CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 663 results for author: <span class="mathjax">Liu, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16146">arXiv:2502.16146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16146">pdf</a>, <a href="https://arxiv.org/format/2502.16146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A Test System for the JUNO 20-inch PMTs Prior to Installation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaoyuan Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+H">Haojie Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+K">Kaile Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xinzhou Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yanfeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Songyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Z">Zeyuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+W">Wan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shenghui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+X">Xiaochuan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+L">Lei Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Z">Zhonghua Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16146v1-abstract-short" style="display: inline;"> The JUNO experiment requires an excellent energy resolution of 3\% at 1 MeV. To achieve this objective, a total of 20,012 20-inch photomultiplier tubes (PMTs) will be deployed for JUNO, comprising 15,012 multi-channel plate (MCP) PMTs and 5,000 dynode PMTs. Currently, JUNO is in the process of detector installation, with PMTs being installed from the top to the bottom of the stainless-steel struct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16146v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16146v1-abstract-full" style="display: none;"> The JUNO experiment requires an excellent energy resolution of 3\% at 1 MeV. To achieve this objective, a total of 20,012 20-inch photomultiplier tubes (PMTs) will be deployed for JUNO, comprising 15,012 multi-channel plate (MCP) PMTs and 5,000 dynode PMTs. Currently, JUNO is in the process of detector installation, with PMTs being installed from the top to the bottom of the stainless-steel structure located in the underground experimental hall. In order to validate the functionality of the PMTs and ensure there are no malfunctions prior to installation, a test system has been established at the JUNO site, and testing is being conducted. This paper presents an overview of the test system and reports on the initial test results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16146v1-abstract-full').style.display = 'none'; document.getElementById('2502.16146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14286">arXiv:2502.14286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14286">pdf</a>, <a href="https://arxiv.org/format/2502.14286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Super light-by-light scattering in vacuum induced by intense vortex lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Z">Zhigang Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lingang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shiyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Baifei Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruxin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ivanov%2C+I+P">Igor P. Ivanov</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+L">Liangliang Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14286v1-abstract-short" style="display: inline;"> Collision of ultra-intense optical laser and X-ray free electron laser (XFEL) pulses is a promising approach to detecting nonlinear vacuum polarization (VP), a long-standing prediction of quantum electrodynamics remaining to be tested. Identifying the signals induced by polarized vacuum relies on purifying the X-ray polarization and poses significant challenges due to strongly reduced signal and l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14286v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14286v1-abstract-full" style="display: none;"> Collision of ultra-intense optical laser and X-ray free electron laser (XFEL) pulses is a promising approach to detecting nonlinear vacuum polarization (VP), a long-standing prediction of quantum electrodynamics remaining to be tested. Identifying the signals induced by polarized vacuum relies on purifying the X-ray polarization and poses significant challenges due to strongly reduced signal and low signal-to-noise ratio (SNR). Here we propose an approach that allows one to directly detect VP signals without the need for an X-ray polarizer. We identify a new VP effect in collision of an X-ray probe with an intense laser in a vortex mode, which we call the super light-by-light scattering (super-LBL), through which signal photons are kicked out of the X-ray background with large tangential momentum. Super-LBL originates from the gradient force of the vortical vacuum current in azimuthal direction and induces momentum exchange beyond the transverse momentum of laser-photon. This effect efficiently sets the scattered signal photons apart from the X-ray background, producing observable signals with both the strength and SNR more than two orders of magnitude higher than those from the known VP effects. This finding paves the way for single-shot detection of nonlinear VP phenomena with current ultra-intense laser and XFEL technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14286v1-abstract-full').style.display = 'none'; document.getElementById('2502.14286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13414">arXiv:2502.13414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13414">pdf</a>, <a href="https://arxiv.org/format/2502.13414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression of heading errors in Bell-Bloom optically pumped free-induction-decay alkali-metal atomic magnetometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siqi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xueke Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiangdong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+W">Wei Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+D">Dong Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13414v1-abstract-short" style="display: inline;"> Heading errors of atomic magnetometers refer to the dependence of measurement results on the sensor orientation with respect to the external magnetic field. There are three main sources of such errors: the light shift effect, the linear nuclear-spin Zeeman effect, and the nonlinear Zeeman effect. In this work, we suppress the former two effects by using the Bell-Bloom optical pumping method and pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13414v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13414v1-abstract-full" style="display: none;"> Heading errors of atomic magnetometers refer to the dependence of measurement results on the sensor orientation with respect to the external magnetic field. There are three main sources of such errors: the light shift effect, the linear nuclear-spin Zeeman effect, and the nonlinear Zeeman effect. In this work, we suppress the former two effects by using the Bell-Bloom optical pumping method and probe the atomic signals while the pumping beam is off, and focus on the heading error induced by nonlinear Zeeman effect while the sensor operates in the geomagnetic field range. We demonstrate several schemes to suppress this remaining heading error within 1 nT using a single magnetometer or a comagnetometer. In the magnetometer system, two schemes are developed to average out the horizontal atomic polarization in space or in time, respectively. In the comagnetometer system, we combine the simultaneously measured Larmor frequencies of two different kinds of alkali atoms to either suppress the heading error or extract the orientation of the pumping beam relative to the bias field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13414v1-abstract-full').style.display = 'none'; document.getElementById('2502.13414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accpeted by Phys. Rev. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07195">arXiv:2502.07195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07195">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First experimental proof of PET imaging based on multi-anode MCP-PMTs with Cherenkov radiator-integrated window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pan%2C+W">Weiyan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lingyue Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+G">Guorui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jun Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+W">Wei Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xianchao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xiaorou Han</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoshan Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+Z">Zhen Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Daowu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jingwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zehong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+L">Lishuang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Z">Zhe Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+S">Sen Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+L">Ling Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jianning Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+S">Shuguang Si</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yunhua Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+L">Long Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Q">Qing Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tianyi Wang</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07195v1-abstract-short" style="display: inline;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07195v1-abstract-full" style="display: none;"> Improving the coincidence time resolution (CTR) of time-of-flight positron emission tomography (TOF-PET) systems to achieve a higher signal-to-noise ratio (SNR) gain or even direct positron emission imaging (dPEI) is of paramount importance for many advanced new clinical applications of PET imaging. This places higher demands on the timing performance of all aspects of PET systems. One effective approach is to use microchannel plate photomultiplier tubes (MCP-PMTs) for prompt Cherenkov photon detection. In this study, we developed a dual-module Cherenkov PET imaging experimental platform, utilising our proprietary 8 * 8-anode Cherenkov radiator-integrated window MCP-PMTs in combination with custom-designed multi-channel electronics, and designed a specific calibration and correction method for the platform. Using this platform, a CTR of 103 ps FWHM was achieved. We overcame the limitations of single-anode detectors in previous experiments, significantly enhanced imaging efficiency and achieved module-level Cherenkov PET imaging for the first time. Imaging experiments involving radioactive sources and phantoms of various shapes and types were conducted, which preliminarily validated the feasibility and advancement of this imaging method. In addition, the effects of normalisation correction and the interaction probability between the gamma rays and the MCP on the images and experimental results were analysed and verified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07195v1-abstract-full').style.display = 'none'; document.getElementById('2502.07195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures, manuscript has been submitted to Physics in Medicine &amp; Biology and is under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05997">arXiv:2502.05997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05997">pdf</a>, <a href="https://arxiv.org/format/2502.05997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralow-loss photonic integrated chips on 8-inch anomalous-dispersion Si$_3$N$_4$-SiO$_2$-Si Wafer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Puckett%2C+M+W">Matthew W. Puckett</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jianfeng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Hariri%2C+A">Abdulkarim Hariri</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheshen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05997v1-abstract-short" style="display: inline;"> We report the fabrication of 8-inch crack-free, dispersion-engineered Si$_3$N$_4$-SiO$_2$-Si wafers fully compatible with industrial foundry silicon photonics fabrication lines. By combining these wafers with a developed amorphous silicon (a-Si) hardmask etching technique, we achieve ultra-low-loss Si$_3$N$_4$ photonic integrated circuits (PICs) with intrinsic quality factors exceeding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05997v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05997v1-abstract-full" style="display: none;"> We report the fabrication of 8-inch crack-free, dispersion-engineered Si$_3$N$_4$-SiO$_2$-Si wafers fully compatible with industrial foundry silicon photonics fabrication lines. By combining these wafers with a developed amorphous silicon (a-Si) hardmask etching technique, we achieve ultra-low-loss Si$_3$N$_4$ photonic integrated circuits (PICs) with intrinsic quality factors exceeding $25 \times 10^6$ using electron beam lithography and $24 \times 10^6$ using standard ultraviolet stepper photolithography. Frequency-comb generation is demonstrated on these high-quality Si$_3$N$_4$ PICs, corroborating the designed anomalous dispersion. These results establish the feasibility of mass-manufacturing high-performance, dispersion-engineered Si$_3$N$_4$ PICs using standard foundry-grade processes, opening new pathways for applications in optical communications, nonlinear optics, and quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05997v1-abstract-full').style.display = 'none'; document.getElementById('2502.05997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01007">arXiv:2502.01007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01007">pdf</a>, <a href="https://arxiv.org/format/2502.01007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Superlubric Motion of Wave-like Domain Walls in Sliding Ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ke%2C+C">Changming Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fucai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01007v1-abstract-short" style="display: inline;"> Sliding ferroelectrics constructed from stacked nonpolar monolayers enable out-of-plane polarization in two dimensions with exceptional properties, including ultrafast switching speeds and fatigue-free behavior. However, the widely accepted switching mechanism, which posits synchronized long-distance in-plane translation of entire atomic layers driven by an out-of-plane electric field, has shown i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01007v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01007v1-abstract-full" style="display: none;"> Sliding ferroelectrics constructed from stacked nonpolar monolayers enable out-of-plane polarization in two dimensions with exceptional properties, including ultrafast switching speeds and fatigue-free behavior. However, the widely accepted switching mechanism, which posits synchronized long-distance in-plane translation of entire atomic layers driven by an out-of-plane electric field, has shown inconsistencies with experimental observations. We demonstrate that this spinodal decomposition-like homogeneous switching process violates Neumann&#39;s principle and is unlikely to occur due to symmetry constraint. Instead, symmetry-breaking domain walls (DWs) and the tensorial nature of Born effective charges are critical for polarization reversal, underscoring the quantum nature of sliding ferroelectrics. Using the Bernal-stacked $h$-BN bilayer as a model system, we discover that the coherent propagation of wide, wave-like domain walls is the key mechanism for ferroelectric switching. This mechanism fundamentally differs from the layer-by-layer switching associated with narrow domain walls, which has been established for over sixty years in perovskite ferroelectrics. Moreover, these wave-like DWs exhibit superlubric dynamics, achieving ultrahigh velocities of approximately 4000 m/s at room temperature and displaying an anomalous cooling-promoted switching speed. The unexpected emergence of DW superlubricity in sliding ferroelectrics presents new avenues for enhancing key performance metrics and offers exciting opportunities for applications in cryogenic environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01007v1-abstract-full').style.display = 'none'; document.getElementById('2502.01007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15206">arXiv:2501.15206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15206">pdf</a>, <a href="https://arxiv.org/ps/2501.15206">ps</a>, <a href="https://arxiv.org/format/2501.15206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Ran Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yingqian Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaohan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+R">Raik Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Hindenberg%2C+M">Meike Hindenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shiqiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+D">Dehao Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shilong Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S">Shikun He</a>, <a href="/search/physics?searchtype=author&amp;query=Vardar%2C+A">Alptekin Vardar</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Q">Qiang Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Junlu Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yihui Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Z">Zejie Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%A4mpfe%2C+T">Thomas K盲mpfe</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15206v1-abstract-short" style="display: inline;"> In the quest for secure and reliable random number generation, Magnetic Tunnel Junctions (MTJs) have emerged as a promising technology due to their unique ability to exploit the stochastic nature of magnetization switching. This paper presents an engineering-oriented design of a drift-resilient MTJ-based True Random Number Generator (TRNG) utilizing a hybrid control strategy. We address the critic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15206v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15206v1-abstract-full" style="display: none;"> In the quest for secure and reliable random number generation, Magnetic Tunnel Junctions (MTJs) have emerged as a promising technology due to their unique ability to exploit the stochastic nature of magnetization switching. This paper presents an engineering-oriented design of a drift-resilient MTJ-based True Random Number Generator (TRNG) utilizing a hybrid control strategy. We address the critical issue of switching probability drift, which can compromise the randomness and bias the output of MTJ-based TRNGs. Our approach combines a self-stabilization strategy, which dynamically adjusts the driving voltage based on real-time feedback, with pulse width modulation to enhance control over the switching probability. Through comprehensive experimental and simulation results, we demonstrate significant improvements in the stability, uniformity, and quality of the random numbers generated. The proposed system offers flexibility and adaptability for diverse applications, making it a reliable solution for high-quality randomness in cryptography, secure communications, and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15206v1-abstract-full').style.display = 'none'; document.getElementById('2501.15206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14213">arXiv:2501.14213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14213">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Comprehensive Analog Signal Processing Platform Enabled with Acoustic Charge Transport in Two-dimensional Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yueyi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yingjie Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiwei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yihong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Changjian Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14213v2-abstract-short" style="display: inline;"> Two-dimensional Acoustic Charge Transport (2D-ACT) devices, which integrate two dimensional semiconductor field-effect transistor (FET) with high-frequency surface acoustic wave (SAW) device provide a potential compact platform for the processing of analog signals in a wireless, non-contact, low-loss and real-time way. It is expected to be used in long-distance space communication and sensing. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14213v2-abstract-full').style.display = 'inline'; document.getElementById('2501.14213v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14213v2-abstract-full" style="display: none;"> Two-dimensional Acoustic Charge Transport (2D-ACT) devices, which integrate two dimensional semiconductor field-effect transistor (FET) with high-frequency surface acoustic wave (SAW) device provide a potential compact platform for the processing of analog signals in a wireless, non-contact, low-loss and real-time way. It is expected to be used in long-distance space communication and sensing. However, current investigations into 2D-ACT devices are still limited to the observation of DC acoustoelectric currents, and have yet to achieve real-time electronic signal processing capabilities. In this paper, we have designed a hybrid acoustoelectric platform composed of two-dimensional semiconductor FET and SAW device. The platform is capable of processing DC signals, exhibiting ambipolar transport behavior. The sub-wavelength channel length of the FET within the platform allows for the real-time observation of carrier distribution at a microscopic scale in conjunction with the SAW potential, and facilitating the reproduction and intensity regulation of AC signals. By adjusting the relative phase and intensity ratio of two counter-propagating SAWs, the platform also enables the addition and subtraction of AC signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14213v2-abstract-full').style.display = 'none'; document.getElementById('2501.14213v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06754">arXiv:2501.06754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06754">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fatigue-free ferroelectricity in Hf0.5Zr0.5O2 ultrathin films via interfacial design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">Chao Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yanpeng Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+L">Liyang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haoliang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+Y">Yangyang Si</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hailin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Sizhe Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jingxuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Kuo%2C+C">Chang-Yang Kuo</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+S">Sujit Das</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yunlong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zuhuang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06754v1-abstract-short" style="display: inline;"> Due to traits of CMOS compatibility and scalability, HfO2-based ferroelectrics are promising candidates for next-generation memory devices. However, their commercialization has been greatly hindered by reliability issues, with fatigue being a major impediment. We report the fatigue-free behavior in interface-designed Hf0.5Zr0.5O2-based heterostructures. A coherent CeO2-x/Hf0.5Zr0.5O2 heterointerfa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06754v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06754v1-abstract-full" style="display: none;"> Due to traits of CMOS compatibility and scalability, HfO2-based ferroelectrics are promising candidates for next-generation memory devices. However, their commercialization has been greatly hindered by reliability issues, with fatigue being a major impediment. We report the fatigue-free behavior in interface-designed Hf0.5Zr0.5O2-based heterostructures. A coherent CeO2-x/Hf0.5Zr0.5O2 heterointerface is constructed, wherein CeO2-x acts as an oxygen sponge, capable of reversibly accepting and releasing oxygen vacancies. This design effectively alleviates defect aggregation at the electrode-ferroelectric interface, enabling improved switching characteristics. Further, a symmetric capacitor architecture is designed to minimize the imprint, thereby suppressing the cycling-induced oriented defect drift. The two-pronged technique mitigates oxygen-voltammetry-generated chemical/energy fluctuations, suppressing the formation of paraelectric phase and polarization degradation. The design ensures a fatigue-free feature exceeding 10^11 switching cycles and an endurance lifetime surpassing 10^12 cycles for Hf0.5Zr0.5O2-based capacitors, along with excellent temperature stability and retention. These findings pave the way for developing ultra-stable hafnia-based ferroelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06754v1-abstract-full').style.display = 'none'; document.getElementById('2501.06754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04447">arXiv:2501.04447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21203/rs.3.rs-5700548/v1">10.21203/rs.3.rs-5700548/v1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probabilistic Greedy Algorithm Solver Using Magnetic Tunneling Junctions for Traveling Salesman Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Ran Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaohan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffmann%2C+R">Raik Hoffmann</a>, <a href="/search/physics?searchtype=author&amp;query=Hindenberg%2C+M">Meike Hindenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yingqian Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shiqiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+D">Dehao Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shilong Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+S">Shikun He</a>, <a href="/search/physics?searchtype=author&amp;query=Vardar%2C+A">Alptekin Vardar</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Q">Qiang Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+J">Junlu Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yihui Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Z">Zejie Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%A4mpfe%2C+T">Thomas K盲mpfe</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04447v1-abstract-short" style="display: inline;"> Combinatorial optimization problems are foundational challenges in fields such as artificial intelligence, logistics, and network design. Traditional algorithms, including greedy methods and dynamic programming, often struggle to balance computational efficiency and solution quality, particularly as problem complexity scales. To overcome these limitations, we propose a novel and efficient probabil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04447v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04447v1-abstract-full" style="display: none;"> Combinatorial optimization problems are foundational challenges in fields such as artificial intelligence, logistics, and network design. Traditional algorithms, including greedy methods and dynamic programming, often struggle to balance computational efficiency and solution quality, particularly as problem complexity scales. To overcome these limitations, we propose a novel and efficient probabilistic optimization framework that integrates true random number generators (TRNGs) based on spin-transfer torque magnetic tunneling junctions (STT-MTJs). The inherent stochastic switching behavior of STT-MTJs enables dynamic configurability of random number distributions, which we leverage to introduce controlled randomness into a probabilistic greedy algorithm. By tuning a temperature parameter, our algorithm seamlessly transitions between deterministic and stochastic strategies, effectively balancing exploration and exploitation. Furthermore, we apply this framework to the traveling salesman problem (TSP), showcasing its ability to consistently produce high-quality solutions across diverse problem scales. Our algorithm demonstrates superior performance in both solution quality and convergence speed compared to classical approaches, such as simulated annealing and genetic algorithms. Specifically, in larger TSP instances involving up to 70 cities, it retains its performance advantage, achieving near-optimal solutions with fewer iterations and reduced computational costs. This work highlights the potential of integrating MTJ-based TRNGs into optimization algorithms, paving the way for future applications in probabilistic computing and hardware-accelerated optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04447v1-abstract-full').style.display = 'none'; document.getElementById('2501.04447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This preprint was originally published on Research Square and is licensed under CC BY 4.0. The original version is available at https://www.researchsquare.com/article/rs-5700548/v1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> G.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19800">arXiv:2412.19800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19800">pdf</a>, <a href="https://arxiv.org/format/2412.19800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entangled dual-comb spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hariri%2C+A">Abdulkarim Hariri</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+H">Haowei Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+Q">Quntao Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xudong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheshen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19800v1-abstract-short" style="display: inline;"> Optical frequency combs have emerged as a cornerstone for a wide range of areas, including spectroscopy, ranging, optical clocks, time and frequency transfer, waveform synthesis, and communications. However, quantum mechanical fluctuations of the optical carrier impose fundamental performance limits on the precision of traditional classical laser frequency combs, particularly in their use for inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19800v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19800v1-abstract-full" style="display: none;"> Optical frequency combs have emerged as a cornerstone for a wide range of areas, including spectroscopy, ranging, optical clocks, time and frequency transfer, waveform synthesis, and communications. However, quantum mechanical fluctuations of the optical carrier impose fundamental performance limits on the precision of traditional classical laser frequency combs, particularly in their use for interferometry and spectroscopy. Entanglement, as a quintessential quantum resource, allows for surpassing the fundamental limits of classical systems. Here, we introduce and experimentally demonstrate entangled dual-comb spectroscopy (EDCS) that surmounts the fundamental limits of classical DCS. EDCS builds on tailored entangled spectral structures of the frequency combs, enabling simultaneous detection of all comb lines below the standard quantum limit of classical DCS. Applying EDCS in gas detection, we achieve a 2.6 dB enhancement in signal-to-noise ratio and a 1.7-fold reduction in integration time over classical DCS, rendering EDCS particularly suited for dynamic chemical and biological sensing, where fast, precise measurements subject to power constraints are required. EDCS represents a new paradigm for quantum frequency combs, underscoring their prospects in a plethora of applications in precision metrology, spectroscopy, and timekeeping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19800v1-abstract-full').style.display = 'none'; document.getElementById('2412.19800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17724">arXiv:2412.17724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17724">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Comprehensive Optimization of Interferometric Diffusing Wave Spectroscopy (iDWS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+M">Mingjun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Dickstein%2C+L">Leah Dickstein</a>, <a href="/search/physics?searchtype=author&amp;query=Nadig%2C+A+S">Akshay S. Nadig</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wenjun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Aparanji%2C+S">Santosh Aparanji</a>, <a href="/search/physics?searchtype=author&amp;query=Estrada%2C+H+G">Hector Garcia Estrada</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shing-Jiuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Ting Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Weijian Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Lord%2C+A">Aaron Lord</a>, <a href="/search/physics?searchtype=author&amp;query=Srinivasan%2C+V+J">Vivek J. Srinivasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17724v1-abstract-short" style="display: inline;"> It has been shown that light speckle fluctuations provide a means for noninvasive measurements of cerebral blood flow index (CBFi). While conventional Diffuse Correlation Spectroscopy (DCS) provides marginal brain sensitivity for CBFi in adult humans, new techniques have recently emerged to improve diffuse light throughput and thus, brain sensitivity. Here we further optimize one such approach, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17724v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17724v1-abstract-full" style="display: none;"> It has been shown that light speckle fluctuations provide a means for noninvasive measurements of cerebral blood flow index (CBFi). While conventional Diffuse Correlation Spectroscopy (DCS) provides marginal brain sensitivity for CBFi in adult humans, new techniques have recently emerged to improve diffuse light throughput and thus, brain sensitivity. Here we further optimize one such approach, interferometric diffusing wave spectroscopy (iDWS), with respect to number of independent channels, camera duty cycle and full well capacity, incident power, noise and artifact mitigation, and data processing. We build the system on a cart and define conditions for stable operation. We show pulsatile CBFi monitoring at 4-4.5 cm source-collector separation in adults with moderate pigmentation (Fitzpatrick 4). We also report preliminary clinical measurements in the Neuro Intensive Care Unit (Neuro ICU). These results push the boundaries of iDWS CBFi monitoring performance beyond previous reports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17724v1-abstract-full').style.display = 'none'; document.getElementById('2412.17724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12556">arXiv:2412.12556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.12556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-performance thin-film lithium niobate Mach-Zehnder modulator on thick silica buffering layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+X">Xiaotian Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yingdong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+W">Wenjun Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+R">Rui Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+J">Jing Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guangzhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12556v1-abstract-short" style="display: inline;"> High-speed photonic integrated circuits leveraging the thin-film lithium niobate (TFLN) platform present a promising approach to address the burgeoning global data traffic demands. As a pivotal component, TFLN-based electro-optic (EO) Mach-Zehnder modulators (MZMs) should exhibit low driving voltage, broad operation bandwidth, high extinction ration, and low insertion loss. However, the pursuit of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12556v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12556v1-abstract-full" style="display: none;"> High-speed photonic integrated circuits leveraging the thin-film lithium niobate (TFLN) platform present a promising approach to address the burgeoning global data traffic demands. As a pivotal component, TFLN-based electro-optic (EO) Mach-Zehnder modulators (MZMs) should exhibit low driving voltage, broad operation bandwidth, high extinction ration, and low insertion loss. However, the pursuit of both maximal EO overlap integral and minimal microwave loss necessitates a fundamental compromise between driving voltage and operational bandwidth. Here, we demonstrate high-performance TFLN EO MZMs constructed on a 12-渭m-thick silica buried layer using periodic capacitively loaded traveling-wave electrodes. In contrast to their counterparts utilizing undercut etched silicon substrates or quartz substrates, our devices exhibit streamlined fabrication processes and enhanced modulation efficiency. Notably, the fabricated MZMs attains a high modulation efficiency of 1.25 Vcm in the telecom C-band, while maintaining a low EO roll-off of 1.3 dB at 67 GHz. Our demonstration offers a pathway to achieving perfect group velocity matching and break the voltage-bandwidth limit in a simplified configuration suitable for volume fabrication, thereby laying foundational groundwork for the advancement of high-performance TFLN MZMs and benefiting the next-generation PICs in optical telecommunication, signal processing and other applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12556v1-abstract-full').style.display = 'none'; document.getElementById('2412.12556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16416">arXiv:2411.16416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16416">pdf</a>, <a href="https://arxiv.org/format/2411.16416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Multi-agent Framework for Materials Laws Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+B">Bo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+B">Beilin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yun Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+T">Tongqi Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16416v1-abstract-short" style="display: inline;"> Uncovering the underlying laws governing correlations between different materials properties, and the structure-composition-property relationship, is essential for advancing materials theory and enabling efficient materials design. With recent advances in artificial intelligence (AI), particularly in large language models (LLMs), symbolic regression has emerged as a powerful method for deriving ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16416v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16416v1-abstract-full" style="display: none;"> Uncovering the underlying laws governing correlations between different materials properties, and the structure-composition-property relationship, is essential for advancing materials theory and enabling efficient materials design. With recent advances in artificial intelligence (AI), particularly in large language models (LLMs), symbolic regression has emerged as a powerful method for deriving explicit formulas for materials laws. LLMs, with their pre-trained, cross-disciplinary knowledge, present a promising direction in &#34;AI for Materials&#34;. In this work, we introduce a multi-agent framework based on LLMs specifically designed for symbolic regression in materials science. We demonstrate the effectiveness of the framework using the glass-forming ability (GFA) of metallic glasses as a case study, employing three characteristic temperatures as independent variables. Our framework derived an interpretable formula to describe GFA, achieving a correlation coefficient of up to 0.948 with low formula complexity. This approach outperforms standard packages such as GPlearn and demonstrates a ~30% improvement over random generation methods, owing to integrated memory and reflection mechanisms. The proposed framework can be extended to discover laws in various materials applications, supporting new materials design and enhancing the interpretation of experimental and simulation data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16416v1-abstract-full').style.display = 'none'; document.getElementById('2411.16416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14410">arXiv:2411.14410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14410">pdf</a>, <a href="https://arxiv.org/format/2411.14410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Engineering spectro-temporal light states with physics-trained deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shilong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Virally%2C+S">St茅phane Virally</a>, <a href="/search/physics?searchtype=author&amp;query=Demontigny%2C+G">Gabriel Demontigny</a>, <a href="/search/physics?searchtype=author&amp;query=Cusson%2C+P">Patrick Cusson</a>, <a href="/search/physics?searchtype=author&amp;query=Seletskiy%2C+D+V">Denis V. Seletskiy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14410v1-abstract-short" style="display: inline;"> Frequency synthesis and spectro-temporal control of optical wave packets are central to ultrafast science, with supercontinuum (SC) generation standing as one remarkable example. Through passive manipulation, femtosecond (fs) pulses from nJ-level lasers can be transformed into octave-spanning spectra, supporting few-cycle pulse outputs when coupled with external pulse compressors. While strategies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14410v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14410v1-abstract-full" style="display: none;"> Frequency synthesis and spectro-temporal control of optical wave packets are central to ultrafast science, with supercontinuum (SC) generation standing as one remarkable example. Through passive manipulation, femtosecond (fs) pulses from nJ-level lasers can be transformed into octave-spanning spectra, supporting few-cycle pulse outputs when coupled with external pulse compressors. While strategies such as machine learning have been applied to control the SC&#39;s central wavelength and bandwidth, their success has been limited by the nonlinearities and strong sensitivity to measurement noise. Here, we propose and demonstrate how a physics-trained convolutional neural network (P-CNN) can circumvent such challenges, showing few-fold speedups over the direct approaches. We highlight three key advancements enabled by the P-CNN approach: (i) on-demand control over spectral features of SC, (ii) direct generation of sub-3-cycle pulses from the highly nonlinear fiber, and (iii) the production of high-order solitons, capturing distinct &#34;breather&#34; dynamics in both spectral and temporal domains. This approach heralds a new era of arbitrary spectro-temporal state engineering, with transformative implications for ultrafast and quantum science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14410v1-abstract-full').style.display = 'none'; document.getElementById('2411.14410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Welcome to place your comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13719">arXiv:2411.13719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13719">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Persistent but weak magnetic field at Moon&#39;s midlife revealed by Chang&#39;e-5 basalt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cai%2C+S">Shuhui Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+H">Huafeng Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Huapei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+C">Chenglong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Saihong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Ya Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xu Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lixin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaoguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhongshan Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+K">Kuang He</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+K">Kaixian Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yunchang Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+L">Liang Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y">Yifei Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+P">Pingyuan Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuangchi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+F">Fei Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiuli Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jinhua Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+R+N">Ross N. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Huaiyu He</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13719v1-abstract-short" style="display: inline;"> The evolution of the lunar magnetic field can reveal the Moon&#39;s interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang&#39;e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13719v1-abstract-full" style="display: none;"> The evolution of the lunar magnetic field can reveal the Moon&#39;s interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang&#39;e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at mid-latitude. We recovered weak paleointensities of 2-4 uT from the Chang&#39;e-5 basalt clasts at 2 billion years ago, attestting to the longevity of a lunar dynamo until at least the Moon&#39;s midlife. This paleomagnetic result implies the existence of thermal convection in the lunar deep interior at the lunar mid-stage which may have supplied mantle heat flux for the young volcanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'none'; document.getElementById('2411.13719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12352">arXiv:2411.12352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12352">pdf</a>, <a href="https://arxiv.org/format/2411.12352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Perfecting Imperfect Physical Neural Networks with Transferable Robustness using Sharpness-Aware Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+T">Tengji Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z">Zeyu Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaojie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+L">Li Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Q">Qiarong Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Benshan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dongliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+C">Chaoran Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12352v1-abstract-short" style="display: inline;"> AI models are essential in science and engineering, but recent advances are pushing the limits of traditional digital hardware. To address these limitations, physical neural networks (PNNs), which use physical substrates for computation, have gained increasing attention. However, developing effective training methods for PNNs remains a significant challenge. Current approaches, regardless of offli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12352v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12352v1-abstract-full" style="display: none;"> AI models are essential in science and engineering, but recent advances are pushing the limits of traditional digital hardware. To address these limitations, physical neural networks (PNNs), which use physical substrates for computation, have gained increasing attention. However, developing effective training methods for PNNs remains a significant challenge. Current approaches, regardless of offline and online training, suffer from significant accuracy loss. Offline training is hindered by imprecise modeling, while online training yields device-specific models that can&#39;t be transferred to other devices due to manufacturing variances. Both methods face challenges from perturbations after deployment, such as thermal drift or alignment errors, which make trained models invalid and require retraining. Here, we address the challenges with both offline and online training through a novel technique called Sharpness-Aware Training (SAT), where we innovatively leverage the geometry of the loss landscape to tackle the problems in training physical systems. SAT enables accurate training using efficient backpropagation algorithms, even with imprecise models. PNNs trained by SAT offline even outperform those trained online, despite modeling and fabrication errors. SAT also overcomes online training limitations by enabling reliable transfer of models between devices. Finally, SAT is highly resilient to perturbations after deployment, allowing PNNs to continuously operate accurately under perturbations without retraining. We demonstrate SAT across three types of PNNs, showing it is universally applicable, regardless of whether the models are explicitly known. This work offers a transformative, efficient approach to training PNNs, addressing critical challenges in analog computing and enabling real-world deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12352v1-abstract-full').style.display = 'none'; document.getElementById('2411.12352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12280">arXiv:2411.12280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12280">pdf</a>, <a href="https://arxiv.org/format/2411.12280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Large Language Models for Material Property Predictions: elastic constant tensor prediction and materials design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+T">Tongqi Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+B">Beilin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhuoyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Srolovitz%2C+D+J">David J. Srolovitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12280v1-abstract-short" style="display: inline;"> Efficient and accurate prediction of material properties is critical for advancing materials design and applications. The rapid-evolution of large language models (LLMs) presents a new opportunity for material property predictions, complementing experimental measurements and multi-scale computational methods. We focus on predicting the elastic constant tensor, as a case study, and develop domain-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12280v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12280v1-abstract-full" style="display: none;"> Efficient and accurate prediction of material properties is critical for advancing materials design and applications. The rapid-evolution of large language models (LLMs) presents a new opportunity for material property predictions, complementing experimental measurements and multi-scale computational methods. We focus on predicting the elastic constant tensor, as a case study, and develop domain-specific LLMs for predicting elastic constants and for materials discovery. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Moreover, the capabilities of ElaTBot are further enhanced by integrating with general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) for prediction. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with domain-specific, material science LLMs (Darwin) trained on the same dataset. This natural language-based approach lowers the barriers to computational materials science and highlights the broader potential of LLMs for material property predictions and inverse design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12280v1-abstract-full').style.display = 'none'; document.getElementById('2411.12280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10994">arXiv:2411.10994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10994">pdf</a>, <a href="https://arxiv.org/format/2411.10994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Picocavity-enhanced Raman spectroscopy of physisorbed H2 and D2 molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shiotari%2C+A">Akitoshi Shiotari</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuyi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Trenins%2C+G">George Trenins</a>, <a href="/search/physics?searchtype=author&amp;query=Sugimoto%2C+T">Toshiki Sugimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+M">Martin Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+M">Mariana Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Kumagai%2C+T">Takashi Kumagai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10994v1-abstract-short" style="display: inline;"> We report on tip-enhanced Raman scattering (TERS) of H2 and D2 molecules physisorbed within a plasmonic picocavity at a cryogenic temperature (10 K). The intense Raman peaks resulting from the rotational and vibrational transitions are observed at sub-nanometer gap distances of the junction formed by a Ag tip and Ag(111) surface. We clarify that the predominant contribution of the electromagnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10994v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10994v1-abstract-full" style="display: none;"> We report on tip-enhanced Raman scattering (TERS) of H2 and D2 molecules physisorbed within a plasmonic picocavity at a cryogenic temperature (10 K). The intense Raman peaks resulting from the rotational and vibrational transitions are observed at sub-nanometer gap distances of the junction formed by a Ag tip and Ag(111) surface. We clarify that the predominant contribution of the electromagnetic field enhancement of the picocavity to the detection of a single hydrogen molecule. The gap-distance dependent TERS reveals not only the evolution of the picocavity field, but also the interaction between the molecule and tip/surface, which exhibit nontrivial isotope effects. A significant red-shift and peak broadening of the H-H stretching as the gap distance decreases, while the D-D stretching mode is unaffected. A combination of density functional theory and reduced-dimension models reveals that a distinct anharmonicity in the mode potential of H2 is one cause of the anomalous red-shift, whereas D2 has less anharmonicity due to the geometric isotope effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10994v1-abstract-full').style.display = 'none'; document.getElementById('2411.10994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08681">arXiv:2411.08681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08681">pdf</a>, <a href="https://arxiv.org/format/2411.08681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the emittance of accelerated electron bunches at the AWAKE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&amp;query=Pannell%2C+F">F. Pannell</a>, <a href="/search/physics?searchtype=author&amp;query=Della+Porta%2C+G+Z">G. Zevi Della Porta</a>, <a href="/search/physics?searchtype=author&amp;query=Farmer%2C+J">J. Farmer</a>, <a href="/search/physics?searchtype=author&amp;query=Bencini%2C+V">V. Bencini</a>, <a href="/search/physics?searchtype=author&amp;query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&amp;query=Mazzoni%2C+S">S. Mazzoni</a>, <a href="/search/physics?searchtype=author&amp;query=Ranc%2C+L">L. Ranc</a>, <a href="/search/physics?searchtype=author&amp;query=Senes%2C+E">E. Senes</a>, <a href="/search/physics?searchtype=author&amp;query=Sherwood%2C+P">P. Sherwood</a>, <a href="/search/physics?searchtype=author&amp;query=Wing%2C+M">M. Wing</a>, <a href="/search/physics?searchtype=author&amp;query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C+C">C. C. Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Amoedo%2C+C">C. Amoedo</a>, <a href="/search/physics?searchtype=author&amp;query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&amp;query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&amp;query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&amp;query=Arnesano%2C+J+M">J. M. Arnesano</a>, <a href="/search/physics?searchtype=author&amp;query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&amp;query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&amp;query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=Clairembaud%2C+A">A. Clairembaud</a>, <a href="/search/physics?searchtype=author&amp;query=Davut%2C+C">C. Davut</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08681v1-abstract-short" style="display: inline;"> The vertical plane transverse emittance of accelerated electron bunches at the AWAKE experiment at CERN has been determined, using three different methods of data analysis. This is a proof-of-principle measurement using the existing AWAKE electron spectrometer to validate the measurement technique. Large values of the geometric emittance, compared to that of the injection beam, are observed (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08681v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08681v1-abstract-full" style="display: none;"> The vertical plane transverse emittance of accelerated electron bunches at the AWAKE experiment at CERN has been determined, using three different methods of data analysis. This is a proof-of-principle measurement using the existing AWAKE electron spectrometer to validate the measurement technique. Large values of the geometric emittance, compared to that of the injection beam, are observed ($\sim \SI{0.5}{\milli\metre\milli\radian}$ compared with $\sim \SI{0.08}{\milli\metre\milli\radian}$), which is in line with expectations of emittance growth arising from plasma density ramps and large injection beam bunch size. Future iterations of AWAKE are anticipated to operate in conditions where emittance growth is better controlled, and the effects of the imaging systems of the existing and future spectrometer designs on the ability to measure the emittance are discussed. Good performance of the instrument down to geometric emittances of approximately $\SI{1e-4}{\milli\metre\milli\radian}$ is required, which may be possible with improved electron optics and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08681v1-abstract-full').style.display = 'none'; document.getElementById('2411.08681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07775">arXiv:2411.07775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07775">pdf</a>, <a href="https://arxiv.org/format/2411.07775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological resilience of optical skyrmions in local decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li-Wen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Cheng-Jie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yong-Sheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07775v1-abstract-short" style="display: inline;"> The concept of skyrmions was introduced as early as the 1960s by Tony Skyrme. The topologically protected configuration embedded in skyrmions has prompted some investigations into their fundamental properties and versatile applications, sparking interest and guiding ongoing development. The topological protection associated with skyrmions was initially observed in systems with interactions. It is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07775v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07775v1-abstract-full" style="display: none;"> The concept of skyrmions was introduced as early as the 1960s by Tony Skyrme. The topologically protected configuration embedded in skyrmions has prompted some investigations into their fundamental properties and versatile applications, sparking interest and guiding ongoing development. The topological protection associated with skyrmions was initially observed in systems with interactions. It is widely believed that skyrmions are stable yet relevant confirmation and empirical research remains limited. A pertinent question is whether skyrmion configurations formed by single-particle wave functions also exhibit topological stability. In this study, we affirm this hypothesis by investigating the effects of local decoherence. We analytically and numerically demonstrate the topological resilience of skyrmions and occurrence of transition points of skyrmion numbers in local decoherence of three typical decoherence channels. On the other hand, we show that these qualities are independent of the initial state. From the numerical results, we verify that inhomogeneous but continuous decoherence channels also adhere to the same behaviors and hold topological stability of skyrmions as homogeneous decoherence channels. These properties of skyrmions contribute to further applications in various areas including communication and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07775v1-abstract-full').style.display = 'none'; document.getElementById('2411.07775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05686">arXiv:2411.05686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05686">pdf</a>, <a href="https://arxiv.org/format/2411.05686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Comprehensive Study on the Slat Noise of 30P30N High-Lift Airfoil Basd on High-Order Wall-Resolved Large-Eddy Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Keli Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Shizhi Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P">Peiqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shihao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05686v1-abstract-short" style="display: inline;"> This study presents wall-resolved large-eddy simulations (WRLES) of a high-lift airfoil, based on high-order flux reconstruction (FR) commercial software Dimaxer, which runs on consumer level GPUs. A series of independence tests are conducted, including various Ffowcs Williams-Hawkings sampling surfaces, different mesh densities, simulations at 4th and 5th order accuracies, and varying spanwise le&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05686v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05686v1-abstract-full" style="display: none;"> This study presents wall-resolved large-eddy simulations (WRLES) of a high-lift airfoil, based on high-order flux reconstruction (FR) commercial software Dimaxer, which runs on consumer level GPUs. A series of independence tests are conducted, including various Ffowcs Williams-Hawkings sampling surfaces, different mesh densities, simulations at 4th and 5th order accuracies, and varying spanwise lengths, to establish best practice for predicting slat noise through high-order WRLES. The results show excellent agreement with experimental data while requiring significantly fewer computational resources than traditional second-order methods. An investigation on the effects of Reynolds number (Re) is performed by scaling the airfoil size, with Reynolds numbers ranging from 8.55e5 to a real aircraft level of 1.71e7. By applying simple scaling through Strouhal number (St), spanwise correction, and distance from the receiver, the far-field noise spectra for different Reynolds numbers can be coincided. Additionally, simulations are performed at four angles of attack: 3掳, 5.5掳, 9.5掳, and 14掳. The results indicate that higher angles of attack lead to a less intense feedback loop, resulting in lower tonal noise frequencies and reduced noise amplitude. The maximum noise reduction observed is over 14dB when comparing 14掳 to 3掳. Furthermore, an improved formula is proposed to enhance the prediction of slat noise tonal frequencies and to better elucidate the mechanism behind tonal noise generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05686v1-abstract-full').style.display = 'none'; document.getElementById('2411.05686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04385">arXiv:2411.04385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04385">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Metasurface-Integrated Polarization-Insensitive LCoS for Projection Displays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ou%2C+X">Xiangnian Ou</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yueqiang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+D">Dian Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lou%2C+S">Shaozhen Lou</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+Z">Zhiwen Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Wenzhi Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Man Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+P">Ping Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+N">Na Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+H">Huigao Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04385v1-abstract-short" style="display: inline;"> Liquid crystal on silicon (LCoS) panels, renowned for their high resolution and fill-factor, are integral to modern projection displays. However, their inherent polarization sensitivity constrains the upper limit of light utilization, increases system complexity and restricts broader applicability. Here, we demonstrate a dual-layer metasurface-integrated LCoS prototype that achieves polarization-i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04385v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04385v1-abstract-full" style="display: none;"> Liquid crystal on silicon (LCoS) panels, renowned for their high resolution and fill-factor, are integral to modern projection displays. However, their inherent polarization sensitivity constrains the upper limit of light utilization, increases system complexity and restricts broader applicability. Here, we demonstrate a dual-layer metasurface-integrated LCoS prototype that achieves polarization-insensitive, addressable amplitude modulation in the visible. Polarization sensitivity is eliminated in the reflective architecture through polarization conversion in the underlying metasurface and polarization-sensitive phase modulation of the liquid crystals (LC). This is further enhanced by the electrically tunable subwavelength grating formed by the upper metasurface and LC, resulting in a high-contrast, polarization-insensitive optical switch. We showcase a 64-pixel 2D addressable prototype capable of generating diverse projection patterns with high contrast. Compatible with existing LCoS processes, our metasurface device reduces system size and enhances energy efficiency, offering applications in projectors and AR/VR displays, with the potential to redefine projection chip technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04385v1-abstract-full').style.display = 'none'; document.getElementById('2411.04385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02912">arXiv:2411.02912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02912">pdf</a>, <a href="https://arxiv.org/format/2411.02912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Atomic Clock Ensemble in Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cacciapuoti%2C+L">L. Cacciapuoti</a>, <a href="/search/physics?searchtype=author&amp;query=Busso%2C+A">A. Busso</a>, <a href="/search/physics?searchtype=author&amp;query=Jansen%2C+R">R. Jansen</a>, <a href="/search/physics?searchtype=author&amp;query=Pataraia%2C+S">S. Pataraia</a>, <a href="/search/physics?searchtype=author&amp;query=Peignier%2C+T">T. Peignier</a>, <a href="/search/physics?searchtype=author&amp;query=Weinberg%2C+S">S. Weinberg</a>, <a href="/search/physics?searchtype=author&amp;query=Crescence%2C+P">P. Crescence</a>, <a href="/search/physics?searchtype=author&amp;query=Helm%2C+A">A. Helm</a>, <a href="/search/physics?searchtype=author&amp;query=Kehrer%2C+J">J. Kehrer</a>, <a href="/search/physics?searchtype=author&amp;query=Koller%2C+S">S. Koller</a>, <a href="/search/physics?searchtype=author&amp;query=Lachaud%2C+R">R. Lachaud</a>, <a href="/search/physics?searchtype=author&amp;query=Niedermaier%2C+T">T. Niedermaier</a>, <a href="/search/physics?searchtype=author&amp;query=Esnault%2C+F+-">F. -X. Esnault</a>, <a href="/search/physics?searchtype=author&amp;query=Massonnet%2C+D">D. Massonnet</a>, <a href="/search/physics?searchtype=author&amp;query=Goujon%2C+D">D. Goujon</a>, <a href="/search/physics?searchtype=author&amp;query=Pittet%2C+J">J. Pittet</a>, <a href="/search/physics?searchtype=author&amp;query=Perri%2C+A">A. Perri</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">S. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Schaefer%2C+W">W. Schaefer</a>, <a href="/search/physics?searchtype=author&amp;query=Schwall%2C+T">T. Schwall</a>, <a href="/search/physics?searchtype=author&amp;query=Prochazka%2C+I">I. Prochazka</a>, <a href="/search/physics?searchtype=author&amp;query=Schlicht%2C+A">A. Schlicht</a>, <a href="/search/physics?searchtype=author&amp;query=Schreiber%2C+U">U. Schreiber</a>, <a href="/search/physics?searchtype=author&amp;query=Laurent%2C+P">P. Laurent</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02912v1-abstract-short" style="display: inline;"> The Atomic Clock Ensemble in Space (ACES) mission is developing high performance clocks and links for space to test Einstein&#39;s theory of general relativity. From the International Space Station, the ACES payload will distribute a clock signal with fractional frequency stability and accuracy of 1E-16 establishing a worldwide network to compare clocks in space and on the ground. ACES will provide an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02912v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02912v1-abstract-full" style="display: none;"> The Atomic Clock Ensemble in Space (ACES) mission is developing high performance clocks and links for space to test Einstein&#39;s theory of general relativity. From the International Space Station, the ACES payload will distribute a clock signal with fractional frequency stability and accuracy of 1E-16 establishing a worldwide network to compare clocks in space and on the ground. ACES will provide an absolute measurement of Einstein&#39;s gravitational redshift, it will search for time variations of fundamental constants, contribute to test topological dark matter models, and perform Standard Model Extension tests. Moreover, the ground clocks connected to the ACES network will be compared over different continents and used to measure geopotential differences at the clock locations. After solving some technical problems, the ACES flight model is now approaching its completion. System tests involving the laser-cooled Cs clock PHARAO, the active H-maser SHM and the on-board frequency comparator FCDP have measured the performance of the clock signal delivered by ACES. The ACES microwave link MWL is currently under test. The single-photon avalanche detector of the optical link ELT has been tested and will now be integrated in the ACES payload. The ACES mission concept, its scientific objectives, and the recent test results are discussed here together with the major milestones that will lead us to the ACES launch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02912v1-abstract-full').style.display = 'none'; document.getElementById('2411.02912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01724">arXiv:2411.01724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01724">pdf</a>, <a href="https://arxiv.org/format/2411.01724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Ultra-Low-Loss, Dispersion-Engineered Silicon Nitride Photonic Integrated Circuits via Silicon Hardmask Etching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hariri%2C+A">Abdulkarim Hariri</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Hallak%2C+A">Abdur-Raheem Al-Hallak</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheshen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01724v1-abstract-short" style="display: inline;"> Silicon nitride (Si$_3$N$_4$) photonic integrated circuits (PICs) have emerged as a versatile platform for a wide range of applications, such as nonlinear optics, narrow-linewidth lasers, and quantum photonics. While thin-film Si$_3$N$_4$ processes have been extensively developed, many nonlinear and quantum optics applications require the use of thick Si$_3$N$_4$ films with engineered dispersion,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01724v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01724v1-abstract-full" style="display: none;"> Silicon nitride (Si$_3$N$_4$) photonic integrated circuits (PICs) have emerged as a versatile platform for a wide range of applications, such as nonlinear optics, narrow-linewidth lasers, and quantum photonics. While thin-film Si$_3$N$_4$ processes have been extensively developed, many nonlinear and quantum optics applications require the use of thick Si$_3$N$_4$ films with engineered dispersion, high mode confinement, and low optical loss. However, high tensile stress in thick Si$_3$N$_4$ films often leads to cracking, making the fabrication challenging to meet these requirements. In this work, we present a robust and reliable fabrication method for ultra-low-loss, dispersion-engineered Si$_3$N$_4$ PICs using amorphous silicon (a-Si) hardmask etching. This approach enables smooth etching of thick Si$_3$N$_4$ waveguides while ensuring long-term storage of crack-free Si$_3$N$_4$ wafers. We achieve intrinsic quality factors ($Q_i$) as high as $25.6 \times 10^6$, corresponding to a propagation loss of 1.6 dB/m. The introduction of a-Si hardmask etching and novel crack-isolation trenches offers notable advantages, including high etching selectivity, long-term wafer storage, high yield, and full compatibility with existing well-developed silicon-based semiconductor processes. We demonstrate frequency comb generation in the fabricated microring resonators, showcasing the platform&#39;s potential for applications in optical communication, nonlinear optics, metrology, and spectroscopy. This stable and efficient fabrication method offers high performance with significantly reduced fabrication complexity, representing a remarkable advancement toward mass production of Si$_3$N$_4$ PICs for a wide spectrum of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01724v1-abstract-full').style.display = 'none'; document.getElementById('2411.01724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22064">arXiv:2410.22064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22064">pdf</a>, <a href="https://arxiv.org/format/2410.22064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-precision programming of large-scale ring resonator circuits with minimal pre-calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaojie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+T">Tengji Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Benshan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dongliang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Q">Qiarong Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+C">Chaoran Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22064v1-abstract-short" style="display: inline;"> Microring resonators (MRRs) are essential components in large-scale photonic integrated circuits (PICs), but programming these circuits with high precision and efficiency remains an unsolved challenge. Conventional methods rely on complex calibration processes that are both time-consuming and often inaccurate, limiting the scalability of PICs. This work introduces an innovative control method call&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22064v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22064v1-abstract-full" style="display: none;"> Microring resonators (MRRs) are essential components in large-scale photonic integrated circuits (PICs), but programming these circuits with high precision and efficiency remains an unsolved challenge. Conventional methods rely on complex calibration processes that are both time-consuming and often inaccurate, limiting the scalability of PICs. This work introduces an innovative control method called chip-in-the-loop optimization (ChiL) that addresses this challenge by offering high scalability, precision, fast convergence, and robustness. ChiL reduces the calibration complexity for an $N$ devices system from $O(k^N)$ to a single-shot measurement, while maintaining a record-high precision over 9-bit in the presence of system imperfections, including fabrication variances, thermal crosstalk, and temperature drift. Using ChiL, we experimentally demonstrate a photonic solver for computing matrix eigenvalues and eigenvectors with errors on the order of $10^{-4}$. Additionally, we achieve a photonic neural network (PNN) with accuracy and a confusion matrix identical to those of digital computers. ChiL offers a practical approach for programming large-scale PICs and bridges the gap between analog photonic and digital electronic computing and signal processing in both scale and precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22064v1-abstract-full').style.display = 'none'; document.getElementById('2410.22064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21386">arXiv:2410.21386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21386">pdf</a>, <a href="https://arxiv.org/format/2410.21386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Supersymmetry dynamics on Rydberg atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Zhengzhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shi-Xin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+H">Hong Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21386v1-abstract-short" style="display: inline;"> Spacetime supersymmetry (SUSY) that interchanges fermions and bosons is of great theoretical importance but has not yet been revealed experimentally in particle physics. It has also been desired to explore quantum-mechanical SUSY in microscopic lattice models. Inspired by the recent experiments of Floquet engineering of Rydberg atom arrays, we find that quantum mechanical SUSY can be realized in F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21386v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21386v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21386v1-abstract-full" style="display: none;"> Spacetime supersymmetry (SUSY) that interchanges fermions and bosons is of great theoretical importance but has not yet been revealed experimentally in particle physics. It has also been desired to explore quantum-mechanical SUSY in microscopic lattice models. Inspired by the recent experiments of Floquet engineering of Rydberg atom arrays, we find that quantum mechanical SUSY can be realized in Floquet Rydberg atom arrays. Moreover, we utilize the supercharge dynamics to demonstrate the SUSY property of the model under investigation: the expectation value of supercharge freezes under time evolution for supersymmetric lattice models in contrast to the trivial oscillation for generic nonsupersymmetric lattice models. The proposal is validated on direct simulation of Rydberg atom arrays&#39; dynamics and ready for experiments. This work sheds light on the future experimental exploration of SUSY with the help of Rydberg atom arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21386v1-abstract-full').style.display = 'none'; document.getElementById('2410.21386v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20864">arXiv:2410.20864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20864">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancement of piezoelectric response in V doped LiNbO3 films deposited by RF magnetron sputtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiaomei Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+T">Ting Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Z">Zhong Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+B">Bing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Pogrebnjak%2C+A">Alexander Pogrebnjak</a>, <a href="/search/physics?searchtype=author&amp;query=Pelenovich%2C+V+O">Vasiliy O. Pelenovich</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20864v2-abstract-short" style="display: inline;"> LiNbO3 films doped with vanadium (V) were deposited using RF magnetron sputtering technique. To realize doping with a wider range of V concentration, a 30 mm V metal inlaid target asymmetrically embedded in the 150 mm lithium niobate target was used. The V concentration in the deposited films was a decreasing function of the distance from the V target. The V/Nb ratio in the film decreased from 0.1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20864v2-abstract-full').style.display = 'inline'; document.getElementById('2410.20864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20864v2-abstract-full" style="display: none;"> LiNbO3 films doped with vanadium (V) were deposited using RF magnetron sputtering technique. To realize doping with a wider range of V concentration, a 30 mm V metal inlaid target asymmetrically embedded in the 150 mm lithium niobate target was used. The V concentration in the deposited films was a decreasing function of the distance from the V target. The V/Nb ratio in the film decreased from 0.155 to 0.024. Surface and inner morphology and structure, phase and element composition, microstructure, and ferroelectric properties of the undoped and V doped LiNbO3 films were studied. The measured maximal d33 constant of the LiNbVO film with V/Nb ratio of 0.07 was about three times higher than that of the undoped LiNbO3 film, 13.5 pC/N and 4.76 pC/N, respectively. The optimal composition in the deposition geometry used was within the V/Nb ratio range of 0.05 to 0.13. Undoped and V doped LiNbO3 thin films were used as bulk acoustic wave ultrasonic transducers deposited on stainless steel plates to generate longitudinal waves and compare their ultrasonic performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20864v2-abstract-full').style.display = 'none'; document.getElementById('2410.20864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15100">arXiv:2410.15100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15100">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Flat Plasmonic Biosensing Interface on Optical Fiber End-Facet via SPP-MIM Hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chenjia He</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiaqing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Hao Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingfeng Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xuetong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sihang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+L">Li Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+X">Xiangyang Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shengfu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+S">Shengce Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+T">Tian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15100v1-abstract-short" style="display: inline;"> We found that the specific dispersion of metal-insulator-metal (MIM) waveguide allows the hybridization of surface plasmon polaritons (SPPs) and the waveguide, which is not possible with dielectric waveguides. The SPP-MIM hybridization structure forms such a meta-film that integrates the previously incompatible respective merits of SPR and LSPR, including flat interfaces, high sensitivities, short&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15100v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15100v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15100v1-abstract-full" style="display: none;"> We found that the specific dispersion of metal-insulator-metal (MIM) waveguide allows the hybridization of surface plasmon polaritons (SPPs) and the waveguide, which is not possible with dielectric waveguides. The SPP-MIM hybridization structure forms such a meta-film that integrates the previously incompatible respective merits of SPR and LSPR, including flat interfaces, high sensitivities, short evanescent fields and easy coupling with confined light. On the other hand, to achieve stable and reproducible performance is one of the greatest unresolved challenges for the development of nanophotonic biosensors. We point out that the key is to obtain well-controlled biomolecular behaviors using simple physical interfaces, for which the SPP-MIM meta-film provides a capable solution. We embed the SPP-MIM meta-film with a plasmonic crystal cavity and integrate it on a single-mode fiber&#39;s end-facet to detect biomolecular interactions. This device demonstrates highly reproducible sensorgrams and convincing detection of biotinylated proteins at down to 30 fM, with the sensorgrams following the Langmuir model. By unprecedentedly having both high sensitivity and high reproducibility, our device proposal provides a comprehensive solution for optical fiber-tip plasmonic devices to turn into a useful industrial biosensing technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15100v1-abstract-full').style.display = 'none'; document.getElementById('2410.15100v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">article + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13906">arXiv:2410.13906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13906">pdf</a>, <a href="https://arxiv.org/format/2410.13906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising tube based on BP neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shijiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+J">Jiayue Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xingpeng Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jianlong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13906v1-abstract-short" style="display: inline;"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising pipe is of great significance for improving the production capacity and production efficiency of the petrochemical industry. In order to address the problem of the accuracy of the identification of the two-phase flow pattern of gas-liquid, this paper proposes a method for identifying the two-phase flow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13906v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13906v1-abstract-full" style="display: none;"> Research on the identification of the two-phase flow pattern of gas-liquid in a vertical rising pipe is of great significance for improving the production capacity and production efficiency of the petrochemical industry. In order to address the problem of the accuracy of the identification of the two-phase flow pattern of gas-liquid, this paper proposes a method for identifying the two-phase flow pattern of gas-liquid in a vertical rising pipe based on BP neural networks. In the study, the Fluent software was used to numerically simulate different two-phase flow velocities. The pipes were all constructed as vertical rising pipes with an inner diameter of 20 mm and a length of 2000 mm. Three flow pattern cloud diagrams and their related data were obtained for bubble flow, elastic flow, and annular flow. The gas content of the three flow types was used to collect data to form a database. The BP neural network was used to classify and identify the three flow patterns, but the result was only 90.73%. We again used the Adam algorithm to optimise the BP neural network and regularise it, and the flow pattern recognition result reached 96.68%, which was a better recognition <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13906v1-abstract-full').style.display = 'none'; document.getElementById('2410.13906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10280">arXiv:2410.10280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10280">pdf</a>, <a href="https://arxiv.org/format/2410.10280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dual-Mode Calorimetric Superconducting Nanowire Single Photon Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hsin-Yeh Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Besan%C3%A7on%2C+M">Marc Besan莽on</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jia-Wern Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+P">Pisin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Glicenstein%2C+J">Jean-Fran莽ois Glicenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shu-Xiao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yu-Jung Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Navick%2C+X">Xavier-Fran莽ois Navick</a>, <a href="/search/physics?searchtype=author&amp;query=Paganis%2C+S">Stathes Paganis</a>, <a href="/search/physics?searchtype=author&amp;query=Tuchming%2C+B">Boris Tuchming</a>, <a href="/search/physics?searchtype=author&amp;query=Tsionou%2C+D">Dimitra Tsionou</a>, <a href="/search/physics?searchtype=author&amp;query=Tsai%2C+F">Feng-Yang Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10280v1-abstract-short" style="display: inline;"> A dual-operation mode SNSPD is demonstrated. In the conventional Geiger SNSPD mode the sensor operates at temperatures well below the critical temperature, Tc, working as an event counter without sensitivity to the number of photons impinging the sensor. In the calorimetric mode, the detector is operated at temperatures just below Tc and displays photon-number sensitivity for wavelengths in the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10280v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10280v1-abstract-full" style="display: none;"> A dual-operation mode SNSPD is demonstrated. In the conventional Geiger SNSPD mode the sensor operates at temperatures well below the critical temperature, Tc, working as an event counter without sensitivity to the number of photons impinging the sensor. In the calorimetric mode, the detector is operated at temperatures just below Tc and displays photon-number sensitivity for wavelengths in the optical spectrum. In this energy sensitive mode, photon absorption causes Joule heating of the SNSPD that becomes partially resistive without the presence of latching. Depending on the application, by tuning the sample temperature and bias current using the same readout system, the SNSPD can readily switch between the two modes. In the calorimetric mode, SNSPD recovery times shorter than the ones in the Geiger mode are observed, reaching values as low as 580ps. Dual-mode SNSPD&#39;s may provide significant advancements in spectroscopy and calorimetry, where precise timing, photon counting and energy resolution are required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10280v1-abstract-full').style.display = 'none'; document.getElementById('2410.10280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript prepared for APL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10175">arXiv:2410.10175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10175">pdf</a>, <a href="https://arxiv.org/format/2410.10175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Tensor-involved peridynamics: A unified framework for isotropic and anisotropic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tian%2C+H">Hao Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+J">Jinlong Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chenguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10175v4-abstract-short" style="display: inline;"> In this paper, we introduce tensor involved peridynamics, a unified framework for simulating both isotropic and anisotropic materials. While traditional peridynamics models effectively simulate isotropic materials, they face challenges with anisotropic materials and are prone to instability caused by zero energy modes. Our novel model extend the linear bond based peridynamics framework by incorpor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10175v4-abstract-full').style.display = 'inline'; document.getElementById('2410.10175v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10175v4-abstract-full" style="display: none;"> In this paper, we introduce tensor involved peridynamics, a unified framework for simulating both isotropic and anisotropic materials. While traditional peridynamics models effectively simulate isotropic materials, they face challenges with anisotropic materials and are prone to instability caused by zero energy modes. Our novel model extend the linear bond based peridynamics framework by incorporating the elastic tensor into the micrmodulus function, thereby ensuring stability for anisotropic materials without the need for additional corrections. For isotropic materials. the model mantains compatibility with conventional bond based peridynamics, assuming Possion&#39;s rations of 1/4 in 3D and 1/3 in 2D.Numerical experiments confirm the model&#39;s stability and accuracy across various scenarios. Additionally, we introduce a damage model for isotropic materials. validating its performance in predicting crack propagation paths in a 2D plate. The results show superior alignment with experimental date compared to traditional model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10175v4-abstract-full').style.display = 'none'; document.getElementById('2410.10175v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Peridynamics; Anisotropic materials; Elastic tensor; Zero-energy mode</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07529">arXiv:2410.07529</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07529">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.044005">10.1103/PhysRevApplied.22.044005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuous-wave amplitude control via the interference phenomenon in acoustic structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bingyi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shanshan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liulin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+C">Chuanxing Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+K">Kai Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhongyi Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07529v1-abstract-short" style="display: inline;"> We propose a strategy to continuously tune the amplitude of acoustic waves based on the interference among two mode-conversion paths in passive acoustic structures. The interference phenomenon is attributed to two conjugate acoustic geometric phases obtained with two mode-conversion processes in hybrid-type geometric-phase meta-atom (HGPM) pair. Notably, 100% modulation depth of the wave amplitude&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07529v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07529v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07529v1-abstract-full" style="display: none;"> We propose a strategy to continuously tune the amplitude of acoustic waves based on the interference among two mode-conversion paths in passive acoustic structures. The interference phenomenon is attributed to two conjugate acoustic geometric phases obtained with two mode-conversion processes in hybrid-type geometric-phase meta-atom (HGPM) pair. Notably, 100% modulation depth of the wave amplitude is achievable by simply varying the local orientation angle of meta-atom. We utilize the acoustic structure made of two cylindrical resonators to construct deep-subwavelength secondary source with designated initial phase delay, and HGPM supporting desired mode-conversion functionality is accordingly fabricated with four secondary sources. Both theory and experiment consistently verify the continuous amplitude modulation function of HGPM pair, which showcases a general scheme for reconfigurable amplitude-type acoustic meta-devices, i.e., those that require grayscale amplitude modulation for acoustic field engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07529v1-abstract-full').style.display = 'none'; document.getElementById('2410.07529v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied,22,044005(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05999">arXiv:2410.05999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05999">pdf</a>, <a href="https://arxiv.org/format/2410.05999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The robustness of skyrmion numbers of structured optical fields in atmospheric turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liwen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yongsheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuanfeng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guangcan Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05999v1-abstract-short" style="display: inline;"> The development of vector optical fields has brought forth numerous applications. Among these optical fields, a particular class of vector vortex beams has emerged, leading to the emergence of intriguing optical skyrmion fields characterized by skyrmion numbers. The optical skyrmion fields are well-defined by their effective magnetization and possess topologically protected configurations. It is a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05999v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05999v1-abstract-full" style="display: none;"> The development of vector optical fields has brought forth numerous applications. Among these optical fields, a particular class of vector vortex beams has emerged, leading to the emergence of intriguing optical skyrmion fields characterized by skyrmion numbers. The optical skyrmion fields are well-defined by their effective magnetization and possess topologically protected configurations. It is anticipated that this type of optical structure can be exploited for encoding information in optical communication, even under perturbations such as turbulent air, optical fibers, and even general random media. In this study, we numerically demonstrate that the skyrmion numbers of optical skyrmion fields exhibit a certain degree of robustness to atmospheric turbulence, even though their intensity, phase and polarization patterns are distorted. Intriguingly, it is also observed that a larger difference between the absolute values of two azimuthal indices of the vectorial structured light field can lead to a superior level of resilience. These properties not only enhance the versatility of skyrmion fields and their numbers, but also open up new possibilities for their use in various applications across noisy channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05999v1-abstract-full').style.display = 'none'; document.getElementById('2410.05999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01464">arXiv:2410.01464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01464">pdf</a>, <a href="https://arxiv.org/format/2410.01464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Flow Matching for Accelerated Simulation of Atomic Transport in Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nam%2C+J">Juno Nam</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Winter%2C+G">Gavin Winter</a>, <a href="/search/physics?searchtype=author&amp;query=Jun%2C+K">KyuJung Jun</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Soojung Yang</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%B3mez-Bombarelli%2C+R">Rafael G贸mez-Bombarelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01464v3-abstract-short" style="display: inline;"> We introduce LiFlow, a generative framework to accelerate molecular dynamics (MD) simulations for crystalline materials that formulates the task as conditional generation of atomic displacements. The model uses flow matching, with a Propagator submodel to generate atomic displacements and a Corrector to locally correct unphysical geometries, and incorporates an adaptive prior based on the Maxwell-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01464v3-abstract-full').style.display = 'inline'; document.getElementById('2410.01464v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01464v3-abstract-full" style="display: none;"> We introduce LiFlow, a generative framework to accelerate molecular dynamics (MD) simulations for crystalline materials that formulates the task as conditional generation of atomic displacements. The model uses flow matching, with a Propagator submodel to generate atomic displacements and a Corrector to locally correct unphysical geometries, and incorporates an adaptive prior based on the Maxwell-Boltzmann distribution to account for chemical and thermal conditions. We benchmark LiFlow on a dataset comprising 25-ps trajectories of lithium diffusion across 4,186 solid-state electrolyte (SSE) candidates at four temperatures. The model obtains a consistent Spearman rank correlation of 0.7-0.8 for lithium mean squared displacement (MSD) predictions on unseen compositions. Furthermore, LiFlow generalizes from short training trajectories to larger supercells and longer simulations while maintaining high accuracy. With speed-ups of up to 600,000$\times$ compared to first-principles methods, LiFlow enables scalable simulations at significantly larger length and time scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01464v3-abstract-full').style.display = 'none'; document.getElementById('2410.01464v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14146">arXiv:2409.14146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14146">pdf</a>, <a href="https://arxiv.org/format/2409.14146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Simplified unified wave-particle method for diatomic gases based on Rykov model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Sirui Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Sha Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Junzhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+C">Chengwen Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14146v1-abstract-short" style="display: inline;"> During the past decades, the numerical methods based on Navier-Stokes (N-S) equations and direct simulation Monte Carlo (DSMC) methods have been proved effective in simulating flows in the continuum and rarefied regimes, respectively. However, as single-scale methods, they face challenges in addressing common multi-scale problems, which are essential to simulate hypersonic flows around near-space&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14146v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14146v1-abstract-full" style="display: none;"> During the past decades, the numerical methods based on Navier-Stokes (N-S) equations and direct simulation Monte Carlo (DSMC) methods have been proved effective in simulating flows in the continuum and rarefied regimes, respectively. However, as single-scale methods, they face challenges in addressing common multi-scale problems, which are essential to simulate hypersonic flows around near-space vehicles and the flows in the micro-electro-mechanical systems. Hence, there is an urgent need for a method to predict multi-scale flows. In this work, a quantified model-competition (QMC) mechanism for diatomic multi-scale flows is derived from the integral solution of the Rykov model equations. This mechanism encapsulates both continuum and rarefied behaviors in a cell, weighted according to its local physical scale. By building upon the QMC mechanism, the N-S solver and DSMC solver are directly integrated within a cell to devise a simplified unified wave-particle (SUWP) method for diatomic gases. Specifically, the two-temperature equations considering the rotational energy are introduced into the kinetic inviscid flux (KIF) scheme and the N-S solver. As to the particle part, the collisionless DSMC solver is utilized to describe the non-equilibrium phenomenon. The proposed SUWP method for diatomic gases undergoes validation across a series of cases, including zero-dimensional homogeneous gas relaxation, one-dimensional normal shock structure, two-dimensional flow around the flat and the cylinder, and three-dimensional flows past the sphere and the blunt cone. Additionally, the implementation details of multi-scale wave-particle methods analysis and discussion are also undertaken in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14146v1-abstract-full').style.display = 'none'; document.getElementById('2409.14146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01158">arXiv:2409.01158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01158">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Microwave Photonic Multi-Mode Injection-Locked Frequency Divider With a Wide Operational Range Based on an Optoelectronic Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+K">Kaitao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W">Weiye Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+Z">Zhenzhao Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xinhuan Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Wo%2C+J">Jianghai Wo</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+J">Jianping Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01158v1-abstract-short" style="display: inline;"> We propose and implement a microwave photonic multi-mode injection-locked frequency divider (ILFD) with a wide frequency operational range based on an optoelectronic oscillator (OEO). In the OEO, a Mach-Zehnder modulator (MZM) and a photodetector (PD) are employed to construct a frequency multiplier to achieve an N-1 times frequency multiplication, which is then mixed with an external injection si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01158v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01158v1-abstract-full" style="display: none;"> We propose and implement a microwave photonic multi-mode injection-locked frequency divider (ILFD) with a wide frequency operational range based on an optoelectronic oscillator (OEO). In the OEO, a Mach-Zehnder modulator (MZM) and a photodetector (PD) are employed to construct a frequency multiplier to achieve an N-1 times frequency multiplication, which is then mixed with an external injection signal at an electrical mixer in the OEO loop. By adjusting the round-trip gain and time delay of the OEO loop, a radio frequency (RF) signal with a frequency that is 1/N that of the injection signal is generated, thus N times frequency division is achieved. Theoretical analysis and experimental verification are conducted to evaluate the effectiveness of the proposed ILFD. The results demonstrate that the system can divide a RF signal from 2.6 to 20.8 GHz to 1.3 to 1.95 GHz with different frequency division factors ranging from 2 to 13. A significant improvement in phase noise of 35.11 dB is also obtained at a frequency offset of 100 kHz when the frequency division factor is 13. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01158v1-abstract-full').style.display = 'none'; document.getElementById('2409.01158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00201">arXiv:2409.00201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00201">pdf</a>, <a href="https://arxiv.org/format/2409.00201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of Quasi-Bound States in the Continuum in a Single Deformed Microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">Bo-Han Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jeffrey Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheshen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00201v1-abstract-short" style="display: inline;"> Bound states in the continuum (BIC) holds significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in both fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00201v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00201v1-abstract-full" style="display: none;"> Bound states in the continuum (BIC) holds significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in both fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated chips, has yet to be thoroughly explored. In this study, we propose and experimentally identify a robust mechanism for generating quasi-BIC in a single deformed microcavity. By introducing boundary deformations, we construct stable unidirectional radiation channels as leaking continuum shared by different resonant modes and experimentally verify their external strong mode coupling. This results in drastically suppressed leaking loss of one originally long-lived resonance, manifested as more than a 3-fold enhancement of its quality (Q) factor, while the other short-lived resonance becomes more lossy, demonstrating the formation of Friedrich-Wintgen quasi-BICs as corroborated by both the theoretical model and the experimental data. This research will provide a practical approach to enhance the Q factor of optical microcavities, opening up potential applications in the area of deformed microcavities, nonlinear optics, quantum optics, and integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00201v1-abstract-full').style.display = 'none'; document.getElementById('2409.00201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14054">arXiv:2408.14054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14054">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> One-dimensional Photonic Crystal Structure Enhanced External-Magnetic-Field-Free Spintronic Terahertz High-Field Emitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zehao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiahui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaojie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Z">Zejun Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Mingxuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+C">Chunyan Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xiaojun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14054v1-abstract-short" style="display: inline;"> Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, cost-effectiveness, large-size and ease for-integration have become one of the most promising alter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14054v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14054v1-abstract-full" style="display: none;"> Intense terahertz (THz) radiation in free space offers multifaceted capabilities for accelerating electron, understanding the mesoscale architecture in (bio)materials, elementary excitation and so on. Recently popularized spintronic THz emitters (STEs) with their versatility such as ultra-broadband, cost-effectiveness, large-size and ease for-integration have become one of the most promising alternative for the next generation of intense THz sources. Nevertheless, the typical W| Co20Fe60B20 | Pt necessitates an external-magnetic-field to saturate magnetization for stable operation, limiting its scalability for achieving higher THz field with uniform distribution over larger sample areas. Here we demonstrate the methodologies of enhancing the high-field THz radiation of external-magnetic-field-free IrMn3 | Co20Fe60B20 |W heterostructure via optimizing the substrate with superior thermal conductivity and integrating a one-dimensional photonic crystal (PC) structure to maximize the radiation efficiency. Under the excitation of a Ti: sapphire femtosecond laser amplifier with central wavelength of 800 nm, pulse duration of 35 fs, and repetition rate of 1 kHz and maximum single pulse energy of 5.5 mJ, we successfully generate intense THz radiation with focal peak electric field up to 1.1 MV/cm with frequency range covering 0.1-10 THz without external-magnetic-fields. These high-field STEs will also enable other applications such as ultra-broadband high-field THz spectroscopy and polarization-based large-size strong-field THz imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14054v1-abstract-full').style.display = 'none'; document.getElementById('2408.14054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13694">arXiv:2408.13694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13694">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Giant enhancement of bacterial upstream swimming in macromolecular flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">Ding Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+R">Ran Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Th%C3%A9ry%2C+A">Albane Th茅ry</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Mathijssen%2C+A+J+T+M">Arnold J. T. M. Mathijssen</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yilin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13694v1-abstract-short" style="display: inline;"> Many bacteria live in natural and clinical environments with abundant macromolecular polymers. Macromolecular fluids commonly display viscoelasticity and non-Newtonian rheological behavior; it is unclear how these complex-fluid properties affect bacterial transport in flows. Here we combine high-resolution microscopy and numerical simulations to study bacterial response to shear flows of various m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13694v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13694v1-abstract-full" style="display: none;"> Many bacteria live in natural and clinical environments with abundant macromolecular polymers. Macromolecular fluids commonly display viscoelasticity and non-Newtonian rheological behavior; it is unclear how these complex-fluid properties affect bacterial transport in flows. Here we combine high-resolution microscopy and numerical simulations to study bacterial response to shear flows of various macromolecular fluids. In stark contrast to the case in Newtonian shear flows, we found that flagellated bacteria in macromolecular flows display a giant capacity of upstream swimming (a behavior resembling fish swimming against current) near solid surfaces: The cells can counteract flow washing at shear rates up to ~65 $s^{-1}$, one order of magnitude higher than the limit for cells swimming in Newtonian flows. The significant enhancement of upstream swimming depends on two characteristic complex-fluid properties, namely viscoelasticity and shear-thinning viscosity; meanwhile, increasing the viscosity with a Newtonian polymer can prevent upstream motion. By visualizing flagellar bundles and modeling bacterial swimming in complex fluids, we explain the phenomenon as primarily arising from the augmentation of a &#34;weathervane effect&#34; in macromolecular flows due to the presence of a viscoelastic lift force and a shear-thinning induced azimuthal torque promoting the alignment of bacteria against the flow direction. Our findings shed light on bacterial transport and surface colonization in macromolecular environments, and may inform the design of artificial helical microswimmers for biomedical applications in physiological conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13694v1-abstract-full').style.display = 'none'; document.getElementById('2408.13694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12624">arXiv:2408.12624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> PACKMOL- GUI: An All-in-One VMD Interface for Efficient Molecular Packing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jian Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chenchen Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiner Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zaixing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shengtang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+G">Gang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12624v1-abstract-short" style="display: inline;"> PACKMOL is a widely utilized molecular modeling tool within the computational chemistry community. However, its perceivable advantages have been impeded by the long-standing lack of a robust open-source graphical user interface (GUI) that integrates parameter settings with the visualization of molecular and geometric constraints. To address this limitation, we have developed PACKMOL-GUI, a VMD plu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12624v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12624v1-abstract-full" style="display: none;"> PACKMOL is a widely utilized molecular modeling tool within the computational chemistry community. However, its perceivable advantages have been impeded by the long-standing lack of a robust open-source graphical user interface (GUI) that integrates parameter settings with the visualization of molecular and geometric constraints. To address this limitation, we have developed PACKMOL-GUI, a VMD plugin that leverages the dynamic extensibility of Tcl/Tk toolkit. This GUI enables the configuration of all PACKMOL parameters through an intuitive user panel, while also facilitating the visualization of molecular structures and geometric constraints, including cubes, boxes and spheres, among others via the VMD software. The seamless interaction between VMD and PACKMOL provides an intuitive and efficient all-in-one platform for the packing of complex molecular systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12624v1-abstract-full').style.display = 'none'; document.getElementById('2408.12624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11885">arXiv:2408.11885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11885">pdf</a>, <a href="https://arxiv.org/format/2408.11885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> HDN:Hybrid Deep-learning and Non-line-of-sight Reconstruction Framework for Photoacoustic Brain Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+P">Pengcheng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yuting Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+X">Xin Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Hulin Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuangli Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xiaohua Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Fei Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11885v1-abstract-short" style="display: inline;"> Photoacoustic imaging (PAI) combines the high contrast of optical imaging with the deep penetration depth of ultrasonic imaging, showing great potential in cerebrovascular disease detection. However, the ultrasonic wave suffers strong attenuation and multi-scattering when it passes through the skull tissue, resulting in the distortion of the collected photoacoustic (PA) signal. In this paper, insp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11885v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11885v1-abstract-full" style="display: none;"> Photoacoustic imaging (PAI) combines the high contrast of optical imaging with the deep penetration depth of ultrasonic imaging, showing great potential in cerebrovascular disease detection. However, the ultrasonic wave suffers strong attenuation and multi-scattering when it passes through the skull tissue, resulting in the distortion of the collected photoacoustic (PA) signal. In this paper, inspired by the principles of deep learning and non-line-of-sight (NLOS) imaging, we propose an image reconstruction framework named HDN (Hybrid Deep-learning and Non-line-of-sight), which consists of the signal extraction part and difference utilization part. The signal extraction part is used to correct the distorted signal and reconstruct an initial image. The difference utilization part is used to make further use of the signal difference between the distorted signal and corrected signal, reconstructing the residual image between the initial image and the target image. The test results on a PA digital brain simulation dataset show that compared with the traditional delay-and-sum (DAS) method and deep-learning-based method, HDN achieved superior performance in both signal correction and image reconstruction. Specifically for the SSIM index, the HDN reached 0.606 in imaging results, compared to 0.154 for the DAS method and 0.307 for the deep-learning-based method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11885v1-abstract-full').style.display = 'none'; document.getElementById('2408.11885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08563">arXiv:2408.08563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08563">pdf</a>, <a href="https://arxiv.org/format/2408.08563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Compact Efficient Polarizers for Relativistic Electron Beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+K">Kun Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Yue Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+F">Feng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhong-Peng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Q">Qian Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Si-Man Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin-Yu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+L">Li-Xiang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yong-Tao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zhong-Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tong-Pu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jian-Xing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08563v2-abstract-short" style="display: inline;"> Relativistic spin-polarized electron beams are important for fundamental research and the industry, but their generation currently requires conventional accelerators or ultrastrong laser facilities, limiting their accessibility and broad applications. Here, we put forward a novel method for constructing a compact efficient &#34;polarizer&#34; that achieves direct ultrafast conversion of relativistic dense&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08563v2-abstract-full').style.display = 'inline'; document.getElementById('2408.08563v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08563v2-abstract-full" style="display: none;"> Relativistic spin-polarized electron beams are important for fundamental research and the industry, but their generation currently requires conventional accelerators or ultrastrong laser facilities, limiting their accessibility and broad applications. Here, we put forward a novel method for constructing a compact efficient &#34;polarizer&#34; that achieves direct ultrafast conversion of relativistic dense electron beams into polarized ones, based on the beam &#34;self-polarization&#34; mechanism via simple beam-target interactions. In this scheme, as the electron beam grazes through the polarizer (a double-layer solid target), it ionizes the target and excites an asymmetric plasma field due to the plasma backflows. This field then reacts on the beam itself, triggering spontaneous radiative polarization and reflection of the beam, and ultimately yielding a dense polarized electron beam. Moreover, the double-layer target setup induces a plasma bubble that focuses the polarized beam and reshapes its polarization distribution. Our method is robust with respect to the beam and target parameters, and opens a new avenue for relativistic beam polarization with compact accessible devices, which would facilitate their broad applications and the development of related experiments, such as in strong-field QED studies, and polarized electron-positron and electron-ion colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08563v2-abstract-full').style.display = 'none'; document.getElementById('2408.08563v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00287">arXiv:2408.00287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00287">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Construction of various time-dependent Hamiltonians on a single photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ye%2C+R">Rui Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guangzhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+X">Xiaotian Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Piyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+X">Xin Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chunhua Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00287v1-abstract-short" style="display: inline;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00287v1-abstract-full" style="display: none;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film lithium niobate chip. Such an integrated microresonator holds high quality factor to 10^6, and supports the construction of the synthetic frequency lattice with effective lattice sites up to 152 under the electro-optic modulation. By further applying a bichromatic modulation composed of two radio-frequency signals oppositely detuned from the resonant frequency in the microresonator, we build different time-dependent Hamiltonians with the time-varying nearest-neighbor coupling strength in synthetic frequency lattice. We measure the temporal features from capturing the dynamic band structures of the lattice and demonstrate a variety of time-dependent synthetic lattice models by engineering the driven pattern of the modulation, highlighting great flexibility of the microresonator. Our work shows a photonic chip for simulating versatile time-dependent Hamiltonians, which pushes forward quantum simulations in integrated photonics with great experimental tunability and reconfigurability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'none'; document.getElementById('2408.00287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20481">arXiv:2407.20481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20481">pdf</a>, <a href="https://arxiv.org/ps/2407.20481">ps</a>, <a href="https://arxiv.org/format/2407.20481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Stronger sum uncertainty relations for non-Hermitian operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+X">Xiao-Feng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yi-Fang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xi-Hao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Turek%2C+Y">Yusuf Turek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20481v2-abstract-short" style="display: inline;"> The uncertainty relations (URs) of two arbitrary Hermitian and non-Hermitian incompatible operators represented by the product of variances have been confirmed theoretically and experimentally in various physical systems. However, the lower bound of the product uncertainty inequality can be null even for two non-commuting operators, i.e., a trivial case. Therefore, for two incompatible operators o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20481v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20481v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20481v2-abstract-full" style="display: none;"> The uncertainty relations (URs) of two arbitrary Hermitian and non-Hermitian incompatible operators represented by the product of variances have been confirmed theoretically and experimentally in various physical systems. However, the lower bound of the product uncertainty inequality can be null even for two non-commuting operators, i.e., a trivial case. Therefore, for two incompatible operators over the measured system state, the associated URs regarding the sum of variances are valid in a state-dependent manner, and the lower bound is guaranteed to be nontrivial. Although the sum URs formulated for Hermitian and unitary operators have been affirmed, the general forms for arbitrary non-Hermitian operators have not yet been investigated. This study presents the sum URs for non-Hermitian operators acting on system states using an appropriate Hilbert-space metric. The compatible forms of our sum inequalities with the conventional quantum mechanics are also provided via the G-metric formalism. Concrete examples illustrate the validity of the proposed sum URs in both PT-symmetric and PT-broken phases. The developed methods and results can help give an in-depth understanding of the usefulness of G-metric formalism in non-Hermitian quantum mechanics and the sum URs of incompatible operators within. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20481v2-abstract-full').style.display = 'none'; document.getElementById('2407.20481v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20478">arXiv:2407.20478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20478">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Hidden high-risky states identification from routine urban traffic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shiyan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">Mingyang Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+S">Shengmin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jianxi Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Huijun Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Ziyou Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Daqing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20478v1-abstract-short" style="display: inline;"> One of the core risk management tasks is to identify hidden high-risky states that may lead to system breakdown, which can provide valuable early warning knowledge. However, due to high dimensionality and nonlinear interaction embedded in large-scale complex systems like urban traffic, it remains challenging to identify hidden high-risky states from huge system state space where over 99% of possib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20478v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20478v1-abstract-full" style="display: none;"> One of the core risk management tasks is to identify hidden high-risky states that may lead to system breakdown, which can provide valuable early warning knowledge. However, due to high dimensionality and nonlinear interaction embedded in large-scale complex systems like urban traffic, it remains challenging to identify hidden high-risky states from huge system state space where over 99% of possible system states are not yet visited in empirical data. Based on maximum entropy model, we infer the underlying interaction network from complicated dynamical processes of urban traffic, and construct system energy landscape. In this way, we can locate hidden high-risky states that have never been observed from real data. These states can serve as risk signals with high probability of entering hazardous minima in energy landscape, which lead to huge recovery cost. Our finding might provide insights for complex system risk management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20478v1-abstract-full').style.display = 'none'; document.getElementById('2407.20478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14946">arXiv:2407.14946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14946">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4NR02368D">10.1039/D4NR02368D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microstructure-Dependent Particulate Filtration using Multifunctional Metallic Nanowire Foams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Malloy%2C+J">James Malloy</a>, <a href="/search/physics?searchtype=author&amp;query=Marlowe%2C+E">Erin Marlowe</a>, <a href="/search/physics?searchtype=author&amp;query=Jensen%2C+C+J">Christopher J. Jensen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+I+S">Isaac S. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hulse%2C+T">Thomas Hulse</a>, <a href="/search/physics?searchtype=author&amp;query=Murray%2C+A+F">Anne F. Murray</a>, <a href="/search/physics?searchtype=author&amp;query=Bryan%2C+D">Daniel Bryan</a>, <a href="/search/physics?searchtype=author&amp;query=Denes%2C+T+G">Thomas G. Denes</a>, <a href="/search/physics?searchtype=author&amp;query=Gilbert%2C+D+A">Dustin A. Gilbert</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+G">Gen Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14946v1-abstract-short" style="display: inline;"> The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nanowire foams that are efficient, robust, antimicrobial, and reusable, with the potential to further guard against multiple hazards. We have investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14946v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14946v1-abstract-full" style="display: none;"> The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nanowire foams that are efficient, robust, antimicrobial, and reusable, with the potential to further guard against multiple hazards. We have investigated the foam microstructures, detailing how the growth parameters influence the overall surface area and characteristic feature size, as well as the effects of the microstructures on the filtration performance. Nanogranules deposited on the nanowires during electrodeposition are found to greatly increase the surface area, up to 20 m$^{2}$/g. Surprisingly, in the high surface area regime, the overall surface area gained from the nanogranules has little correlation with the improvement in capture efficiency. However, nanowire density and diameter play a significant role in the capture efficiency of PM$_{0.3}$ particles, as do the surface roughness of the nanowire fibers and their characteristic feature sizes. Antimicrobial tests on the Cu foams show a &gt;99.9995% inactivation efficiency after contacting the foams for 30 seconds. These results demonstrate promising directions to achieve a highly efficient multifunctional filtration platform with optimized microstructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14946v1-abstract-full').style.display = 'none'; document.getElementById('2407.14946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures, 1 table; 11 page of supplementary information with 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 16, 15094 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12168">arXiv:2407.12168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12168">pdf</a>, <a href="https://arxiv.org/format/2407.12168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Junqi Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+S">Siming Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+F">Feng Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Chipilski%2C+H+G">Hristo G. Chipilski</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+D">Dan Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">Guannan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12168v1-abstract-short" style="display: inline;"> The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction. This is due to the lack of a data assimilation method as part of their workflow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12168v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12168v1-abstract-full" style="display: none;"> The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction. This is due to the lack of a data assimilation method as part of their workflow to enable the assimilation of incoming Earth system observations in real time. This limitation affects their effectiveness in predicting complex atmospheric phenomena such as tropical cyclones and atmospheric rivers. To overcome these obstacles, we introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer. This framework comprises two primary modules: an ensemble score filter (EnSF), which significantly outperforms the state-of-the-art data assimilation method, namely, the Local Ensemble Transform Kalman Filter (LETKF); and a vision transformer-based surrogate capable of real-time adaptation through the integration of observational data. The ViT surrogate can represent either physics-based models or AI-based foundation models. We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier. Our results not only illustrate the framework&#39;s exceptional scalability on high-performance computing systems, but also demonstrate the importance of supercomputers in real-time data assimilation for weather and climate predictions. Even though the proposed framework is tested only on a benchmark surface quasi-geostrophic (SQG) turbulence system, it has the potential to be combined with existing AI-based foundation models, making it suitable for future operational implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12168v1-abstract-full').style.display = 'none'; document.getElementById('2407.12168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10