzyme preparations from thermophilic strain, which gives advantage for their industrial application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase%2Fxylanase" title="cellulase/xylanase">cellulase/xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20hydrolysis" title=" cellulose hydrolysis"> cellulose hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain" title=" thermophilic strain"> thermophilic strain</a> </p> <a href="https://publications.waset.org/abstracts/27128/fungal-cellulasexylanase-complex-and-their-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1649</span> Bioremediation of Arsenic from Industrially Polluted Soil of Vatva, Ahmedabad, Gujarat, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Makwana">C. Makwana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dave"> S. R. Dave </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is toxic to almost all living cells. Its contamination in natural sources affects the growth of microorganisms. The presence of arsenic is associated with various human disorders also. The attempt of this sort of study provides information regarding the performance of our isolated microorganisms in the presence of Arsenic, which have ample scope for bioremediation. Six isolates were selected from the polluted sample of industrial zone Vatva, Ahmedabad, Gujarat, India, out of which two were Thermophilic organisms. The thermophilic exopolysaccharide (EPS) producing Bacillus was used for microbial enhance oil recovery (MEOR) and in the bio beneficiation. Inorganic arsenic primarily exists in the form of arsenate or arsenite. This arsenic resistance isolate was capable of transforming As +3 to As+5. This isolate would be useful for arsenic remediation standpoint from aquatic systems. The study revealed that the thermophilic microorganism was growing at 55 degree centigrade showed considerable remediation property. The results on the growth and enzyme catalysis would be discussed in response to Arsenic remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20systems" title="aquatic systems">aquatic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=exopolysacchride" title=" exopolysacchride"> exopolysacchride</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a> </p> <a href="https://publications.waset.org/abstracts/37578/bioremediation-of-arsenic-from-industrially-polluted-soil-of-vatva-ahmedabad-gujarat-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1648</span> Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivankar%20Agrawal">Shivankar Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira%20Sarangthem"> Indira Sarangthem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a> </p> <a href="https://publications.waset.org/abstracts/129275/anti-staphylococcus-aureus-and-methicillin-resistant-staphylococcus-aureus-action-of-thermophilic-fungi-acrophialophora-levis-ibsd19-and-determination-of-its-mode-of-action-using-electron-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1647</span> High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peerawat%20Khongkliang">Peerawat Khongkliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Prawit%20Kongjan"> Prawit Kongjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Imai"> Tsuyoshi Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonsuk%20Prasertsan"> Poonsuk Prasertsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sompong%20O-Thong"> Sompong O-Thong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20starch%20processing%20wastewater" title="cassava starch processing wastewater">cassava starch processing wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title=" biohydrogen"> biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20fermentation" title=" thermophilic fermentation"> thermophilic fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20electrolysis%20cell" title=" microbial electrolysis cell"> microbial electrolysis cell</a> </p> <a href="https://publications.waset.org/abstracts/43009/high-efficient-biohydrogen-production-from-cassava-starch-processing-wastewater-by-two-stage-thermophilic-fermentation-and-electrohydrogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1646</span> Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Cong%20Chinh">Duong Cong Chinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Quang%20Huy"> Le Quang Huy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rate%20anaerobic%20digestion" title="high rate anaerobic digestion">high rate anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic" title=" thermophilic anaerobic"> thermophilic anaerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/110378/thermophilic-anaerobic-granular-membrane-distillation-bioreactor-for-wastewater-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1645</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1644</span> Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bayat">A. Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bello-Mendoza"> R. Bello-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Wareham"> D. G. Wareham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20solids%20concentration" title=" total solids concentration"> total solids concentration</a> </p> <a href="https://publications.waset.org/abstracts/111217/anaerobic-digestion-of-green-wastes-at-different-solids-concentrations-and-temperatures-to-enhance-methane-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1643</span> New Dynamic Constitutive Model for OFHC Copper Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sung%20Kim">Jin Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Huh"> Hoon Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rate%20dependent%20material%20properties" title="rate dependent material properties">rate dependent material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20constitutive%20model" title=" dynamic constitutive model"> dynamic constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=OFHC%20copper%20film" title=" OFHC copper film"> OFHC copper film</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/3721/new-dynamic-constitutive-model-for-ofhc-copper-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1642</span> Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rida%20B.%20Arieby">Rida B. Arieby</a>, <a href="https://publications.waset.org/abstracts/search?q=Hameed%20N.%20Hameed"> Hameed N. Hameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20jump%20tests" title="strain rate jump tests">strain rate jump tests</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20strain" title=" volume strain"> volume strain</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20strain" title=" large strain"> large strain</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics%20approach" title=" thermodynamics approach"> thermodynamics approach</a> </p> <a href="https://publications.waset.org/abstracts/6857/experimental-investigation-and-constitutive-modeling-of-volume-strain-under-uniaxial-strain-rate-jump-test-in-hdpe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1641</span> Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mantai%20Chen">Mantai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20Ching%20Ming%20Ho"> Johnny Ching Ming Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20concrete%20stress%20block" title=" equivalent concrete stress block"> equivalent concrete stress block</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gradient" title=" strain gradient"> strain gradient</a> </p> <a href="https://publications.waset.org/abstracts/5486/flexural-strength-design-of-rc-beams-with-consideration-of-strain-gradient-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1640</span> Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20B.%20Patil">Sachin B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20M.%20Kanhe"> Narendra M. Kanhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20wash" title="spent wash">spent wash</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/47145/anaerobic-digestion-of-spent-wash-through-biomass-development-for-obtaining-biogas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1639</span> Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiawei%20Chen">Jiawei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Qu"> Jia Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianwei%20Ju"> Dianwei Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20stretch" title="impact stretch">impact stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=316L%20stainless%20steel" title=" 316L stainless steel"> 316L stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20stress-strain" title=" real stress-strain"> real stress-strain</a>, <a href="https://publications.waset.org/abstracts/search?q=normalization" title=" normalization"> normalization</a> </p> <a href="https://publications.waset.org/abstracts/88153/impact-tensile-mechanical-properties-of-316l-stainless-steel-at-different-strain-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1638</span> Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lali%20Kutateladze">Lali Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Urushadze"> Tamar Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Dudauri"> Tamar Dudauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Besarion%20Metreveli"> Besarion Metreveli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Zakariashvili"> Nino Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Izolda%20Khokhashvili"> Izolda Khokhashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Jobava"> Maya Jobava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20bacteria" title="anaerobic bacteria">anaerobic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20wastes" title=" cellulosic wastes"> cellulosic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridia%20sp" title=" Clostridia sp"> Clostridia sp</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a> </p> <a href="https://publications.waset.org/abstracts/76441/fermentation-of-pretreated-herbaceous-cellulosic-wastes-to-ethanol-by-anaerobic-cellulolytic-and-saccharolytic-thermophilic-clostridia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1637</span> A Crystal Plasticity Approach to Model Dynamic Strain Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Bal">Burak Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demircan%20Canadinc"> Demircan Canadinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20aging" title=" dynamic strain aging"> dynamic strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadfield%20steel" title=" Hadfield steel"> Hadfield steel</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20strain%20rate%20sensitivity" title=" negative strain rate sensitivity"> negative strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/76918/a-crystal-plasticity-approach-to-model-dynamic-strain-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1636</span> Development of a Highly Flexible, Sensitive and Stretchable Polymer Nanocomposite for Strain Sensing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaghayegh%20Shajari">Shaghayegh Shajari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mahmoodi"> Mehdi Mahmoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Rajabian"> Mahmood Rajabian</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttandaraman%20Sundararaj"> Uttandaraman Sundararaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Les%20J.%20Sudak"> Les J. Sudak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although several strain sensors based on carbon nanotubes (CNTs) have been reported, the stretchability and sensitivity of these sensors have remained as a challenge. Highly stretchable and sensitive strain sensors are in great demand for human motion monitoring and human-machine interface. This paper reports the fabrication and characterization of a new type of strain sensors based on a stretchable fluoropolymer / CNT nanocomposite system made via melt-mixing technique. Electrical and mechanical characterizations were obtained. The results showed that this nanocomposite sensor has high stretchability up to 280% of strain at an optimum level of filler concentration. The piezoresistive properties and the strain sensing mechanism of the strain sensor were investigated using Electrochemical Impedance Spectroscopy (EIS). High sensitivity was obtained (gauge factor as large as 12000 under 120% applied strain) in particular at the concentrations above the percolation threshold. Due to the tunneling effect, a non- linear piezoresistivity was observed at high concentrations of CNT loading. The nanocomposites with good conductivity and lightweight could be a promising candidate for strain sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=fluoropolymer" title=" fluoropolymer"> fluoropolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoresistive" title=" piezoresistive"> piezoresistive</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20sensor" title=" strain sensor"> strain sensor</a> </p> <a href="https://publications.waset.org/abstracts/87421/development-of-a-highly-flexible-sensitive-and-stretchable-polymer-nanocomposite-for-strain-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1635</span> Cellulolytic and Xylanolytic Enzymes from Mycelial Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sadunishvili">T. Sadunishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kutateladze"> L. Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Urushadze"> T. Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Khvedelidze"> R. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zakariashvili"> N. Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobava"> M. Jobava</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kvesitadze"> G. Kvesitadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple repeated soil-climatic zones in Georgia determines the diversity of microorganisms. Hundreds of microscopic fungi of different genera have been isolated from different ecological niches, including some extreme environments. Biosynthetic ability of microscopic fungi has been studied. Trichoderma ressei, representative of the Ascomycetes secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. The other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β-glucosidase, and hence has limited efficiency in cellulose hydrolysis. Six producers of stable cellulases and xylanases from mesophilic and thermophilic fungi have been selected. By optimization of submerged cultivation conditions, high activities of cellulases and xylanases were obtained. For enzymes purification, their sedimentation by organic solvents such as ethyl alcohol, acetone, isopropanol and by ammonium sulphate in different ratios have been carried out. Best results were obtained with precipitation by ethyl alcohol (1:3.5) and ammonium sulphate. The yields of enzyme according to cellulase activities were 80-85% in both cases. Cellulase activity of enzyme preparation obtained from the strain Trichoderma viride X 33 is 126 U/g, from the strain Penicillium canescence D 85–185U/g and from the strain Sporotrichum pulverulentum T 5-0 110 U/g. Cellulase activity of enzyme preparation obtained from the strain Aspergillus sp. Av10 is 120 U/g, xylanase activity of enzyme preparation obtained from the strain Aspergillus niger A 7-5–1155U/g and from the strain Aspergillus niger Aj 38-1250 U/g. Optimum pH and temperature of operation and thermostability, of the enzyme preparations, were established. The efficiency of hydrolyses of different agricultural residues by the microscopic fungi cellulases has been studied. The glucose yield from the residues as a result of enzymatic hydrolysis is highly determined by the ratio of enzyme to substrate, pH, temperature, and duration of the process. Hydrolysis efficiency was significantly increased as a result of different pretreatment of the residues by different methods. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20fungi" title=" microscopic fungi"> microscopic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/78640/cellulolytic-and-xylanolytic-enzymes-from-mycelial-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1634</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1633</span> Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Zoghi">Milad Zoghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zahangir%20Kabir"> M. Zahangir Kabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=armchair%20graphene%20nanoribbon" title="armchair graphene nanoribbon">armchair graphene nanoribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20tunneling%20diode" title=" resonant tunneling diode"> resonant tunneling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20strain" title=" uniaxial strain"> uniaxial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20to%20valley%20ratio" title=" peak to valley ratio"> peak to valley ratio</a> </p> <a href="https://publications.waset.org/abstracts/101092/performance-of-armchair-graphene-nanoribbon-resonant-tunneling-diode-under-uniaxial-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1632</span> Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arafat%20A.%20A.%20Shabaneh">Arafat A. A. Shabaneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cascaded%20fiber%20Bragg%20gratings" title="Cascaded fiber Bragg gratings">Cascaded fiber Bragg gratings</a>, <a href="https://publications.waset.org/abstracts/search?q=Strain%20sensor" title="Strain sensor">Strain sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Remote%20sensing" title="Remote sensing">Remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Wavelength%20shift" title="Wavelength shift">Wavelength shift</a> </p> <a href="https://publications.waset.org/abstracts/140522/design-of-strain-sensor-based-on-cascaded-fiber-bragg-grating-for-remote-sensing-monitoring-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1631</span> Isolation and Characterization of Lactic Acid Bacteria from Libyan Traditional Fermented Milk &quot;Laban&quot;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Nahaisi">M. H. Nahaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Almaroum"> N. M. Almaroum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laban is a Libyan traditional fermented milk product. This lactic fermentation has been known in many cities of Libya long time ago as stable, nutritious, refreshing drink especially during the summer. 16 naturally fermented milk samples were collected from different cities located in North West of Libya. The average pH, titratable acidity, fat and total solids were 4.16, 0.73%, 1.54% and 8.12 % respectively. Coliform, yeast and mold counts were 21×10⁴, 39×10⁴ and 41 ×10³ cfu/ ml. respectively. The average Lactococcus, Streptococcus, Mesophilic Lactobacillus / Leuconostoc and Thermophilic Lactobacillus counts were 99 ×10⁷, 96 ×10⁷, 93 ×10⁷ and 15 ×10⁷ cfu / ml. respectively. A total of one hundred forty two lactic acid bacteria (LAB) isolates were identified to the genus level as Lactobacillus (48.59%), Lactococcus (43.66%), Streptococcus (4.93%) and Leuconostoc (2.82%). Sugar fermentation tests have revealed that the most frequently Lactobacillus species was found to be Lactobacillus delbrueckii ssp. lactis (62.32%) followed by Lactobacillus plantarum (31.88%). Furthermore, other selected LAB isolates were identified by API 50 CH test as Lactococcus lactis ssp. lactics, Lactobacillus pentosus, Lactobacillus brevis and Leuconostoc mesenteroides ssp. cremoris. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traditional%20fermented%20milk" title="traditional fermented milk">traditional fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=laban" title=" laban"> laban</a>, <a href="https://publications.waset.org/abstracts/search?q=lactococcus" title=" lactococcus"> lactococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=streptococcus" title=" streptococcus"> streptococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20lactobacillus" title=" mesophilic lactobacillus"> mesophilic lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20lactobacillus%20counts" title=" thermophilic lactobacillus counts"> thermophilic lactobacillus counts</a> </p> <a href="https://publications.waset.org/abstracts/21085/isolation-and-characterization-of-lactic-acid-bacteria-from-libyan-traditional-fermented-milk-laban" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1630</span> Two-Dimensional Electron Gas with 100% Spin- Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwuer%20Jilili">Jiwuer Jilili</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Cossu"> Fabrizio Cossu</a>, <a href="https://publications.waset.org/abstracts/search?q=Udo%20Schwingenschlogl"> Udo Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganite" title="manganite">manganite</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=2DEG" title=" 2DEG"> 2DEG</a>, <a href="https://publications.waset.org/abstracts/search?q=superlattice" title=" superlattice"> superlattice</a> </p> <a href="https://publications.waset.org/abstracts/4916/two-dimensional-electron-gas-with-100-spin-polarization-in-the-lamno32srtio32-superlattice-under-uniaxial-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1629</span> Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Yazdanmehr">A. Yazdanmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jahed"> H. Jahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20strain" title="large strain">large strain</a>, <a href="https://publications.waset.org/abstracts/search?q=compression-tension" title=" compression-tension"> compression-tension</a>, <a href="https://publications.waset.org/abstracts/search?q=loading-unloading" title=" loading-unloading"> loading-unloading</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloys" title=" Mg alloys"> Mg alloys</a> </p> <a href="https://publications.waset.org/abstracts/89743/large-strain-compression-tension-behavior-of-az31b-rolled-sheet-in-the-rolling-direction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1628</span> Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Materials Produced by ARB and ECAP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Sob">P. B. Sob</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Tengen"> T. B. Tengen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20materials" title="nanostructured materials">nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20variants" title=" grain size variants"> grain size variants</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20sensitivity" title=" strain rate sensitivity"> strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/36624/determination-of-strain-rate-sensitivity-srs-for-grain-size-variants-on-nanocrystalline-materials-produced-by-arb-and-ecap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1627</span> Modelling and Simulation of a Commercial Thermophilic Biogas Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremiah%20L.%20Chukwuneke">Jeremiah L. Chukwuneke</a>, <a href="https://publications.waset.org/abstracts/search?q=Obiora%20E.%20Anisiji"> Obiora E. Anisiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinonso%20H.%20Achebe"> Chinonso H. Achebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20C.%20Okolie"> Paul C. Okolie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20mass%20conservation" title="energy and mass conservation">energy and mass conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20growth%20rate" title=" specific growth rate"> specific growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20bacteria" title=" thermophilic bacteria"> thermophilic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20bio%20gas%20production" title=" rate of bio gas production"> rate of bio gas production</a> </p> <a href="https://publications.waset.org/abstracts/14100/modelling-and-simulation-of-a-commercial-thermophilic-biogas-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1626</span> Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang">Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Beskhyroun"> Sherif Beskhyroun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strain%20sensing%20sheets" title="strain sensing sheets">strain sensing sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title=" deep neural networks"> deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20measurement" title=" strain measurement"> strain measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=SHM%20system" title=" SHM system"> SHM system</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a> </p> <a href="https://publications.waset.org/abstracts/159966/development-of-deep-neural-network-based-strain-values-prediction-models-for-full-scale-reinforced-concrete-frames-using-highly-flexible-sensing-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1625</span> Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20Adel">Walid M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Guo-Zhu"> Liang Guo-Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 &deg;C to +76 &deg;C and strain rates 0.000164 to 0.328084 s<sup>-1 </sup>using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AP%2FHTPB%20composite%20solid%20propellant" title="AP/HTPB composite solid propellant">AP/HTPB composite solid propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20viscoelastic" title=" nonlinear viscoelastic"> nonlinear viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/80610/analysis-of-mechanical-properties-for-aphtpb-solid-propellant-under-different-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1624</span> Aptitude of a Lactococcus Strain to Grow on Whey Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souid%20Wafa">Souid Wafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boudjenah-Haroun%20Saliha"> Boudjenah-Haroun Saliha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khacef%20Linda"> Khacef Linda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cremoris" title="cremoris">cremoris</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20industry" title=" dairy industry"> dairy industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20lactis%20subsp" title=" Lactococcus lactis subsp"> Lactococcus lactis subsp</a>, <a href="https://publications.waset.org/abstracts/search?q=medium" title=" medium"> medium</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/40949/aptitude-of-a-lactococcus-strain-to-grow-on-whey-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1623</span> Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar">Ashok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Sahu"> Sarita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Bar"> H. N. Bar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20ageing" title="dynamic strain ageing">dynamic strain ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cycle%20fatigue" title=" low cycle fatigue"> low cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=softening" title=" softening"> softening</a> </p> <a href="https://publications.waset.org/abstracts/79210/cyclic-plastic-deformation-of-20mn-mo-ni-55-steel-in-dynamic-strain-ageing-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20strain&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10