CINXE.COM
Search results for: wood harvesting ban
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wood harvesting ban</title> <meta name="description" content="Search results for: wood harvesting ban"> <meta name="keywords" content="wood harvesting ban"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wood harvesting ban" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wood harvesting ban"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1006</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wood harvesting ban</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeiza%20Matthew">Adeiza Matthew</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwadamilola%20Abubakar"> Oluwadamilola Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=firewood" title=" firewood"> firewood</a> </p> <a href="https://publications.waset.org/abstracts/161541/wood-energy-trees-outside-forests-and-agroforestry-wood-harvesting-and-conversion-residues-preparing-and-storing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Advocating for and Implementing the Use of Advance Top Bar (ATB) for a More Than 100% Increase in Honey Yield in Top Bar Hives Owing to Honey Harvesting Without Comb Destruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perry%20Ayi%20Mankattah">Perry Ayi Mankattah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Africa, which should lead the world in honey production, is importing three times the honey it produces even though it has a healthy, industrious and large population of bees. This is due to the mechanism of honey harvesting that destroys the combs and thereby reducing honey production and rate of harvesting. For Africa to take its place in the world of honey production, Africa should adopt a method that enables a higher rate of honey harvesting. The Advance Top Bar is, therefore, a simplified framework that provides that answer. It can be made of wood, plastic and metal that can be fabricated by tin/metal smiths, wielders and carpenters at the village level without any very sophisticated machines. Material and Methods: ATB is a top bar-like hollow framework of dimension 3.2*48 cm that can be made of wood, plastic and metal. It is made up of three parts of a constant hollow top bar, a variable grooved bottom bar with both bars being joined through synchronized holes (that align both the top and bottom bars ) by either metal or plastic rods of length 22cm and diameter of 5 mm with rounded balls at both ends It could be used with foundation combs or without and also other accessories to have about ten (10) function which includes commercial propolis harvesting queen rearing etc. The variable bottom bar length depends on the width of the hive, as most African beehives are somehow not standardized. Results: Foundation combs are placed within the Advance Top Bar for the bees to form their combs over its mesh to prevent comb breakage during honey harvesting. Similarly, honeycombs on top bars will produce natural foundation combs when also placed in the Advance top bar system just as they are re-used in the Langstroth Frames. Discussions and Conclusions: Any modification that will promote non-comb destruction during honey harvesting in Top bars shall cause Africa to increase honey production by over 100% as beekeepers adopt the mechanism. Honey-laden combs from the current normal top bars could be placed in the Advance Top Bar to harvest without comb destruction; hence the same system could be used as a transition to the adoption of the Advance Top Bar with less cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=harvest" title=" harvest"> harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=increase" title=" increase"> increase</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a> </p> <a href="https://publications.waset.org/abstracts/166816/advocating-for-and-implementing-the-use-of-advance-top-bar-atb-for-a-more-than-100-increase-in-honey-yield-in-top-bar-hives-owing-to-honey-harvesting-without-comb-destruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Study on Parallel Shear Stress of Cement-Wood Composites Using Pinus sp. and Eucalyptus sp. in natura and Treated with CCA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20D.%20S.%20Oliveira">Rodrigo D. S. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20David-Muzel"> Sarah David-Muzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maristela%20Gava"> Maristela Gava</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20De%20Araujo"> Victor A. De Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glaucia%20A.%20Prates"> Glaucia A. Prates</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Cortez-Barbosa"> Juliana Cortez-Barbosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improper disposal of treated wood waste is a problem of the timber sector, since this residue is toxic, due to the harmful characteristics of the preservative substances. An environmentally friendly alternative is the use of this waste for the production of cement-wood composites. The aim of this work was to study the possibility of using wood treated with CCA (Chromated Cooper Arsenate) in cement-wood. Specimens of Pinus sp. and Eucalyptus sp. were produced with wood raw in natura and treated with CCA. A test was performed to determine the parallel shear stress of samples after 14 days of drying, according to the Brazilian Standard NBR-7215/97. Based on the analyzed results it is concluded that the use of wood treated with CCA is not feasible in cement-wood production, because the composite samples of treated wood showed lower mechanical strength in shear stress than those with wood in natura. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title="waste recovery">waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20composites" title=" wood composites"> wood composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cement-wood" title=" cement-wood"> cement-wood</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20preservation" title=" wood preservation"> wood preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=chromated%20copper%20arsenate" title=" chromated copper arsenate"> chromated copper arsenate</a> </p> <a href="https://publications.waset.org/abstracts/13252/study-on-parallel-shear-stress-of-cement-wood-composites-using-pinus-sp-and-eucalyptus-sp-in-natura-and-treated-with-cca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Improving Fire Resistance of Wood and Wood-Based Composites and Fire Testing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Ayrilmis">Nadir Ayrilmis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood and wood-based panels are one of the oldest structural materials used in the construction industry due to their significant advantages such as good mechanical properties, low density, renewable material, low-cost, recycling, etc. However, they burn when exposed to a flame source or high temperatures. This is very important when the wood products are used as structural or hemi-structural materials in the construction industry, furniture industry, so on. For this reason, the fire resistance is demanded property for wood products. They can be impregnated with fire retardants to improve their fire resistance. The most used fire retardants, fire-retardant mechanism, and fire-testing systems, and national and international fire-durability classifications and standard requirements for fire-durability of wood and wood-based panels were given in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title="fire resistance">fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/130377/improving-fire-resistance-of-wood-and-wood-based-composites-and-fire-testing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nurrizka%20Ramadhan">Muhammad Nurrizka Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture" title=" furniture"> furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/54368/the-utilization-of-bamboo-for-wood-bamboo-composite-in-lieu-of-materials-furniture-case-study-of-furniture-industry-in-jepara-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Single-Element Simulations of Wood Material in LS-DYNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Zuo%20Wang">Ren Zuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to investigate the behavior of the wood structure, the non-linearity of wood material model in LS-DYNA is adopted. It is difficult and less efficient to conduct the experiment of the ancient wood structure, hence LS-DYNA software can be used to simulate nonlinear responses of ancient wood structure. In LS-DYNA software, there is material model called *MAT_WOOD or *MAT_143. This model is to simulate a single-element response of the wood subjected to tension and compression under the parallel and the perpendicular material directions. Comparing with the exact solution and numerical simulations results using LS-DYNA, it demonstrates the accuracy and the efficiency of the proposed simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title="LS-DYNA">LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20structure" title=" wood structure"> wood structure</a>, <a href="https://publications.waset.org/abstracts/search?q=single-element%20simulations" title=" single-element simulations"> single-element simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=MAT_143" title=" MAT_143"> MAT_143</a> </p> <a href="https://publications.waset.org/abstracts/66392/single-element-simulations-of-wood-material-in-ls-dyna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">653</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Analyzing the Efficiency of Several Gum Extraction Tapping Systems for Wood Apple Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20K.%20D%20Weerasekara">K. M. K. D Weerasekara</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20K.%20M%20Rathnayake"> R. M. K. M Rathnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20U.%20Halwatura"> R. U. Halwatura</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Y.%20Jayasinghe"> G. Y. Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood apple (Limonia acidissima L.) trees are native to Sri Lanka and India. Wood apple gum is widely used in the food, coating, and pharmaceutical industries. Wood apple gum was a major component in ancient Sri Lankan coating technology as well. It is also used as a suspending agent in liquid syrups and food ingredients such as sauces, emulsifiers, and stabilizers. Industrial applications include adhesives for labeling and packaging, as well as paint binder. It is also used in the production of paper and cosmetics. Extraction of wood apple gum is an important step in ensuring maximum benefits for various uses. It is apparent that an abundance of untapped potential lies in wood apple gum if people are able to mass produce them. Hence, the current study uses a two-factor factorial design with two major variables and four replications to investigate the best gum-extracting tapping system for Wood apple gum. This study's findings will be useful to Wood apple cultivators, researchers, and gum-based industries alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20apple%20gum" title="wood apple gum">wood apple gum</a>, <a href="https://publications.waset.org/abstracts/search?q=limonia%20acidissima%20l." title=" limonia acidissima l."> limonia acidissima l.</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping" title=" tapping"> tapping</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping%20cuts" title=" tapping cuts"> tapping cuts</a> </p> <a href="https://publications.waset.org/abstracts/174725/analyzing-the-efficiency-of-several-gum-extraction-tapping-systems-for-wood-apple-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Keonwook%20Nam"> Keonwook Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Roh"> Young Hoon Roh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20waste" title="wood waste">wood waste</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%83PO%E2%82%84-acetone" title=" H₃PO₄-acetone"> H₃PO₄-acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation "> fermentation </a> </p> <a href="https://publications.waset.org/abstracts/84149/fermentation-of-wood-waste-by-treating-with-h3po4-acetone-for-bioethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Akay">O. E. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCzel"> E. Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20%C3%96zcan"> M. T. Özcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20simulation" title="kinematic simulation">kinematic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20bar%20linkage" title=" four bar linkage"> four bar linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=harvest%20mechanization" title=" harvest mechanization"> harvest mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper%20harvest" title=" pepper harvest"> pepper harvest</a> </p> <a href="https://publications.waset.org/abstracts/44062/development-of-a-harvest-mechanism-for-the-kahramanmaras-chili-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindaye%20Teshome">Mindaye Teshome</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldo%20Mu%C3%B1oz%20Braz"> Evaldo Muñoz Braz</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20M.%20Eleto%20Torres"> Carlos M. M. Eleto Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Mattos"> Patricia Mattos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logging" title="logging">logging</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20model" title=" growth model"> growth model</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20cycle" title=" cutting cycle"> cutting cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20logging%20diameter" title=" minimum logging diameter"> minimum logging diameter</a> </p> <a href="https://publications.waset.org/abstracts/161513/sustainable-wood-harvesting-from-juniperus-procera-trees-managed-under-a-participatory-forest-management-scheme-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Sustainable Wood Stains Derived From Natural Dyes for Green Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Dorado">Alexis Dorado</a>, <a href="https://publications.waset.org/abstracts/search?q=Aralyn%20Quintos"> Aralyn Quintos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formulated%20wood%20stain%20%28FWS%29" title="formulated wood stain (FWS)">formulated wood stain (FWS)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20stains" title=" wood stains"> wood stains</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20natural%20wood%20stain" title=" eco-friendly natural wood stain"> eco-friendly natural wood stain</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/171729/sustainable-wood-stains-derived-from-natural-dyes-for-green-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Insect Outbreaks, Harvesting and Wildfire in Forests: Mathematical Models for Coupling Disturbances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20A.%20Leite">M. C. A. Leite</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chen-Charpentier"> B. Chen-Charpentier</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Agusto"> F. Agusto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A long-term goal of sustainable forest management is a relatively stable source of wood and a stable forest age-class structure has become the goal of many forest management practices. In the absence of disturbances, this forest management goal could easily be achieved. However, in the face of recurring insect outbreaks and other disruptive processes forest planning becomes more difficult, requiring knowledge of the effects on the forest of a wide variety of environmental factors (e.g., habitat heterogeneity, fire size and frequency, harvesting, insect outbreaks, and age distributions). The association between distinct forest disturbances and the potential effect on forest dynamics is a complex matter, particularly when evaluated over time and at large scale, and is not well understood. However, gaining knowledge in this area is crucial for a sustainable forest management. Mathematical modeling is a tool that can be used to broader the understanding in this area. In this talk we will introduce mathematical models formulation incorporating the effect of insect outbreaks either as a single disturbance in the forest population dynamics or coupled with other disturbances: either wildfire or harvesting. The results and ecological insights will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age-structured%20forest%20population" title="age-structured forest population">age-structured forest population</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbances%20interaction" title=" disturbances interaction"> disturbances interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20insects%20outbreak%20dynamics" title=" harvesting insects outbreak dynamics"> harvesting insects outbreak dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%0D%0Amodeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/16948/insect-outbreaks-harvesting-and-wildfire-in-forests-mathematical-models-for-coupling-disturbances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adilah%20Shariff">Adilah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Radin%20Hakim"> Radin Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurhayati%20Abdullah"> Nurhayati Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20wood" title=" rubber wood"> rubber wood</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20pyrolysis" title=" slow pyrolysis"> slow pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/53243/rubber-wood-as-a-potential-biomass-feedstock-for-biochar-via-slow-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Assessment of Hygroscopic Characteristics of Hevea brasiliensis Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Tosin%20Aladejana">John Tosin Aladejana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood behave differently under different environmental conditions. The knowledge of the hygroscopic nature of wood becomes a key factor in selecting wood for use and required treatment. This study assessed the hygroscopic behaviour of Hevea brasiliensis (Rubber) wood. Void volume, volumetric swelling in the tangential, radial and longitudinal directions and volumetric shrinkage were used to assess the response of the wood when loosing or taking up moisture. Hevea brasiliensis wood samples cut into 20 × 20 × 60 mm taken longitudinally and transversely were used for the study and dried in the oven at 103 ± 2⁰C. The mean values for moisture content in green Hevea brasiliensis wood were 49.74 %, 51.14 % and 54.36 % for top, middle and bottom portion respectively while 51.77 %, 50.02 % and 53.45 % were recorded for outer, middle and inner portions respectively for the tree. The values obtained for volumetric shrinkage and swelling indicated that shrinkage and swelling were higher at the top part of H. brasiliensis. It was also observed that the longitudinal shrinkage was negligible while tangential direction showed the highest shrinkage among the wood direction. The values of the void volume obtained were 43.0 %, 39.0 % and 38.0 % at the top, middle and bottom respectively. The result obtained showed clarification on the wood density of hevea brasiliensis based on the position and portion of the wood species and the variation in moisture content, void volume, volumetric shrinkage and swelling were also revealed. This will provide information in the process of drying hevea brasiliensis wood to ensure better wood quality devoid of defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title="moisture content">moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20volume" title=" void volume"> void volume</a> </p> <a href="https://publications.waset.org/abstracts/78996/assessment-of-hygroscopic-characteristics-of-hevea-brasiliensis-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittiphop%20Promdee">Kittiphop Promdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Somruedee%20Satitkune"> Somruedee Satitkune</a>, <a href="https://publications.waset.org/abstracts/search?q=Chakkrich%20Boonmee"> Chakkrich Boonmee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharapong%20Vitidsant"> Tharapong Vitidsant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title="pyrolysis">pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20wood" title=" tropical wood"> tropical wood</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title=" bio-oil"> bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20value" title=" heating value"> heating value</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/34906/conversion-of-tropical-wood-to-bio-oil-and-charcoal-by-using-the-process-of-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Analysis of Flexural Behavior of Wood-Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Li">M. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Thi"> V. D. Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khelifa"> M. Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Ganaoui"> M. El Ganaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20waste%20ash" title="wood waste ash">wood waste ash</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20tests" title=" bending tests"> bending tests</a> </p> <a href="https://publications.waset.org/abstracts/67172/analysis-of-flexural-behavior-of-wood-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr-Robert%20Lazik">Piotr-Robert Lazik</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Garrecht"> Harald Garrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO<sub>2</sub> in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20ashes" title="wood ashes">wood ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ashes" title=" fly ashes"> fly ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20filter" title=" electric filter"> electric filter</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20technology" title=" concrete technology"> concrete technology</a> </p> <a href="https://publications.waset.org/abstracts/117423/wood-ashes-from-electrostatic-filter-as-a-replacement-for-the-fly-ashes-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Altin">Mustafa Altin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Fahriye%20Pehlivan"> Gamze Fahriye Pehlivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiye%20Didem%20Boztepe%20Erkis"> Sadiye Didem Boztepe Erkis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakir%20Tasdemir"> Sakir Tasdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Altin"> Sevda Altin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20of%20wood%20against%20pressure" title="resistance of wood against pressure">resistance of wood against pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20of%20wood" title=" species of wood"> species of wood</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20analysis" title=" variance analysis"> variance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20coating" title=" wood coating"> wood coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fire%20safety" title=" wood fire safety"> wood fire safety</a> </p> <a href="https://publications.waset.org/abstracts/19264/the-experimental-and-statistical-analysis-of-the-wood-strength-against-pressure-according-to-different-wood-types-sizes-and-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Chromium Adsorption by Modified Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Domingos">I. Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Esteves"> B. Esteves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Figueirinha"> A. Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes"> Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ferreira"> J. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pereira"> H. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20modification" title=" wood modification"> wood modification</a> </p> <a href="https://publications.waset.org/abstracts/11132/chromium-adsorption-by-modified-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lim%20Teck%20Beng">Lim Teck Beng</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiha%20Kyaw"> Thiha Kyaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Poh%20Boon%20Kiat"> Poh Boon Kiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ngai%20Meng"> Lee Ngai Meng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network%20and%20magnetic%20coupled%20resonator" title=" wireless sensor network and magnetic coupled resonator"> wireless sensor network and magnetic coupled resonator</a> </p> <a href="https://publications.waset.org/abstracts/19665/demonstration-of-powering-up-low-power-wireless-sensor-network-by-rf-energy-harvesting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andra%20Blumberga">Andra Blumberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Armands%20Gravelsins"> Armands Gravelsins</a>, <a href="https://publications.waset.org/abstracts/search?q=Haralds%20Vigants"> Haralds Vigants</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagnija%20Blumberga"> Dagnija Blumberga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title="bioenergy">bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechonomy" title=" biotechonomy"> biotechonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics%20modelling" title=" system dynamics modelling"> system dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20pellets" title=" wood pellets"> wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/56293/biotechonomy-system-dynamics-modelling-sustainability-of-pellet-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hector%20A.%20Tinoco">Hector A. Tinoco</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Garcia-Diaz"> Cesar Garcia-Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20L.%20Ocampo-Lopez"> Olga L. Ocampo-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20disk%20drive" title="hard disk drive">hard disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20coil%20motor" title=" voice coil motor"> voice coil motor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20motions" title=" gait motions"> gait motions</a> </p> <a href="https://publications.waset.org/abstracts/56716/performance-assessment-in-a-voice-coil-motor-for-maximizing-the-energy-harvesting-with-gait-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Wood Framing Roof Resistant Support for Hurricane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hajyalikhani">P. Hajyalikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gilmore"> E. Gilmore</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Petty"> C. Petty</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Duron"> J. Duron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood framed construction is the most popular method of construction for residential buildings. The typical roof framing for wood-framed buildings is sloped and consists of several structural members, such as rafters, hips, and valleys that link to the ridge and ceiling joists. The most common type of wood framing used is platform framing, also known as stick framing. Failures of the wood framing structures are among the most common types of wind damage in densely populated regions. Wood-framed buildings are under uplift during tornadoes and hurricanes which cause the failure in the roof. The bracing long structure members such as hip and valley have a large impact on the resilience of wood-framed buildings. As a result, the common failures in wood-framed buildings are reviewed, and the critical support locations for lengthy hips and valleys with various slopes are analyzed and recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rafters" title="rafters">rafters</a>, <a href="https://publications.waset.org/abstracts/search?q=hips" title=" hips"> hips</a>, <a href="https://publications.waset.org/abstracts/search?q=valleys" title=" valleys"> valleys</a>, <a href="https://publications.waset.org/abstracts/search?q=hip" title=" hip"> hip</a>, <a href="https://publications.waset.org/abstracts/search?q=ceiling%20joist" title=" ceiling joist"> ceiling joist</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20failures" title=" roof failures"> roof failures</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20and%20commercial%20structures" title=" residential and commercial structures"> residential and commercial structures</a>, <a href="https://publications.waset.org/abstracts/search?q=hurricane" title=" hurricane"> hurricane</a>, <a href="https://publications.waset.org/abstracts/search?q=tornadoes" title=" tornadoes"> tornadoes</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20codes" title=" building codes"> building codes</a> </p> <a href="https://publications.waset.org/abstracts/183819/wood-framing-roof-resistant-support-for-hurricane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20K.%20A.%20Gedara">Ajith K. A. Gedara</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Chianella"> Iva Chianella</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Endrino"> Jose L. Endrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesives" title="bio-adhesives">bio-adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20seed%20flour" title=" olive seed flour"> olive seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a> </p> <a href="https://publications.waset.org/abstracts/137443/olive-seed-tannins-as-bioadhesives-for-manufacturing-wood-based-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eliska%20Oberhofnerova">Eliska Oberhofnerova</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20Panek"> Milos Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek"> Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Lexa"> Martin Lexa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colour%20stability" title="colour stability">colour stability</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20and%20artificial%20weathering" title=" natural and artificial weathering"> natural and artificial weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=spruce%20wood" title=" spruce wood"> spruce wood</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20coating" title=" transparent coating"> transparent coating</a> </p> <a href="https://publications.waset.org/abstracts/73590/the-effect-of-transparent-oil-wood-stain-on-the-colour-stability-of-spruce-wood-during-weathering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduselam%20Faris">Abduselam Faris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rijalu%20Negash"> Rijalu Negash</a>, <a href="https://publications.waset.org/abstracts/search?q=Zera%20Kedir"> Zera Kedir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value%20chain%20analysis" title="value chain analysis">value chain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20production" title=" wood production"> wood production</a>, <a href="https://publications.waset.org/abstracts/search?q=southwest%20Ethiopia" title=" southwest Ethiopia"> southwest Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=constraints%20and%20opportunities" title=" constraints and opportunities"> constraints and opportunities</a> </p> <a href="https://publications.waset.org/abstracts/150339/constraints-and-opportunities-of-wood-production-value-chain-evidence-from-southwest-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Analysis of Green Wood Preservation Chemicals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aitor%20Barbero-L%C3%B3pez">Aitor Barbero-López</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Chibily"> Soumaya Chibily</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Scheepers"> Gerhard Scheepers</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Grahn"> Thomas Grahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Martti%20Ven%C3%A4l%C3%A4inen"> Martti Venäläinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Antti%20Haapala"> Antti Haapala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood decay is addressed continuously within the wood industry through use and development of wood preservatives. The increasing awareness on the negative effects of many chemicals towards the environment is causing political restrictions in their use and creating more urgent need for research on green alternatives. This paper discusses some of the possible natural extracts for wood preserving applications and compares the analytical methods available for testing their behavior and efficiency against decay fungi. The results indicate that natural extracts have interesting chemical constituents that delay fungal growth but vary in efficiency depending on the chemical concentration and substrate used. Results also suggest that presence and redistribution of preservatives in wood during exposure trials can be assessed by spectral imaging methods although standardized methods are not available. This study concludes that, in addition to the many standard methods available, there is a need to develop new faster methods for screening potential preservative formulation while maintaining the comparability and relevance of results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytics" title="analytics">analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=methods" title=" methods"> methods</a>, <a href="https://publications.waset.org/abstracts/search?q=preservatives" title=" preservatives"> preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20decay" title=" wood decay"> wood decay</a> </p> <a href="https://publications.waset.org/abstracts/85085/analysis-of-green-wood-preservation-chemicals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> The Effects of Wood Ash on Ignition Point of Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ibe">K. A. Ibe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Mbonu"> J. I. Mbonu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Umukoro"> G. K. Umukoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ash" title="ash">ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20point" title=" ignition point"> ignition point</a>, <a href="https://publications.waset.org/abstracts/search?q=retardant" title=" retardant"> retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20saw%20dust" title=" wood saw dust"> wood saw dust</a> </p> <a href="https://publications.waset.org/abstracts/29316/the-effects-of-wood-ash-on-ignition-point-of-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Tapin-Lingua">Sandra Tapin-Lingua</a>, <a href="https://publications.waset.org/abstracts/search?q=Katia%20Ruel"> Katia Ruel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Joseleau"> Jean-Paul Joseleau</a>, <a href="https://publications.waset.org/abstracts/search?q=Daouia%20Messaoudi"> Daouia Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Fahy"> Olivier Fahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Petit-Conil"> Michel Petit-Conil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cypermethrin" title="cypermethrin">cypermethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20penetration" title=" wood penetration"> wood penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20retention" title=" wood retention"> wood retention</a>, <a href="https://publications.waset.org/abstracts/search?q=immuno-transmission%20electron%20microscopy" title=" immuno-transmission electron microscopy"> immuno-transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polyclonal%20antibody" title=" polyclonal antibody"> polyclonal antibody</a> </p> <a href="https://publications.waset.org/abstracts/36690/development-of-a-new-characterization-method-to-analyse-cypermethrin-penetration-in-wood-material-by-immunolabelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> Kinetic Analysis of Wood Pellets by Isothermal Calorimetry for Evaluating its Self-heating Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Yao">Can Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Dong%20Sheng"> Chang Dong Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat released by wood pellets during storage will cause self-heating and even self-ignition. In this work, the heat release rates of pine, fir wood and mahogany pellets at 30–70℃ were measured by TAM air isothermal calorimeter, and the kinetic analysis was performed by iso-conversion ratio and non-steady-state methods to evaluate its self-heating potential. The results show that the reaction temperature can significantly affect the heat release rate. The higher the temperature, the greater the heat release rate. The heat release rates of different kinds of wood pellets are obviously different, and the order of the heat release rates for the three pellets at 70℃ is pine > fir wood > mahogany. The kinetic analysis of the iso-conversion ratio method indicates that the distribution of activation energy for pine, fir wood and mahogany pellets under the release of 0.1–1.0 J/g specific heat are 58–102 kJ/mol, 59–108 kJ/mol and 59–112 kJ/mol, respectively. Their activation energies obtained from the non-steady-state kinetic analysis are 13.43 kJ/mol, 19.19 kJ/mol and 21.09 kJ/mol, respectively. Both kinetic analyses show that the magnitude of self-heating risk for the three pellet fuels is pine pellets > fir wood pellets > mahogany pellets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isothermal%20calorimeter" title="isothermal calorimeter">isothermal calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=self-heating" title=" self-heating"> self-heating</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20pellets" title=" wood pellets"> wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/147219/kinetic-analysis-of-wood-pellets-by-isothermal-calorimetry-for-evaluating-its-self-heating-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20harvesting%20ban&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>