CINXE.COM

Search results for: melting point

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: melting point</title> <meta name="description" content="Search results for: melting point"> <meta name="keywords" content="melting point"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="melting point" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="melting point"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1861</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: melting point</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> Heat Transfer at Convective Solid Melting in Fixed Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Stelian%20Petrescu">Stelian Petrescu</a>, <a href="https://publications.waset.org/search?q=Adina%20Frunz%C3%A2"> Adina Frunz芒</a>, <a href="https://publications.waset.org/search?q=Camelia%20Petrescu"> Camelia Petrescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method to determine experimentally the melting rate, rm, and the heat transfer coefficients, 伪v (W/(m3K)), at convective melting in a fixed bed of particles under adiabatic regime is established in this paper. The method lies in the determining of the melting rate by measuring the fixed bed height in time. Experimental values of rm, 伪 and 伪 v were determined using cylindrical particles of ice (d = 6.8 mm, h = 5.5 mm) and, as a melting agent, aqueous NaCl solution with a temperature of 283 K at different values of the liquid flow rate (11.63路10-6, 28.83路10-6, 38.83路10-6 m3/s). Our experimental results were compared with those existing in literature being noticed a good agreement for Re values higher than 50. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Convective%20melting" title="Convective melting">Convective melting</a>, <a href="https://publications.waset.org/search?q=fixed%20bed" title=" fixed bed"> fixed bed</a>, <a href="https://publications.waset.org/search?q=packed%20bed" title=" packed bed"> packed bed</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=ice%20melting." title=" ice melting."> ice melting.</a> </p> <a href="https://publications.waset.org/3755/heat-transfer-at-convective-solid-melting-in-fixed-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3755/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3755/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3755/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3755/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3755/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3755/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3755/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3755/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3755/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3755/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1826</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1860</span> Behavior of Generated Gas in Lost Foam Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Khodai">M. Khodai</a>, <a href="https://publications.waset.org/search?q=S.%20M.%20H.%20Mirbagheri"> S. M. H. Mirbagheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Lost Foam Casting process, melting point temperature of metal, as well as volume and rate of the foam degradation have significant effect on the mold filling pattern. Therefore, gas generation capacity and gas gap length are two important parameters for modeling of mold filling time of the lost foam casting processes. In this paper, the gas gap length at the liquidfoam interface for a low melting point (aluminum) alloy and a high melting point (Carbon-steel) alloy are investigated by the photography technique. Results of the photography technique indicated, that the gas gap length and the mold filling time are increased with increased coating thickness and density of the foam. The Gas gap lengths measured in aluminum and Carbon-steel, depend on the foam density, and were approximately 4-5 and 25-60 mm, respectively. By using a new system, the gas generation capacity for the aluminum and steel was measured. The gas generation capacity measurements indicated that gas generation in the Aluminum and Carbon-steel lost foam casting was about 50 CC/g and 3200 CC/g polystyrene, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=gas%20gap" title="gas gap">gas gap</a>, <a href="https://publications.waset.org/search?q=lost%20foam%20casting" title=" lost foam casting"> lost foam casting</a>, <a href="https://publications.waset.org/search?q=photographytechnique." title=" photographytechnique."> photographytechnique.</a> </p> <a href="https://publications.waset.org/6159/behavior-of-generated-gas-in-lost-foam-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6159/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6159/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6159/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6159/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6159/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6159/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6159/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6159/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6159/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6159/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adriana%20Souza%20M.%20Batista">Adriana Souza M. Batista</a>, <a href="https://publications.waset.org/search?q=Cl%C3%A1ubia%20Pereira"> Cl谩ubia Pereira</a>, <a href="https://publications.waset.org/search?q=Luiz%20O.%20Faria"> Luiz O. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Differential%20scanning%20calorimetry" title="Differential scanning calorimetry">Differential scanning calorimetry</a>, <a href="https://publications.waset.org/search?q=gamma%0D%0Airradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/search?q=X-ray%20diffraction%20technique." title=" X-ray diffraction technique."> X-ray diffraction technique.</a> </p> <a href="https://publications.waset.org/10003462/effect-of-gamma-irradiation-on-the-crystalline-structure-of-polyvinylidene-fluoride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003462/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003462/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003462/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003462/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003462/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003462/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003462/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003462/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003462/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003462/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1618</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lippong%20Tan">Lippong Tan</a>, <a href="https://publications.waset.org/search?q=Yuenting%20Kwok"> Yuenting Kwok</a>, <a href="https://publications.waset.org/search?q=Ahbijit%20Date"> Ahbijit Date</a>, <a href="https://publications.waset.org/search?q=Aliakbar%20Akbarzadeh"> Aliakbar Akbarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Phase%20change%20material" title="Phase change material">Phase change material</a>, <a href="https://publications.waset.org/search?q=thermal%20enhancement" title=" thermal enhancement"> thermal enhancement</a>, <a href="https://publications.waset.org/search?q=aluminum%20spiral%20fillers" title=" aluminum spiral fillers"> aluminum spiral fillers</a>, <a href="https://publications.waset.org/search?q=fins" title=" fins"> fins</a> </p> <a href="https://publications.waset.org/14056/numerical-study-of-natural-convection-effects-in-latent-heat-storage-using-aluminum-fins-and-spiral-fillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14056/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14056/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14056/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14056/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14056/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14056/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14056/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14056/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14056/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14056/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3406</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad%20Aroziki%20Abdul%20Aziz">Ahmad Aroziki Abdul Aziz</a>, <a href="https://publications.waset.org/search?q=Sakinah%20Mohd%20Alauddin"> Sakinah Mohd Alauddin</a>, <a href="https://publications.waset.org/search?q=Ruzitah%20Mohd%20Salleh"> Ruzitah Mohd Salleh</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Iqbal%20Shueb"> Mohammed Iqbal Shueb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 &plusmn; 25oC) and (480 &plusmn; 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (&plusmn;1oC) and captured double melting point at 84 (&plusmn;2oC) and 108 (&plusmn;2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cable%20and%20Wire" title="Cable and Wire">Cable and Wire</a>, <a href="https://publications.waset.org/search?q=LDPE%2FEVA" title=" LDPE/EVA"> LDPE/EVA</a>, <a href="https://publications.waset.org/search?q=Nano%20MH" title=" Nano MH"> Nano MH</a>, <a href="https://publications.waset.org/search?q=Nano%0D%0AParticles" title=" Nano Particles"> Nano Particles</a>, <a href="https://publications.waset.org/search?q=Thermal%20properties." title=" Thermal properties."> Thermal properties.</a> </p> <a href="https://publications.waset.org/10000058/the-thermal-properties-of-nano-magnesium-hydroxide-blended-with-ldpeevairganox1010-for-insulator-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000058/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000058/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000058/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000058/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000058/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000058/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000058/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000058/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000058/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000058/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3044</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Fabrication of Cesium Iodide Columns by Rapid Heating Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chien-Wan%20Hun">Chien-Wan Hun</a>, <a href="https://publications.waset.org/search?q=Shao-Fu%20Chang"> Shao-Fu Chang</a>, <a href="https://publications.waset.org/search?q=Chien-Chon%20Chen"> Chien-Chon Chen</a>, <a href="https://publications.waset.org/search?q=Ker-Jer%20Huang"> Ker-Jer Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cesium%20iodide" title="Cesium iodide">Cesium iodide</a>, <a href="https://publications.waset.org/search?q=high%20efficiency" title=" high efficiency"> high efficiency</a>, <a href="https://publications.waset.org/search?q=vapor" title=" vapor"> vapor</a>, <a href="https://publications.waset.org/search?q=rapid%20heating" title=" rapid heating"> rapid heating</a>, <a href="https://publications.waset.org/search?q=crystal%20column." title=" crystal column."> crystal column.</a> </p> <a href="https://publications.waset.org/10007295/fabrication-of-cesium-iodide-columns-by-rapid-heating-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007295/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007295/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007295/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007295/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007295/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007295/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007295/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007295/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007295/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007295/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1086</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> Effect of CW Laser Annealing on Silicon Surface for Application of Power Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Satoru%20Kaneko">Satoru Kaneko</a>, <a href="https://publications.waset.org/search?q=Takeshi%20Ito"> Takeshi Ito</a>, <a href="https://publications.waset.org/search?q=Kensuke%20Akiyama"> Kensuke Akiyama</a>, <a href="https://publications.waset.org/search?q=Manabu%20Yasui"> Manabu Yasui</a>, <a href="https://publications.waset.org/search?q=Chihiro%20Kato"> Chihiro Kato</a>, <a href="https://publications.waset.org/search?q=Satomi%20Tanaka"> Satomi Tanaka</a>, <a href="https://publications.waset.org/search?q=Yasuo%20Hirabayashi"> Yasuo Hirabayashi</a>, <a href="https://publications.waset.org/search?q=Takeshi%20Ozawa"> Takeshi Ozawa</a>, <a href="https://publications.waset.org/search?q=Akira%20Matsuno"> Akira Matsuno</a>, <a href="https://publications.waset.org/search?q=Takashi%20Nire"> Takashi Nire</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Funakubo"> Hiroshi Funakubo</a>, <a href="https://publications.waset.org/search?q=Mamoru%20Yoshimoto"> Mamoru Yoshimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/search?q=thermal%20distribution" title=" thermal distribution"> thermal distribution</a>, <a href="https://publications.waset.org/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/search?q=latent%20heat%20of%20fusion." title=" latent heat of fusion."> latent heat of fusion.</a> </p> <a href="https://publications.waset.org/13358/effect-of-cw-laser-annealing-on-silicon-surface-for-application-of-power-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13358/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13358/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13358/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13358/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13358/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13358/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13358/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13358/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13358/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13358/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2891</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Hafid">Mohamed Hafid</a>, <a href="https://publications.waset.org/search?q=Marcel%20Lacroix"> Marcel Lacroix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Melting%20furnace" title="Melting furnace">Melting furnace</a>, <a href="https://publications.waset.org/search?q=inverse%20heat%20transfer" title=" inverse heat transfer"> inverse heat transfer</a>, <a href="https://publications.waset.org/search?q=enthalpy%20method" title=" enthalpy method"> enthalpy method</a>, <a href="https://publications.waset.org/search?q=Levenberg%E2%80%93Marquardt%20Method." title=" Levenberg鈥揗arquardt Method."> Levenberg鈥揗arquardt Method.</a> </p> <a href="https://publications.waset.org/10004917/inverse-heat-transfer-analysis-of-a-melting-furnace-using-levenberg-marquardt-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004917/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004917/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004917/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004917/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004917/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004917/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004917/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004917/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004917/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004917/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1320</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> Closely Parametrical Model for an Electrical Arc Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Labar%20Hocine">Labar Hocine</a>, <a href="https://publications.waset.org/search?q=Dgeghader%20Yacine"> Dgeghader Yacine</a>, <a href="https://publications.waset.org/search?q=Kelaiaia%20Mounia%20Samira"> Kelaiaia Mounia Samira</a>, <a href="https://publications.waset.org/search?q=Bounaya%20Kamel"> Bounaya Kamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Modelling" title="Modelling">Modelling</a>, <a href="https://publications.waset.org/search?q=electrical%20arc" title=" electrical arc"> electrical arc</a>, <a href="https://publications.waset.org/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/search?q=EAF" title=" EAF"> EAF</a>, <a href="https://publications.waset.org/search?q=steel." title=" steel."> steel.</a> </p> <a href="https://publications.waset.org/1666/closely-parametrical-model-for-an-electrical-arc-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1666/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1666/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1666/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1666/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1666/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1666/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1666/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1666/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1666/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1666/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3248</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Suleiman%20M.%20Elhamali">Suleiman M. Elhamali</a>, <a href="https://publications.waset.org/search?q=K.%20M.%20Etmimi"> K. M. Etmimi</a>, <a href="https://publications.waset.org/search?q=A.%20Usha"> A. Usha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6渭m and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20steel" title="Carbon steel">Carbon steel</a>, <a href="https://publications.waset.org/search?q=laser%20surface%20melting" title=" laser surface melting"> laser surface melting</a>, <a href="https://publications.waset.org/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/search?q=microhardness." title=" microhardness."> microhardness.</a> </p> <a href="https://publications.waset.org/8845/the-effect-of-laser-surface-melting-on-the-microstructure-and-mechanical-properties-of-low-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8845/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8845/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8845/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8845/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8845/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8845/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8845/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8845/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8845/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8845/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2559</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/search?q=Navab%20Singh"> Navab Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=De-wetting" title="De-wetting">De-wetting</a>, <a href="https://publications.waset.org/search?q=thermal%20annealing" title=" thermal annealing"> thermal annealing</a>, <a href="https://publications.waset.org/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/search?q=porous." title=" porous."> porous.</a> </p> <a href="https://publications.waset.org/10002143/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2068</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Al-Jabli">H. Al-Jabli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as &ldquo;the secondary-refrigerant indirect freezing&rdquo;, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase&rsquo;s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=High%20saline%20brine" title="High saline brine">High saline brine</a>, <a href="https://publications.waset.org/search?q=freeze-melting%20process" title=" freeze-melting process"> freeze-melting process</a>, <a href="https://publications.waset.org/search?q=ice%20crystallization" title=" ice crystallization"> ice crystallization</a>, <a href="https://publications.waset.org/search?q=brine%20disposal%20process." title=" brine disposal process."> brine disposal process.</a> </p> <a href="https://publications.waset.org/10007136/experimental-investigation-on-freeze-concentration-process-desalting-for-highly-saline-brines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007136/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007136/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007136/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007136/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007136/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007136/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007136/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007136/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007136/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007136/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1059</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Mal%C3%A7a">C. Mal莽a</a>, <a href="https://publications.waset.org/search?q=P.%20Gon%C3%A7alves"> P. Gon莽alves</a>, <a href="https://publications.waset.org/search?q=N.%20Alves"> N. Alves</a>, <a href="https://publications.waset.org/search?q=A.%20Mateus"> A. Mateus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20Manufacturing" title="Additive Manufacturing">Additive Manufacturing</a>, <a href="https://publications.waset.org/search?q=Internal%20topologies" title=" Internal topologies"> Internal topologies</a>, <a href="https://publications.waset.org/search?q=Porosity" title=" Porosity"> Porosity</a>, <a href="https://publications.waset.org/search?q=Rapid%20Prototyping" title=" Rapid Prototyping"> Rapid Prototyping</a>, <a href="https://publications.waset.org/search?q=Selective%20Laser%20Melting." title=" Selective Laser Melting."> Selective Laser Melting.</a> </p> <a href="https://publications.waset.org/10000116/influence-of-internal-topologies-on-components-produced-by-selective-laser-melting-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000116/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000116/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000116/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000116/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000116/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000116/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000116/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000116/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000116/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000116/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2363</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Radouane%20Elbahjaoui">Radouane Elbahjaoui</a>, <a href="https://publications.waset.org/search?q=Hamid%20El%20Qarnia"> Hamid El Qarnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melting of Paraffin Wax (P116) dispersed with Al<sub>2</sub>O<sub>3 </sub>nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles&rsquo; volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nano-enhanced%20phase%20change%20material" title="Nano-enhanced phase change material">Nano-enhanced phase change material</a>, <a href="https://publications.waset.org/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/search?q=latent%20heat%20storage%20unit" title=" latent heat storage unit"> latent heat storage unit</a>, <a href="https://publications.waset.org/search?q=melting." title=" melting. "> melting. </a> </p> <a href="https://publications.waset.org/10004788/numerical-analysis-of-the-melting-of-nano-enhanced-phase-change-material-in-a-rectangular-latent-heat-storage-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004788/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004788/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004788/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004788/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004788/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004788/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004788/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004788/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004788/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004788/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1376</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Radouane%20Elbahjaoui">Radouane Elbahjaoui</a>, <a href="https://publications.waset.org/search?q=Hamid%20El%20Qarnia"> Hamid El Qarnia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Phase%20change%20material" title="Phase change material">Phase change material</a>, <a href="https://publications.waset.org/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/search?q=latent%20heat%20storage%20unit" title=" latent heat storage unit"> latent heat storage unit</a>, <a href="https://publications.waset.org/search?q=melting." title=" melting."> melting.</a> </p> <a href="https://publications.waset.org/10007047/parametric-and-analysis-study-of-the-melting-in-slabs-heated-by-a-laminar-heat-transfer-fluid-in-downward-and-upward-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007047/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007047/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007047/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007047/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007047/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007047/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007047/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007047/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007047/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007047/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">907</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> Behavior of Ice Melting in Natural Convention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Dizadji">N. Dizadji</a>, <a href="https://publications.waset.org/search?q=P.%20Entezar"> P. Entezar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nusselt%20Number" title="Nusselt Number">Nusselt Number</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Grashof%20Number" title=" Grashof Number"> Grashof Number</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer%20Coefficient." title=" Heat Transfer Coefficient."> Heat Transfer Coefficient.</a> </p> <a href="https://publications.waset.org/13974/behavior-of-ice-melting-in-natural-convention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13974/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13974/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13974/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13974/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13974/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13974/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13974/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13974/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13974/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13974/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2460</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mouna%20Hamed">Mouna Hamed</a>, <a href="https://publications.waset.org/search?q=Ammar%20B.%20Brahim"> Ammar B. Brahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermal%20energy%20storage" title="Thermal energy storage">Thermal energy storage</a>, <a href="https://publications.waset.org/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/search?q=solidification." title=" solidification."> solidification.</a> </p> <a href="https://publications.waset.org/10003767/theoretical-model-of-a-flat-plate-solar-collector-integrated-with-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003767/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003767/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003767/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003767/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003767/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003767/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003767/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003767/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003767/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003767/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2127</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mouna%20Hamed">Mouna Hamed</a>, <a href="https://publications.waset.org/search?q=Ammar%20B.%20Brahim"> Ammar B. Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermal%20energy%20storage" title="Thermal energy storage">Thermal energy storage</a>, <a href="https://publications.waset.org/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/search?q=solidification." title=" solidification."> solidification.</a> </p> <a href="https://publications.waset.org/10005380/theoretical-model-of-a-flat-plate-solar-collector-integrated-with-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005380/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005380/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005380/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005380/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005380/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005380/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005380/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005380/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005380/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005380/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1265</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fabian%20Horn">Fabian Horn</a>, <a href="https://publications.waset.org/search?q=Reinhard%20Guthke"> Reinhard Guthke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=bottom-up%20approach" title="bottom-up approach">bottom-up approach</a>, <a href="https://publications.waset.org/search?q=gene%20clusters" title=" gene clusters"> gene clusters</a>, <a href="https://publications.waset.org/search?q=melting%20temperature" title=" melting temperature"> melting temperature</a>, <a href="https://publications.waset.org/search?q=metabolic%20pathway" title=" metabolic pathway"> metabolic pathway</a>, <a href="https://publications.waset.org/search?q=microarray%20probe%20design" title=" microarray probe design"> microarray probe design</a>, <a href="https://publications.waset.org/search?q=probe%20selection" title=" probe selection"> probe selection</a> </p> <a href="https://publications.waset.org/4421/probe-selection-for-pathway-specific-microarray-probe-design-minimizing-melting-temperature-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4421/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4421/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4421/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4421/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4421/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4421/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4421/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4421/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4421/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4421/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1560</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> The Effects of Electromagnetic Stirring on Microstructure and Properties of 纬-TiAl Based Alloys Fabricated by Selective Laser Melting Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Ismaeel">A. Ismaeel</a>, <a href="https://publications.waset.org/search?q=C.%20S.%20Wang"> C. S. Wang</a>, <a href="https://publications.waset.org/search?q=D.%20S.%20Xu"> D. S. Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The &gamma;-TiAl based Ti-Al-Mn-Nb alloys were fabricated by selective laser melting (SLM) on the TC4 substrate. The microstructures of the alloys were investigated in detail. The results reveal that the alloy without electromagnetic stirring (EMS) consists of &gamma;-TiAl phase with tetragonal structure and &alpha;2-Ti3Al phase with hcp structure, while the alloy with applied EMS consists of &gamma;-TiAl, &alpha;2-Ti3Al and &alpha;-Ti with hcp structure, and the morphological structure of the alloy without EMS which exhibits near lamellar structure and the alloy with EMS shows duplex structure, the alloy without EMS shows some microcracks and pores while they are not observed in the alloy without EMS. The microhardness and wear resistance values decrease with applied EMS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Selective%20laser%20melting" title="Selective laser melting">Selective laser melting</a>, <a href="https://publications.waset.org/search?q=%CE%B3-TiAl%20based%20alloys" title=" 纬-TiAl based alloys"> 纬-TiAl based alloys</a>, <a href="https://publications.waset.org/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/search?q=electromagnetic%20stirring." title=" electromagnetic stirring."> electromagnetic stirring.</a> </p> <a href="https://publications.waset.org/10011119/the-effects-of-electromagnetic-stirring-on-microstructure-and-properties-of-gh-tial-based-alloys-fabricated-by-selective-laser-melting-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">873</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1841</span> Production of Natural Gas Hydrate by Using Air and Carbon Dioxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yun-Ho%20Ahn">Yun-Ho Ahn</a>, <a href="https://publications.waset.org/search?q=Hyery%20Kang"> Hyery Kang</a>, <a href="https://publications.waset.org/search?q=Dong-Yeun%20Koh"> Dong-Yeun Koh</a>, <a href="https://publications.waset.org/search?q=Huen%20Lee"> Huen Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Air%20injection" title="Air injection">Air injection</a>, <a href="https://publications.waset.org/search?q=Carbon%20dioxide%20sequestration" title=" Carbon dioxide sequestration"> Carbon dioxide sequestration</a>, <a href="https://publications.waset.org/search?q=Hydrate%20production" title=" Hydrate production"> Hydrate production</a>, <a href="https://publications.waset.org/search?q=Natural%20gas%20hydrate." title=" Natural gas hydrate. "> Natural gas hydrate. </a> </p> <a href="https://publications.waset.org/10001740/production-of-natural-gas-hydrate-by-using-air-and-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001740/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001740/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001740/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001740/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001740/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001740/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001740/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001740/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001740/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001740/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2293</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1840</span> New Straw Combustion Technology for Cleaner Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Mika">M. Mika</a>, <a href="https://publications.waset.org/search?q="> </a>, <a href="https://publications.waset.org/search?q=P.%20Volakova"> P. Volakova</a>, <a href="https://publications.waset.org/search?q=V.%20Verner"> V. Verner</a>, <a href="https://publications.waset.org/search?q=O.%20Jankovsky"> O. Jankovsky</a>, <a href="https://publications.waset.org/search?q=B.%20Klapste"> B. Klapste</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We successfully developed a new straw combustion technology that efficiently reduces problems with unmanageable deposits inside straw fueled boilers in Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw compositions in K2O-CaO-SiO2 phase diagram and illustrated they are in the area of low-melting eutectic poi melting of ash and the formation of deposits compositions by injecting additives into biomass fuel ueled points. To prevent the deposits, we modified ash fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass" title="Biomass">Biomass</a>, <a href="https://publications.waset.org/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/search?q=deposit" title=" deposit"> deposit</a>, <a href="https://publications.waset.org/search?q=heat" title=" heat"> heat</a> </p> <a href="https://publications.waset.org/3814/new-straw-combustion-technology-for-cleaner-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3814/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3814/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3814/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3814/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3814/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3814/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3814/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3814/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3814/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3814/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1839</span> Carbamazepine Co-crystal Screening with Dicarboxylic Acids Co-Crystal Formers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Syarifah%20Abd%20Rahim">Syarifah Abd Rahim</a>, <a href="https://publications.waset.org/search?q=Fatinah%20Ab%20Rahman"> Fatinah Ab Rahman</a>, <a href="https://publications.waset.org/search?q=Engku%20N.%20E.%20M.%20Nasir"> Engku N. E. M. Nasir</a>, <a href="https://publications.waset.org/search?q=Noor%20A.%20Ramle"> Noor A. Ramle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Co-crystal is believed to improve the solubility and dissolution rates and thus, enhanced the bioavailability of poor water soluble drugs particularly during the oral route of administration. With the existing of poorly soluble drugs in pharmaceutical industry, the screening of co-crystal formation using carbamazepine (CBZ) as a model drug compound with dicarboxylic acids co-crystal formers (CCF) namely fumaric (FA) and succinic (SA) acids in ethanol has been studied. The co-crystal formations were studied by varying the mol ratio values of CCF to CBZ to access the effect of CCF concentration on the formation of the co-crystal. Solvent evaporation, slurry and cooling crystallization which representing the solution based method co-crystal screening were used. Based on the differential scanning calorimetry (DSC) analysis, the melting point of CBZ-SA in different ratio was in the range between 188oC-189oC. For CBZ-FA form A and CBZ-FA form B the melting point in different ratio were in the range of 174oC-175oC and 185oC-186oC respectively. The product crystal from the screening was also characterized using X-ray powder diffraction (XRPD). The XRPD pattern profile analysis has shown that the CBZ co-crystals with FA and SA were successfully formed for all ratios studied. The findings revealed that CBZ-FA co-crystal were formed in two different polymorphs. It was found that CBZ-FA form A and form B were formed from evaporation and slurry crystallization methods respectively. On the other hand, in cooling crystallization method, CBZ-FA form A was formed at lower mol ratio of CCF to CBZ and vice versa. This study disclosed that different methods and mol ratios during the co-crystal screening can affect the outcome of co-crystal produced such as polymorphic forms of co-crystal and thereof. Thus, it was suggested that careful attentions is needed during the screening since the co-crystal formation is currently one of the promising approach to be considered in research and development for pharmaceutical industry to improve the poorly soluble drugs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbamazepine" title="Carbamazepine">Carbamazepine</a>, <a href="https://publications.waset.org/search?q=co-crystal" title=" co-crystal"> co-crystal</a>, <a href="https://publications.waset.org/search?q=co-crystal%20former" title=" co-crystal former"> co-crystal former</a>, <a href="https://publications.waset.org/search?q=dicarboxylic%20acid." title=" dicarboxylic acid."> dicarboxylic acid.</a> </p> <a href="https://publications.waset.org/10001142/carbamazepine-co-crystal-screening-with-dicarboxylic-acids-co-crystal-formers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001142/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001142/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001142/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001142/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001142/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001142/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001142/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001142/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001142/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001142/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2911</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1838</span> Successful Straw Combustion Technology in Zluticka Heating Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Volakova">P. Volakova</a>, <a href="https://publications.waset.org/search?q=M.%20Mika"> M. Mika</a>, <a href="https://publications.waset.org/search?q=V.%20Verner"> V. Verner</a>, <a href="https://publications.waset.org/search?q=B.%20Klapste"> B. Klapste</a>, <a href="https://publications.waset.org/search?q=O.%20Jankovsky"> O. Jankovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We successfully developed and tested a new separation layer solving problems with unmanageable deposits inside the boilers of Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw ash compositions in K2OCaO- SiO2 phase diagram and illustrated that they are in the area of low-melting eutectic points. To prevent the melting of ash and the formation of deposits, we modified ash compositions by injecting additives into biomass fuel, and thus effectively suppressed deposits in a burner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomass" title="Biomass">Biomass</a>, <a href="https://publications.waset.org/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/search?q=deposit" title=" deposit"> deposit</a>, <a href="https://publications.waset.org/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/search?q=additives" title=" additives"> additives</a> </p> <a href="https://publications.waset.org/9648/successful-straw-combustion-technology-in-zluticka-heating-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9648/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9648/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9648/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9648/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9648/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9648/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9648/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9648/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9648/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9648/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1490</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> Enhancement of Thermal Performance of Latent Heat Solar Storage System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rishindra%20M.%20Sarviya">Rishindra M. Sarviya</a>, <a href="https://publications.waset.org/search?q=Ashish%20Agrawal"> Ashish Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Latent%20heat" title="Latent heat">Latent heat</a>, <a href="https://publications.waset.org/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/search?q=solar%20energy." title=" solar energy. "> solar energy. </a> </p> <a href="https://publications.waset.org/10004658/enhancement-of-thermal-performance-of-latent-heat-solar-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004658/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004658/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004658/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004658/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004658/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004658/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004658/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004658/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004658/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004658/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1355</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Ovshinsky Effect by Quantum Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thomas%20V.%20Prevenslik">Thomas V. Prevenslik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ovshinsky" title="Ovshinsky">Ovshinsky</a>, <a href="https://publications.waset.org/search?q=phase%20change%20memory" title="phase change memory">phase change memory</a>, <a href="https://publications.waset.org/search?q=PC-RAM" title=" PC-RAM"> PC-RAM</a>, <a href="https://publications.waset.org/search?q=chalcogenide" title=" chalcogenide"> chalcogenide</a>, <a href="https://publications.waset.org/search?q=quantummechanics" title=" quantummechanics"> quantummechanics</a>, <a href="https://publications.waset.org/search?q=quantum%20electrodynamics." title=" quantum electrodynamics."> quantum electrodynamics.</a> </p> <a href="https://publications.waset.org/6148/ovshinsky-effect-by-quantum-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6148/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6148/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6148/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6148/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6148/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6148/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6148/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6148/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6148/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6148/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1691</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdulmajeed%20Dabwan">Abdulmajeed Dabwan</a>, <a href="https://publications.waset.org/search?q=Saqib%20Anwar"> Saqib Anwar</a>, <a href="https://publications.waset.org/search?q=Ali%20Al-Samhan"> Ali Al-Samhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electron%20beam%20melting" title="Electron beam melting">Electron beam melting</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=Ti6Al4V" title=" Ti6Al4V"> Ti6Al4V</a>, <a href="https://publications.waset.org/search?q=surface%20morphology." title=" surface morphology."> surface morphology.</a> </p> <a href="https://publications.waset.org/10011397/effects-of-milling-process-parameters-on-cutting-forces-and-surface-roughness-when-finishing-ti6al4v-produced-by-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011397/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011397/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011397/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011397/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011397/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011397/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011397/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011397/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011397/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011397/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wadea%20Ameen">Wadea Ameen</a>, <a href="https://publications.waset.org/search?q=Abdulrahman%20Al-Ahmari"> Abdulrahman Al-Ahmari</a>, <a href="https://publications.waset.org/search?q=Osama%20Abdulhameed"> Osama Abdulhameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=design%20for%20additive%20manufacturing" title=" design for additive manufacturing"> design for additive manufacturing</a>, <a href="https://publications.waset.org/search?q=electron%20beam%20melting" title=" electron beam melting"> electron beam melting</a>, <a href="https://publications.waset.org/search?q=self-supporting%20overhang." title=" self-supporting overhang."> self-supporting overhang.</a> </p> <a href="https://publications.waset.org/10010214/design-for-metal-additive-manufacturing-an-investigation-of-key-design-application-on-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010214/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010214/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010214/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010214/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010214/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010214/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010214/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010214/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010214/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010214/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1168</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> A Finite Point Method Based on Directional Derivatives for Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Guixia%20Lv">Guixia Lv</a>, <a href="https://publications.waset.org/search?q=Longjun%20Shen"> Longjun Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a finite point method based on directional derivatives for diffusion equation on 2D scattered points. To discretize the diffusion operator at a given point, a six-point stencil is derived by employing explicit numerical formulae of directional derivatives, namely, for the point under consideration, only five neighbor points are involved, the number of which is the smallest for discretizing diffusion operator with first-order accuracy. A method for selecting neighbor point set is proposed, which satisfies the solvability condition of numerical derivatives. Some numerical examples are performed to show the good performance of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite%20point%20method" title="Finite point method">Finite point method</a>, <a href="https://publications.waset.org/search?q=directional%20derivatives" title=" directional derivatives"> directional derivatives</a>, <a href="https://publications.waset.org/search?q=diffusionequation" title=" diffusionequation"> diffusionequation</a>, <a href="https://publications.waset.org/search?q=method%20for%20selecting%20neighbor%20point%20set." title=" method for selecting neighbor point set."> method for selecting neighbor point set.</a> </p> <a href="https://publications.waset.org/7710/a-finite-point-method-based-on-directional-derivatives-for-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7710/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7710/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7710/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7710/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7710/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7710/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7710/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7710/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7710/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7710/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1355</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> On Finite Wordlength Properties of Block-Floating-Point Arithmetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abhijit%20Mitra">Abhijit Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A special case of floating point data representation is block floating point format where a block of operands are forced to have a joint exponent term. This paper deals with the finite wordlength properties of this data format. The theoretical errors associated with the error model for block floating point quantization process is investigated with the help of error distribution functions. A fast and easy approximation formula for calculating signal-to-noise ratio in quantization to block floating point format is derived. This representation is found to be a useful compromise between fixed point and floating point format due to its acceptable numerical error properties over a wide dynamic range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Block%20floating%20point" title="Block floating point">Block floating point</a>, <a href="https://publications.waset.org/search?q=Roundoff%20error" title=" Roundoff error"> Roundoff error</a>, <a href="https://publications.waset.org/search?q=Block%20exponent%20dis-tribution%20fuction" title=" Block exponent dis-tribution fuction"> Block exponent dis-tribution fuction</a>, <a href="https://publications.waset.org/search?q=Signal%20factor." title=" Signal factor."> Signal factor.</a> </p> <a href="https://publications.waset.org/8380/on-finite-wordlength-properties-of-block-floating-point-arithmetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8380/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8380/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8380/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8380/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8380/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8380/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8380/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8380/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8380/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8380/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2017</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=melting%20point&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10