CINXE.COM

Search results for: trajectory optimization

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: trajectory optimization</title> <meta name="description" content="Search results for: trajectory optimization"> <meta name="keywords" content="trajectory optimization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="trajectory optimization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="trajectory optimization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3672</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: trajectory optimization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3672</span> A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Umale">Ashwini Umale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title="trajectory optimization">trajectory optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20kinematics%20and%20reverse%20kinematics" title=" forward kinematics and reverse kinematics"> forward kinematics and reverse kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20constraints" title=" dynamic constraints"> dynamic constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=robcad%20simulation%20software" title=" robcad simulation software"> robcad simulation software</a> </p> <a href="https://publications.waset.org/abstracts/17300/a-review-on-robot-trajectory-optimization-and-process-validation-through-off-line-programming-in-virtual-environment-using-robcad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3671</span> Iterative Dynamic Programming for 4D Flight Trajectory Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawser%20Ahmed">Kawser Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bousson"> K. Bousson</a>, <a href="https://publications.waset.org/abstracts/search?q=Milca%20F.%20Coelho"> Milca F. Coelho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20waypoint%20navigation" title="4D waypoint navigation">4D waypoint navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20dynamic%20programming" title=" iterative dynamic programming"> iterative dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title=" trajectory optimization"> trajectory optimization</a> </p> <a href="https://publications.waset.org/abstracts/106496/iterative-dynamic-programming-for-4d-flight-trajectory-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3670</span> Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramalho">A. Ramalho</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Romeiro"> L. Romeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ventura"> R. Ventura</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Suleman"> A. Suleman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interior%20point%20optimization" title="interior point optimization">interior point optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-rotors" title=" multi-rotors"> multi-rotors</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20path%20planning" title=" online path planning"> online path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=rapidly%20exploring%20random%20trees" title=" rapidly exploring random trees"> rapidly exploring random trees</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title=" trajectory optimization"> trajectory optimization</a> </p> <a href="https://publications.waset.org/abstracts/109946/real-time-path-planning-for-unmanned-air-vehicles-using-improved-rapidly-exploring-random-tree-and-iterative-trajectory-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3669</span> Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Kiani">Muhammad Umar Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endo-atmospheric" title="endo-atmospheric">endo-atmospheric</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithm" title=" evolutionary algorithm"> evolutionary algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20performance" title=" efficient performance"> efficient performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20process" title=" optimization process"> optimization process</a> </p> <a href="https://publications.waset.org/abstracts/1946/trajectory-optimization-of-re-entry-vehicle-using-evolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3668</span> Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mjahed">Mostafa Mjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt-rotor%20UAV" title=" tilt-rotor UAV"> tilt-rotor UAV</a> </p> <a href="https://publications.waset.org/abstracts/115686/design-of-a-cooperative-neural-network-particle-swarm-optimization-pso-and-fuzzy-based-tracking-control-for-a-tilt-rotor-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3667</span> NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Maziz">Ammar Maziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Gupta"> Prateek Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Vasconcellos%20Birro"> Thiago Vasconcellos Birro</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Gely"> Benoit Gely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20overwrapped%20pressure%20vessels" title="composite overwrapped pressure vessels">composite overwrapped pressure vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesic%20trajectory%20approach" title=" geodesic trajectory approach"> geodesic trajectory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=dome%20design" title=" dome design"> dome design</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plugin%20python" title=" plugin python"> plugin python</a> </p> <a href="https://publications.waset.org/abstracts/167305/nextcovps-design-and-stress-analysis-of-dome-composite-overwrapped-pressure-vessels-using-geodesic-trajectory-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3666</span> Motion Planning of SCARA Robots for Trajectory Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Incerti">Giovanni Incerti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title="motion planning">motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=SCARA%20robot" title=" SCARA robot"> SCARA robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20form" title=" analytical form"> analytical form</a> </p> <a href="https://publications.waset.org/abstracts/19726/motion-planning-of-scara-robots-for-trajectory-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3665</span> Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Spencer%20G.%20Anglim">Kevin Spencer G. Anglim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zhang"> Zhenyu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingbin%20Gao"> Qingbin Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum-fuel%20optimal%20trajectory" title="minimum-fuel optimal trajectory">minimum-fuel optimal trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20rocket" title=" reusable rocket"> reusable rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=SpaceX" title=" SpaceX"> SpaceX</a> </p> <a href="https://publications.waset.org/abstracts/62012/minimum-fuel-optimal-trajectory-for-reusable-first-stage-rocket-landing-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Nikpouri">Jaber Nikpouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Amralizadeh"> Arsalan Amralizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogeography-based%20optimization" title="biogeography-based optimization">biogeography-based optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a> </p> <a href="https://publications.waset.org/abstracts/55588/optimization-of-robot-motion-planning-using-biogeography-based-optimization-bbo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Object Trajectory Extraction by Using Mean of Motion Vectors Form Compressed Video Bitstream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Ting%20Hsu">Ching-Ting Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Hua%20Ho"> Wei-Hua Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Chun%20Chang"> Yi-Chun Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video object tracking is one of the popular research topics in computer graphics area. The trajectory can be applied in security, traffic control, even the sports training. The trajectory for sports training can be utilized to analyze the athlete’s performance without traditional sensors. There are many relevant works which utilize mean shift algorithm with background subtraction. This kind of the schemes should select a kernel function which may affect the accuracy and performance. In this paper, we consider the motion information in the pre-coded bitstream. The proposed algorithm extracts the trajectory by composing the motion vectors from the pre-coded bitstream. We gather the motion vectors from the overlap area of the object and calculate mean of the overlapped motion vectors. We implement and simulate our proposed algorithm in H.264 video codec. The performance is better than relevant works and keeps the accuracy of the object trajectory. The experimental results show that the proposed trajectory extraction can extract trajectory form the pre-coded bitstream in high accuracy and achieve higher performance other relevant works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.264" title="H.264">H.264</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20bitstream" title=" video bitstream"> video bitstream</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20object%20tracking" title=" video object tracking"> video object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20training" title=" sports training"> sports training</a> </p> <a href="https://publications.waset.org/abstracts/34740/object-trajectory-extraction-by-using-mean-of-motion-vectors-form-compressed-video-bitstream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> Biomarkers, A Reliable Tool for Delineating Spill Trajectory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okpor%20Victor">Okpor Victor</a>, <a href="https://publications.waset.org/abstracts/search?q=Selegha%20Abrakasa"> Selegha Abrakasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil (Petroleum) spill occur frequently and in this era of a higher degree of awareness, it is pertinent that the trajectory of the spill is properly defined, to make certain of the area of impact by the spill. In this study, biomarkers that are known as the custodians of paleo information in oils are suggested to be used as reliable tools for defining the pathway of a spill. Samples were collected as tills alongside the GPS coordinates of the sample points suspected to have been impacted by a spill. Oils in the samples were extracted and analyzed as whole oil using GC–MS. Some biomarker parametric ratios were derived, and the ratio showed consistency of values along the sample trail from sample 1 to sample 20. The consistency of the values indicates that the oils at each sample point are the same hence the same value. This method can be used to validate the trajectory/pathway of a spill and also to define or establish a suspected pathway for a spill. The Oleanane/C30Hopane ratio showed good consistency and was suggested as a reliable parameter for establishing the trajectory of an oil spill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spill" title="spill">spill</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=pathway" title=" pathway"> pathway</a> </p> <a href="https://publications.waset.org/abstracts/173283/biomarkers-a-reliable-tool-for-delineating-spill-trajectory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Tracking Trajectory of a Cable-Driven Robot for Lower Limb Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hachmia%20Faqihi">Hachmia Faqihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Benjelloun"> Khalid Benjelloun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Benbrahim"> Mohammed Benbrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nabil%20Kabbaj"> M. Nabil Kabbaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates and presents a cable-driven robot to lower limb rehabilitation use in sagittal plane. The presented rehabilitation robot is used for a trajectory tracking in joint space. The paper covers kinematic and dynamic analysis, which reveals the tensionability of the used cables as being the actuating source to provide a rehabilitation exercises of the human leg. The desired trajectory is generated to be used in the control system design in joint space. The obtained simulation results is showed to be efficient in this kind of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable-driven%20multi-body%20system" title="cable-driven multi-body system">cable-driven multi-body system</a>, <a href="https://publications.waset.org/abstracts/search?q=computed-torque%20controller" title=" computed-torque controller"> computed-torque controller</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20limb%20rehabilitation" title=" lower limb rehabilitation"> lower limb rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20trajectory" title=" tracking trajectory"> tracking trajectory</a> </p> <a href="https://publications.waset.org/abstracts/50711/tracking-trajectory-of-a-cable-driven-robot-for-lower-limb-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> Static vs. Stream Mining Trajectories Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Riyadh">Musaab Riyadh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norwati%20Mustapha"> Norwati Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Riyadh"> Dina Riyadh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20distance%20measure" title="global distance measure">global distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20distance%20measure" title=" local distance measure"> local distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20trajectory" title=" semantic trajectory"> semantic trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20dimension" title=" spatial dimension"> spatial dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20data%20mining" title=" stream data mining"> stream data mining</a> </p> <a href="https://publications.waset.org/abstracts/94763/static-vs-stream-mining-trajectories-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haozhe%20Xiang">Haozhe Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20network" title=" graph convolutional network"> graph convolutional network</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20mechanism" title=" attention mechanism"> attention mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a> </p> <a href="https://publications.waset.org/abstracts/182188/a-deep-learning-based-pedestrian-trajectory-prediction-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> Investigation of Riders&#039; Path on Horizontal Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lemonakis%20Panagiotis">Lemonakis Panagiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliou%20Nikos"> Eliou Nikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Karakasidis%20Theodoros"> Karakasidis Theodoros</a>, <a href="https://publications.waset.org/abstracts/search?q=Botzoris%20George"> Botzoris George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory" title="trajectory">trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=path" title=" path"> path</a>, <a href="https://publications.waset.org/abstracts/search?q=riders" title=" riders"> riders</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20curves" title=" horizontal curves"> horizontal curves</a> </p> <a href="https://publications.waset.org/abstracts/5089/investigation-of-riders-path-on-horizontal-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20Kalirajan">Karthikeyan Kalirajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Joshi"> Ashok Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marv%20guidance" title="Marv guidance">Marv guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=reentry%20trajectory" title=" reentry trajectory"> reentry trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title=" trajectory optimization"> trajectory optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=guidance%20gain%20selection" title=" guidance gain selection"> guidance gain selection</a> </p> <a href="https://publications.waset.org/abstracts/35646/near-optimal-closed-loop-guidance-gains-determination-for-vector-guidance-law-from-impact-angle-errors-and-miss-distance-considerations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubna%20Eljabu">Lubna Eljabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Etemad"> Mohammad Etemad</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Matwin"> Stan Matwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20temporal%20data%20mining" title="spatial temporal data mining">spatial temporal data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20mining" title=" trajectory mining"> trajectory mining</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20similarity" title=" trajectory similarity"> trajectory similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20optimization" title=" resource optimization"> resource optimization</a> </p> <a href="https://publications.waset.org/abstracts/137077/destination-port-detection-for-vessels-an-analytic-tool-for-optimizing-port-authorities-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hatamikia">S. Hatamikia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Biguri"> A. Biguri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Furtado"> H. Furtado</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kronreif"> G. Kronreif</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kettenbach"> J. Kettenbach</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Birkfellner"> W. Birkfellner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBCT" title="CBCT">CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=C-arm" title=" C-arm"> C-arm</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization" title=" trajectory optimization"> trajectory optimization</a> </p> <a href="https://publications.waset.org/abstracts/104808/source-detector-trajectory-optimization-for-target-based-c-arm-cone-beam-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Mohammadijoo">Abolfazl Mohammadijoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20manipulator" title="mobile manipulator">mobile manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robotics" title=" mobile robotics"> mobile robotics</a> </p> <a href="https://publications.waset.org/abstracts/128498/trajectory-tracking-of-a-2-link-mobile-manipulator-using-sliding-mode-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daleesha%20M.%20Viswanathan">Daleesha M. Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumam%20Mary%20Idicula"> Sumam Mary Idicula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orientation%20features" title="orientation features">orientation features</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20feature%20vector" title=" discrete feature vector"> discrete feature vector</a>, <a href="https://publications.waset.org/abstracts/search?q=HMM." title=" HMM."> HMM.</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20sign%20language" title=" Indian sign language"> Indian sign language</a> </p> <a href="https://publications.waset.org/abstracts/35653/hand-motion-trajectory-analysis-for-dynamic-hand-gestures-used-in-indian-sign-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> Trajectory Planning Algorithms for Autonomous Agricultural Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caner%20Koc">Caner Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilara%20Gerdan%20Koc"> Dilara Gerdan Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Vatandas"> Mustafa Vatandas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%205.0" title="agriculture 5.0">agriculture 5.0</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20intelligence" title=" computational intelligence"> computational intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title=" motion planning"> motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/165714/trajectory-planning-algorithms-for-autonomous-agricultural-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> Numerical Predictions of Trajectory Stability of a High-Speed Water-Entry and Water-Exit Projectile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Lu">Lin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Cai"> Tao Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengjun%20Zhang"> Pengjun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a detailed analysis of trajectory stability and flow characteristics of a high-speed projectile during the water-entry and water-exit process has been investigated numerically. The Zwart-Gerber-Belamri (Z-G-B) cavitation model and the SST k-ω turbulence model based on the Reynolds Averaged Navier-Stokes (RANS) method are employed. The numerical methodology is validated by comparing the experimental photograph of cavitation shape and the experimental underwater velocity with the numerical simulation results. Based on the numerical methodology, the influences of rotational speed, water-entry and water-exit angle of the projectile on the trajectory stability and flow characteristics have been carried out in detail. The variation features of projectile trajectory and total resistance have been conducted, respectively. In addition, the cavitation characteristics of water-entry and water-exit have been presented and analyzed. Results show that it may not be applicable for the water-entry and water-exit to achieve the projectile stability through the rotation of projectile. Furthermore, there ought to be a critical water-entry angle for the water-entry stability of practical projectile. The impact of water-exit angle on the trajectory stability and cavity phenomenon is not as remarkable as that of the water-entry angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20characteristics" title="cavitation characteristics">cavitation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20projectile" title=" high-speed projectile"> high-speed projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20predictions" title=" numerical predictions"> numerical predictions</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20stability" title=" trajectory stability"> trajectory stability</a>, <a href="https://publications.waset.org/abstracts/search?q=water-entry" title=" water-entry"> water-entry</a>, <a href="https://publications.waset.org/abstracts/search?q=water-exit" title=" water-exit"> water-exit</a> </p> <a href="https://publications.waset.org/abstracts/119865/numerical-predictions-of-trajectory-stability-of-a-high-speed-water-entry-and-water-exit-projectile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Visual Analytics of Higher Order Information for Trajectory Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%20Wang">Ye Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ickjai%20Lee"> Ickjai Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20analytics" title="visual analytics">visual analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20information" title=" higher order information"> higher order information</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20datasets" title=" trajectory datasets"> trajectory datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20data" title=" spatio-temporal data"> spatio-temporal data</a> </p> <a href="https://publications.waset.org/abstracts/2630/visual-analytics-of-higher-order-information-for-trajectory-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Analysis the Trajectory of the Spacecraft during the Transition to the Planet&#039;s Orbit Using Aerobraking in the Atmosphere of the Planet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaw%20Min%20Tun">Zaw Min Tun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on the spacecraft’s trajectory transition from interplanetary hyperbolic orbit to the planet’s orbit using the aerobraking in the atmosphere of the planet. A considerable mass of fuel is consumed during the spacecraft transition from the planet’s gravitation assist trajectory into the planet’s satellite orbit. To reduce the fuel consumption in this transition need to slow down the spacecraft’s velocity in the planet’s atmosphere and reduce its orbital transition time. The paper is devoted to the use of the planet’s atmosphere for slowing down the spacecraft during its transition into the satellite orbit with uncertain atmospheric parameters. To reduce the orbital transition time of the spacecraft is controlled by the change of attack angles’ values at the aerodynamic deceleration path and adjusting the minimum flight altitude of the spacecraft at the pericenter of the planet’s upper atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobraking" title="aerobraking">aerobraking</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere%20of%20the%20planet" title=" atmosphere of the planet"> atmosphere of the planet</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20transition%20time" title=" orbital transition time"> orbital transition time</a>, <a href="https://publications.waset.org/abstracts/search?q=Spacecraft%E2%80%99s%20trajectory" title=" Spacecraft’s trajectory"> Spacecraft’s trajectory</a> </p> <a href="https://publications.waset.org/abstracts/46717/analysis-the-trajectory-of-the-spacecraft-during-the-transition-to-the-planets-orbit-using-aerobraking-in-the-atmosphere-of-the-planet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Acar">Osman Acar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sun%20tracking" title="sun tracking">sun tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20sun%20trajectory" title=" theoretical sun trajectory"> theoretical sun trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20mechanism" title=" spherical mechanism"> spherical mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematic%20analysis" title=" inverse kinematic analysis"> inverse kinematic analysis</a> </p> <a href="https://publications.waset.org/abstracts/37062/two-degree-of-freedom-spherical-mechanism-design-for-exact-sun-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atilla%20Bayram">Atilla Bayram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20force%20method" title="computed force method">computed force method</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20manipulator" title=" hybrid manipulator"> hybrid manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematics%20of%20redundant%20manipulators" title=" inverse kinematics of redundant manipulators"> inverse kinematics of redundant manipulators</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20geometry%20truss" title=" variable geometry truss"> variable geometry truss</a> </p> <a href="https://publications.waset.org/abstracts/50402/trajectory-tracking-of-a-redundant-hybrid-manipulator-using-a-switching-control-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> Trajectory Optimization for Autonomous Deep Space Missions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Schattel">Anne Schattel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitja%20Echim"> Mitja Echim</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20B%C3%BCskens"> Christof Büskens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20space%20navigation" title="deep space navigation">deep space navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=guidance" title=" guidance"> guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title=" multi-objective"> multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20optimization" title=" non-linear optimization"> non-linear optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning." title=" trajectory planning."> trajectory planning.</a> </p> <a href="https://publications.waset.org/abstracts/35765/trajectory-optimization-for-autonomous-deep-space-missions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3645</span> Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Di%20Yao">Di Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Prokop"> Gunther Prokop</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20Buttner"> Kay Buttner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title="parameter identification">parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20manipulator" title=" parallel manipulator"> parallel manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=singularity%20architecture" title=" singularity architecture"> singularity architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modelling" title=" dynamic modelling"> dynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=exciting%20trajectory" title=" exciting trajectory"> exciting trajectory</a> </p> <a href="https://publications.waset.org/abstracts/89199/identification-of-vehicle-dynamic-parameters-by-using-optimized-exciting-trajectory-on-3-dof-parallel-manipulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3644</span> Determining Abnomal Behaviors in UAV Robots for Trajectory Control in Teleoperation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiwon%20Yeom">Kiwon Yeom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change points are abrupt variations in a data sequence. Detection of change points is useful in modeling, analyzing, and predicting time series in application areas such as robotics and teleoperation. In this paper, a change point is defined to be a discontinuity in one of its derivatives. This paper presents a reliable method for detecting discontinuities within a three-dimensional trajectory data. The problem of determining one or more discontinuities is considered in regular and irregular trajectory data from teleoperation. We examine the geometric detection algorithm and illustrate the use of the method on real data examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20point" title="change point">change point</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuity" title=" discontinuity"> discontinuity</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation" title=" teleoperation"> teleoperation</a>, <a href="https://publications.waset.org/abstracts/search?q=abrupt%20variation" title=" abrupt variation"> abrupt variation</a> </p> <a href="https://publications.waset.org/abstracts/78413/determining-abnomal-behaviors-in-uav-robots-for-trajectory-control-in-teleoperation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3643</span> Perturbative Analysis on a Lunar Free Return Trajectory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20%C3%9Cnal">Emre Ünal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ba%C5%9Faran"> Hasan Başaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission&rsquo;s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6<sup>th</sup> order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apollo-13%20trajectory" title="Apollo-13 trajectory">Apollo-13 trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20drag" title=" atmospheric drag"> atmospheric drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20trajectories" title=" lunar trajectories"> lunar trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness%20effect" title=" oblateness effect"> oblateness effect</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbative%20effects" title=" perturbative effects"> perturbative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation%20pressure" title=" solar radiation pressure"> solar radiation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20body%20perturbations" title=" third body perturbations"> third body perturbations</a> </p> <a href="https://publications.waset.org/abstracts/130408/perturbative-analysis-on-a-lunar-free-return-trajectory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=trajectory%20optimization&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10