CINXE.COM
Search results for: SeungHyun Ahn
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SeungHyun Ahn</title> <meta name="description" content="Search results for: SeungHyun Ahn"> <meta name="keywords" content="SeungHyun Ahn"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SeungHyun Ahn" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SeungHyun Ahn"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SeungHyun Ahn</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Kim"> SeungHyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=JungKyu%20Choi"> JungKyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20resistance" title="buckling resistance">buckling resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP%20infill%20panel" title=" GFRP infill panel"> GFRP infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking%20sequence" title=" stacking sequence"> stacking sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent" title=" temperature dependent"> temperature dependent</a> </p> <a href="https://publications.waset.org/abstracts/47887/influence-of-stacking-sequence-and-temperature-on-buckling-resistance-of-gfrp-infill-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee">JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo"> MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20surface" title="hierarchical surface">hierarchical surface</a>, <a href="https://publications.waset.org/abstracts/search?q=lotus%20leaf" title=" lotus leaf"> lotus leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-etching" title=" nano-etching"> nano-etching</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a> </p> <a href="https://publications.waset.org/abstracts/40656/the-effect-of-micronano-structure-of-poly-e-caprolactone-pcl-film-using-a-two-step-process-castingplasma-on-cellular-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo">MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee"> JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioink" title="bioink">bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-laden%20scaffold" title=" cell-laden scaffold"> cell-laden scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%2Fnanofibers" title=" micro/nanofibers"> micro/nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28caprolactone%29" title=" poly(caprolactone)"> poly(caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/40640/fabrication-of-hybrid-scaffolds-consisting-of-cell-laden-electrospun-micronanofibers-and-pcl-micro-structures-for-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang">Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo"> MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee"> JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20attachment" title="cell attachment">cell attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=melt-plotting" title=" melt-plotting"> melt-plotting</a> </p> <a href="https://publications.waset.org/abstracts/45197/fabrication-of-3d-scaffold-consisting-of-spiral-like-micro-sized-pcl-struts-and-selectively-deposited-nanofibers-as-a-tissue-regenerative-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Advanced Lithium Recovery from Brine: 2D-Based Ion Selectivity Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20S.%20Abdelrahman">Nour S. Abdelrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghyun%20Hong"> Seunghyun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20Arafat"> Hassan A. Arafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Choi"> Daniel Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Al%20Marzooqi"> Faisal Al Marzooqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—The advancement of lithium extraction methods from water sources, particularly saltwater brine, is gaining prominence in the lithium recovery industry due to its cost-effectiveness. Traditional techniques like recrystallization, chemical precipitation, and solvent extraction for metal recovery from seawater or brine are energy-intensive and exhibit low efficiency. Moreover, the extensive use of organic solvents poses environmental concerns. As a result, there's a growing demand for environmentally friendly lithium recovery methods. Membrane-based separation technology has emerged as a promising alternative, offering high energy efficiency and ease of continuous operation. In our study, we explored the potential of lithium-selective sieve channels constructed from layers of 2D graphene oxide and MXene (transition metal carbides and nitrides), integrated with surface – SO₃₋ groups. The arrangement of these 2D sheets creates interplanar spacing ranging from 0.3 to 0.8 nm, which forms a barrier against multivalent ions while facilitating lithium-ion movement through nano capillaries. The introduction of the sulfonate group provides an effective pathway for Li⁺ ions, with a calculated binding energy of Li⁺ – SO³⁻ at – 0.77 eV, the lowest among monovalent species. These modified membranes demonstrated remarkably rapid transport of Li⁺ ions, efficiently distinguishing them from other monovalent and divalent species. This selectivity is achieved through a combination of size exclusion and varying binding affinities. The graphene oxide channels in these membranes showed exceptional inter-cation selectivity, with a Li⁺/Mg²⁺ selectivity ratio exceeding 104, surpassing commercial membranes. Additionally, these membranes achieved over 94% rejection of MgCl₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20permeation" title="ion permeation">ion permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20extraction" title=" lithium extraction"> lithium extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane-based%20separation" title=" membrane-based separation"> membrane-based separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/177815/advanced-lithium-recovery-from-brine-2d-based-ion-selectivity-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>