CINXE.COM

Ioannis Tsamardinos | University of Crete - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ioannis Tsamardinos | University of Crete - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="oX0MSi48r7XFhLPf0OWmYcoymlmgToSWbsq17NvO1pxTSMZZzIsZohMSZQmAFKLaGrP5QrqU2ZzrshqxmvKBqA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ioannis tsamardinos" /> <meta name="description" content="Professor, entrepreneur, scientist. Working on machine learning, feature selection, causal discovery, bioinformatics, artificial intelligence." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277124087,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732384833000); window.Aedu.timeDifference = new Date().getTime() - 1732384833000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://crete.academia.edu/IoannisTsamardinos" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos","photo":"https://0.academia-photos.com/24434052/12783404/14207327/s65_ioannis.tsamardinos.jpg","has_photo":true,"department":{"id":1247,"name":"Computer Science","url":"https://crete.academia.edu/Departments/Computer_Science/Documents","university":{"id":947,"name":"University of Crete","url":"https://crete.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":40172,"name":"Generalized Linear models","url":"https://www.academia.edu/Documents/in/Generalized_Linear_models"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression"},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":36265,"name":"Entropy","url":"https://www.academia.edu/Documents/in/Entropy"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://crete.academia.edu/IoannisTsamardinos&quot;,&quot;location&quot;:&quot;/IoannisTsamardinos&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;crete.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/IoannisTsamardinos&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c813b6e9-9eae-4792-b512-c8f8f5cea3cd"></div> <div id="ProfileCheckPaperUpdate-react-component-c813b6e9-9eae-4792-b512-c8f8f5cea3cd"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Ioannis Tsamardinos" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/24434052/12783404/14207327/s200_ioannis.tsamardinos.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ioannis Tsamardinos</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://crete.academia.edu/">University of Crete</a>, <a class="u-tcGrayDarker" href="https://crete.academia.edu/Departments/Computer_Science/Documents">Computer Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ioannis" data-follow-user-id="24434052" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="24434052"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">110</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">34</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">33</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Professor, entrepreneur, scientist. Working on machine learning, feature selection, causal discovery, bioinformatics, artificial intelligence.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="24434052" href="https://www.academia.edu/Documents/in/Generalized_Linear_models"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://crete.academia.edu/IoannisTsamardinos&quot;,&quot;location&quot;:&quot;/IoannisTsamardinos&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;crete.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/IoannisTsamardinos&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Generalized Linear models&quot;]}" data-trace="false" data-dom-id="Pill-react-component-7e6cfe06-2b45-40b2-89f6-27f9a4fc6736"></div> <div id="Pill-react-component-7e6cfe06-2b45-40b2-89f6-27f9a4fc6736"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="24434052" href="https://www.academia.edu/Documents/in/Logistic_Regression"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Logistic Regression&quot;]}" data-trace="false" data-dom-id="Pill-react-component-528eb711-84c4-450f-842e-b8104cd676b2"></div> <div id="Pill-react-component-528eb711-84c4-450f-842e-b8104cd676b2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="24434052" href="https://www.academia.edu/Documents/in/Classification_Machine_Learning_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Classification (Machine Learning)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-874068eb-a88a-4156-9563-dee4438797a9"></div> <div id="Pill-react-component-874068eb-a88a-4156-9563-dee4438797a9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="24434052" href="https://www.academia.edu/Documents/in/Regression_Analysis"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Regression Analysis&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d812695c-4915-455e-a4b1-1fb8dd59e012"></div> <div id="Pill-react-component-d812695c-4915-455e-a4b1-1fb8dd59e012"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="24434052" href="https://www.academia.edu/Documents/in/Entropy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Entropy&quot;]}" data-trace="false" data-dom-id="Pill-react-component-85137c2b-6f42-4aab-9248-c2f31d651ffa"></div> <div id="Pill-react-component-85137c2b-6f42-4aab-9248-c2f31d651ffa"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>122</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="R-packages" data-toggle="tab" href="#rpackages" role="tab" title="R packages"><span>2</span>&nbsp;<span class="ds2-5-body-sm-bold">R packages</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ioannis Tsamardinos</h3></div><div class="js-work-strip profile--work_container" data-work-id="37454058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER"><img alt="Research paper thumbnail of Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER" class="work-thumbnail" src="https://attachments.academia-assets.com/57421925/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER">Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>F1000Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Feature (or variable) selection is the process of identifying the minimal set of features with th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eef61111acd5f13151f6338fa65fa368" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:57421925,&quot;asset_id&quot;:37454058,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="37454058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="37454058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37454058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37454058]").text(description); $(".js-view-count[data-work-id=37454058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37454058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='37454058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 37454058, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eef61111acd5f13151f6338fa65fa368" } } $('.js-work-strip[data-work-id=37454058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":37454058,"title":"Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER","translated_title":"","metadata":{"abstract":"Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.","publication_name":"F1000Research"},"translated_abstract":"Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.","internal_url":"https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER","translated_internal_url":"","created_at":"2018-09-21T04:17:04.995-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31894239,"work_id":37454058,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":1,"name":"Ioannis Tsamardinos","title":"Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER"}],"downloadable_attachments":[{"id":57421925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57421925/thumbnails/1.jpg","file_name":"Feature_selection_with_the_R_package_MXM.pdf","download_url":"https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Open_Peer_Review_Feature_selection_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57421925/Feature_selection_with_the_R_package_MXM-libre.pdf?1537528985=\u0026response-content-disposition=attachment%3B+filename%3DOpen_Peer_Review_Feature_selection_with.pdf\u0026Expires=1732121159\u0026Signature=ZQsYfOUwtTqoAMoh2weHwh4YqQp~tWcMVm39rCmT~IueVTVJnk12KksyZ5qyW7A7QbOxIeNIxBM29DTwdvDwUwlgI9kwph-~3zvIB1IloJTxI7XxH0DWciSqTJvOCejgRRheYTGihr6mTMriJTdVNp8tajESJLuKXC9B2pK0O8-835on8h42HdVkAK8zvCnmtwwWq~~ftFaaPXLHP~NYyIMYMzx4~M5ccl1slAIpSymQAVG3nCss72ziHSfcZq6l4E6gQgvcqktx4CuSwpSKX9rUJQ--KH9o3WklXnWSmRsfS8tSFrvokpR0R3AbkLZoWbTCS6J9gjP27sS2lOl9pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":57421925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57421925/thumbnails/1.jpg","file_name":"Feature_selection_with_the_R_package_MXM.pdf","download_url":"https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Open_Peer_Review_Feature_selection_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57421925/Feature_selection_with_the_R_package_MXM-libre.pdf?1537528985=\u0026response-content-disposition=attachment%3B+filename%3DOpen_Peer_Review_Feature_selection_with.pdf\u0026Expires=1732121159\u0026Signature=ZQsYfOUwtTqoAMoh2weHwh4YqQp~tWcMVm39rCmT~IueVTVJnk12KksyZ5qyW7A7QbOxIeNIxBM29DTwdvDwUwlgI9kwph-~3zvIB1IloJTxI7XxH0DWciSqTJvOCejgRRheYTGihr6mTMriJTdVNp8tajESJLuKXC9B2pK0O8-835on8h42HdVkAK8zvCnmtwwWq~~ftFaaPXLHP~NYyIMYMzx4~M5ccl1slAIpSymQAVG3nCss72ziHSfcZq6l4E6gQgvcqktx4CuSwpSKX9rUJQ--KH9o3WklXnWSmRsfS8tSFrvokpR0R3AbkLZoWbTCS6J9gjP27sS2lOl9pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":1012702,"name":"R Packages","url":"https://www.academia.edu/Documents/in/R_Packages"}],"urls":[{"id":8590734,"url":"https://f1000researchdata.s3.amazonaws.com/manuscripts/17707/23556c28-b06b-4e5c-bbbc-d213c74c0880_16216_-_michail_tsagris.pdf?doi=10.12688/f1000research.16216.1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="35742078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data"><img alt="Research paper thumbnail of Feature selection for high-dimensional temporal data" class="work-thumbnail" src="https://attachments.academia-assets.com/55616743/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data">Feature selection for high-dimensional temporal data</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VLagani">Vincenzo Lagani</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>BMC Bioinformatics</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Background: Feature selection is commonly employed for identifying collectively-predictive biomar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional &quot; omics &quot; temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65ca8cba623a6284e3a2b57a97cd7259" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:55616743,&quot;asset_id&quot;:35742078,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="35742078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="35742078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35742078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35742078]").text(description); $(".js-view-count[data-work-id=35742078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35742078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='35742078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 35742078, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65ca8cba623a6284e3a2b57a97cd7259" } } $('.js-work-strip[data-work-id=35742078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":35742078,"title":"Feature selection for high-dimensional temporal data","translated_title":"","metadata":{"doi":"10.1186/s12859-018-2023-7","abstract":"Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional \" omics \" temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"BMC Bioinformatics"},"translated_abstract":"Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional \" omics \" temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.","internal_url":"https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data","translated_internal_url":"","created_at":"2018-01-23T12:10:51.614-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30964159,"work_id":35742078,"tagging_user_id":71523,"tagged_user_id":33460367,"co_author_invite_id":null,"email":"v***i@yahoo.it","display_order":1,"name":"Vincenzo Lagani","title":"Feature selection for high-dimensional temporal data"},{"id":30964160,"work_id":35742078,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":2,"name":"Ioannis Tsamardinos","title":"Feature selection for high-dimensional temporal data"}],"downloadable_attachments":[{"id":55616743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55616743/thumbnails/1.jpg","file_name":"Feature_selection_for_high_dimensional_temporal_data_-_2018.pdf","download_url":"https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_selection_for_high_dimensional_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55616743/Feature_selection_for_high_dimensional_temporal_data_-_2018-libre.pdf?1516738774=\u0026response-content-disposition=attachment%3B+filename%3DFeature_selection_for_high_dimensional_t.pdf\u0026Expires=1732266103\u0026Signature=B6wC8cbiVfjbLekYNSVBfjJPV1XDziepN3O0Wr0cjVD7saK67UPI2bP8fuld699WjsYMn4yENQU87kz5JMPkSULCDf2eg7Z8vj0tXRUF-agWyJs~~oCBRwuk3rjF1QEHce27pPnTl8uOim03XAyPLLrpFOWZX4pbZT6k0uI2DlnwuObY5iWtJdY4G2aK~BB9rPo~6WEZnlm-wmacJo1~tEDeeD~epj4b2D-uYqOhjppIcO15CxOy~jsZA4Ht3nMal7Wx6hy6E5BCsJfhVR4oki9kM8s3wXd22GxNeyj1HDxk99ijOf7NsqGT13ZTNzTO9QdC7SA~2zITcCQX9dpk4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_selection_for_high_dimensional_temporal_data","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":55616743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55616743/thumbnails/1.jpg","file_name":"Feature_selection_for_high_dimensional_temporal_data_-_2018.pdf","download_url":"https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_selection_for_high_dimensional_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55616743/Feature_selection_for_high_dimensional_temporal_data_-_2018-libre.pdf?1516738774=\u0026response-content-disposition=attachment%3B+filename%3DFeature_selection_for_high_dimensional_t.pdf\u0026Expires=1732266103\u0026Signature=B6wC8cbiVfjbLekYNSVBfjJPV1XDziepN3O0Wr0cjVD7saK67UPI2bP8fuld699WjsYMn4yENQU87kz5JMPkSULCDf2eg7Z8vj0tXRUF-agWyJs~~oCBRwuk3rjF1QEHce27pPnTl8uOim03XAyPLLrpFOWZX4pbZT6k0uI2DlnwuObY5iWtJdY4G2aK~BB9rPo~6WEZnlm-wmacJo1~tEDeeD~epj4b2D-uYqOhjppIcO15CxOy~jsZA4Ht3nMal7Wx6hy6E5BCsJfhVR4oki9kM8s3wXd22GxNeyj1HDxk99ijOf7NsqGT13ZTNzTO9QdC7SA~2zITcCQX9dpk4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26594306"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications"><img alt="Research paper thumbnail of Towards Robust and Versatile Causal Discovery for Business Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/46882579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications">Towards Robust and Versatile Causal Discovery for Business Applications</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/GBorboudakis">Giorgos Borboudakis</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Causal discovery algorithms can induce some of the causal relations from the data, commonly in th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6bc65eeaf9f359f3a1e566aa4108ebae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46882579,&quot;asset_id&quot;:26594306,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26594306"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26594306"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26594306; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26594306]").text(description); $(".js-view-count[data-work-id=26594306]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26594306; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26594306']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26594306, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6bc65eeaf9f359f3a1e566aa4108ebae" } } $('.js-work-strip[data-work-id=26594306]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26594306,"title":"Towards Robust and Versatile Causal Discovery for Business Applications","translated_title":"","metadata":{"abstract":"Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website."},"translated_abstract":"Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website.","internal_url":"https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications","translated_internal_url":"","created_at":"2016-06-29T04:19:19.592-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":21882562,"work_id":26594306,"tagging_user_id":24434052,"tagged_user_id":33051818,"co_author_invite_id":4888842,"email":"b***k@csd.uoc.gr","affiliation":"University of Crete","display_order":1,"name":"Giorgos Borboudakis","title":"Towards Robust and Versatile Causal Discovery for Business Applications"}],"downloadable_attachments":[{"id":46882579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46882579/thumbnails/1.jpg","file_name":"KDD_2016_-_ETIO_final.pdf","download_url":"https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_Robust_and_Versatile_Causal_Disc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46882579/KDD_2016_-_ETIO_final-libre.pdf?1467199815=\u0026response-content-disposition=attachment%3B+filename%3DTowards_Robust_and_Versatile_Causal_Disc.pdf\u0026Expires=1732388431\u0026Signature=KZuS5bmnBOcLFPFA~YHKWA6quoxipnjejPiyOdRSJuDQP74ROpRGF440RvneCIG~WCJXMb6WuC4JBSmrD37BtWSRTmt7oEUmwf3r~ubCJlupu4wCwLfVtHIEj74DQ5yih0Yf6ba6D8bN-LsC0KrmOXf9gHIwOImRFqfsc~G2-y6HJWImDbRbmmbjDGmQ~8DUIRLGjX0gSvaZEmQvRk3XiZ949vFB~ScQRexccZNaSmEejcvXfTghrioQiP8dmIDPjRcXj01tjn7nR8pk1QUQ9Zedu2NjTF5QPl4cEhscsydMNws1k-dgxwwmINKPpDIL5ot87Q2lpdo8VNMgRrv9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":46882579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46882579/thumbnails/1.jpg","file_name":"KDD_2016_-_ETIO_final.pdf","download_url":"https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_Robust_and_Versatile_Causal_Disc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46882579/KDD_2016_-_ETIO_final-libre.pdf?1467199815=\u0026response-content-disposition=attachment%3B+filename%3DTowards_Robust_and_Versatile_Causal_Disc.pdf\u0026Expires=1732388431\u0026Signature=KZuS5bmnBOcLFPFA~YHKWA6quoxipnjejPiyOdRSJuDQP74ROpRGF440RvneCIG~WCJXMb6WuC4JBSmrD37BtWSRTmt7oEUmwf3r~ubCJlupu4wCwLfVtHIEj74DQ5yih0Yf6ba6D8bN-LsC0KrmOXf9gHIwOImRFqfsc~G2-y6HJWImDbRbmmbjDGmQ~8DUIRLGjX0gSvaZEmQvRk3XiZ949vFB~ScQRexccZNaSmEejcvXfTghrioQiP8dmIDPjRcXj01tjn7nR8pk1QUQ9Zedu2NjTF5QPl4cEhscsydMNws1k-dgxwwmINKPpDIL5ot87Q2lpdo8VNMgRrv9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25733523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets"><img alt="Research paper thumbnail of Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets" class="work-thumbnail" src="https://attachments.academia-assets.com/54339180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets">Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VLagani">Vincenzo Lagani</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The statistically equivalent signature (SES) algorithm is a method for feature selection inspired...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning &#39;mind from the machine&#39; in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8c88c2d7ea7ece2f8e2c02d2daa72325" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:54339180,&quot;asset_id&quot;:25733523,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25733523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25733523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25733523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25733523]").text(description); $(".js-view-count[data-work-id=25733523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25733523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25733523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25733523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8c88c2d7ea7ece2f8e2c02d2daa72325" } } $('.js-work-strip[data-work-id=25733523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25733523,"title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets","translated_title":"","metadata":{"abstract":"The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning 'mind from the machine' in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.","journal_name":"Journal of Statistical software"},"translated_abstract":"The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning 'mind from the machine' in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.","internal_url":"https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets","translated_internal_url":"","created_at":"2016-05-30T22:02:46.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20786147,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":6338583,"co_author_invite_id":null,"email":"g***s@hotmail.com","affiliation":"Foundation for Research and Technology - Hellas","display_order":0,"name":"Giorgos Athineou","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"},{"id":20786149,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":6291456,"name":"Ioannis Tsamardinos","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"},{"id":20786150,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":33460367,"co_author_invite_id":null,"email":"v***i@yahoo.it","display_order":7340032,"name":"Vincenzo Lagani","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"}],"downloadable_attachments":[{"id":54339180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54339180/thumbnails/1.jpg","file_name":"v80i07.pdf","download_url":"https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_with_the_R_Package_MXM.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54339180/v80i07-libre.pdf?1504590138=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_with_the_R_Package_MXM.pdf\u0026Expires=1731498795\u0026Signature=WslY2-8uRdSCfnwyeSNBleg-botF67Lp~DD9jGSnpWyQSjHUEVpZmnSjDAgMYF2NSdqZTOjHWGvW~Q4Uhr2ls0A8Sp6s5Gc0omn-3KsqEVYDg-0hND~p6vMTyq2omzBdm5n~O2a3FmODLzAK5DN05aq1AvNo8bLEzd1ZIxsIOk5JQ0BxNn4KbuSQXC1fMdz0g86JgRR-BdYj43xMTKDgAHdoyI6pRh7EHOmJcZjpdTPxjgO85sUnLPj48A04v1gNzK-B2pmwqRPzb9tE4Ml3gcMByuSuZifDFGoWiPYEEwWFBzZvaKdSar-dudasam35DZ9cjtH~hR9NL8MpM1eKbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":54339180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54339180/thumbnails/1.jpg","file_name":"v80i07.pdf","download_url":"https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_with_the_R_Package_MXM.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54339180/v80i07-libre.pdf?1504590138=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_with_the_R_Package_MXM.pdf\u0026Expires=1731498795\u0026Signature=WslY2-8uRdSCfnwyeSNBleg-botF67Lp~DD9jGSnpWyQSjHUEVpZmnSjDAgMYF2NSdqZTOjHWGvW~Q4Uhr2ls0A8Sp6s5Gc0omn-3KsqEVYDg-0hND~p6vMTyq2omzBdm5n~O2a3FmODLzAK5DN05aq1AvNo8bLEzd1ZIxsIOk5JQ0BxNn4KbuSQXC1fMdz0g86JgRR-BdYj43xMTKDgAHdoyI6pRh7EHOmJcZjpdTPxjgO85sUnLPj48A04v1gNzK-B2pmwqRPzb9tE4Ml3gcMByuSuZifDFGoWiPYEEwWFBzZvaKdSar-dudasam35DZ9cjtH~hR9NL8MpM1eKbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing"},{"id":1565,"name":"Data Analysis (Engineering)","url":"https://www.academia.edu/Documents/in/Data_Analysis_Engineering_"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":2536,"name":"Graphs Theory","url":"https://www.academia.edu/Documents/in/Graphs_Theory"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics"},{"id":3058,"name":"Biostatistics","url":"https://www.academia.edu/Documents/in/Biostatistics"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics"},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis"},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods"},{"id":8218,"name":"Networks","url":"https://www.academia.edu/Documents/in/Networks"},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning"},{"id":10610,"name":"Survival Analysis","url":"https://www.academia.edu/Documents/in/Survival_Analysis"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":16895,"name":"Modelling","url":"https://www.academia.edu/Documents/in/Modelling"},{"id":17429,"name":"Structural Bioinformatics","url":"https://www.academia.edu/Documents/in/Structural_Bioinformatics"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics"},{"id":24089,"name":"Causality","url":"https://www.academia.edu/Documents/in/Causality"},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks"},{"id":28523,"name":"Causal Inference","url":"https://www.academia.edu/Documents/in/Causal_Inference"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":29223,"name":"Graphical Models","url":"https://www.academia.edu/Documents/in/Graphical_Models"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression"},{"id":32701,"name":"Data Mining in Bioinformatics","url":"https://www.academia.edu/Documents/in/Data_Mining_in_Bioinformatics"},{"id":32703,"name":"Graph/Network Algorithms","url":"https://www.academia.edu/Documents/in/Graph_Network_Algorithms"},{"id":34344,"name":"Data mining (Data Analysis)","url":"https://www.academia.edu/Documents/in/Data_mining_Data_Analysis_"},{"id":39699,"name":"Probabilistic Graphical Models","url":"https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models"},{"id":40172,"name":"Generalized Linear models","url":"https://www.academia.edu/Documents/in/Generalized_Linear_models"},{"id":43027,"name":"Computational Statistic","url":"https://www.academia.edu/Documents/in/Computational_Statistic"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":57644,"name":"Automatic Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Automatic_Classification_Machine_Learning_"},{"id":57948,"name":"Regression Testing","url":"https://www.academia.edu/Documents/in/Regression_Testing"},{"id":62081,"name":"Quantile Regression","url":"https://www.academia.edu/Documents/in/Quantile_Regression"},{"id":63857,"name":"Categorical data analysis","url":"https://www.academia.edu/Documents/in/Categorical_data_analysis"},{"id":65870,"name":"Mixed Effects Models","url":"https://www.academia.edu/Documents/in/Mixed_Effects_Models"},{"id":75348,"name":"Cox Regression","url":"https://www.academia.edu/Documents/in/Cox_Regression"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":87557,"name":"Linear Mixed Models","url":"https://www.academia.edu/Documents/in/Linear_Mixed_Models"},{"id":95929,"name":"Longitudinal data analysis","url":"https://www.academia.edu/Documents/in/Longitudinal_data_analysis"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":125564,"name":"Statistical Significance","url":"https://www.academia.edu/Documents/in/Statistical_Significance"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data"},{"id":129502,"name":"Poisson regression","url":"https://www.academia.edu/Documents/in/Poisson_regression"},{"id":135987,"name":"Hypothesis testing","url":"https://www.academia.edu/Documents/in/Hypothesis_testing"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition"},{"id":178621,"name":"Logistic Regression Odds Ratio for Categorical Data Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Odds_Ratio_for_Categorical_Data_Analysis"},{"id":187402,"name":"Cross Validation","url":"https://www.academia.edu/Documents/in/Cross_Validation"},{"id":199316,"name":"Multiple Linear Regression","url":"https://www.academia.edu/Documents/in/Multiple_Linear_Regression"},{"id":212320,"name":"Logistic Regression Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Analysis"},{"id":212650,"name":"Automatic Feature Selection","url":"https://www.academia.edu/Documents/in/Automatic_Feature_Selection"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics"},{"id":337526,"name":"Statistical Modeling and Machine Learning Algorithms for Data Mining, Inference, Prediction and Classification Problems","url":"https://www.academia.edu/Documents/in/Statistical_Modeling_and_Machine_Learning_Algorithms_for_Data_Mining_Inference_Prediction_and_Clas"},{"id":382620,"name":"Multinomial logit models","url":"https://www.academia.edu/Documents/in/Multinomial_logit_models"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":491921,"name":"Graphical causal modeling","url":"https://www.academia.edu/Documents/in/Graphical_causal_modeling"},{"id":505701,"name":"Spearman Correlation","url":"https://www.academia.edu/Documents/in/Spearman_Correlation"},{"id":559503,"name":"Machine Learning Big Data","url":"https://www.academia.edu/Documents/in/Machine_Learning_Big_Data"},{"id":596654,"name":"Computer Science and Statistics","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Statistics"},{"id":653603,"name":"Generalised Linear Mixed Models","url":"https://www.academia.edu/Documents/in/Generalised_Linear_Mixed_Models"},{"id":706066,"name":"Philosophy of causality","url":"https://www.academia.edu/Documents/in/Philosophy_of_causality"},{"id":732654,"name":"Hill Climbing","url":"https://www.academia.edu/Documents/in/Hill_Climbing"},{"id":742501,"name":"Multinomial Logistic Regression","url":"https://www.academia.edu/Documents/in/Multinomial_Logistic_Regression"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression"},{"id":818258,"name":"Model Selection Criteria","url":"https://www.academia.edu/Documents/in/Model_Selection_Criteria"},{"id":895950,"name":"Big data analysis","url":"https://www.academia.edu/Documents/in/Big_data_analysis"},{"id":923749,"name":"Quantile Regression - Bayesian Inference - Machine Learning - Biostatistics","url":"https://www.academia.edu/Documents/in/Quantile_Regression_-_Bayesian_Inference_-_Machine_Learning_-_Biostatistics"},{"id":972948,"name":"Stepwise Regression","url":"https://www.academia.edu/Documents/in/Stepwise_Regression"},{"id":999290,"name":"Multi Class Classification","url":"https://www.academia.edu/Documents/in/Multi_Class_Classification"},{"id":1181584,"name":"Beta Regression","url":"https://www.academia.edu/Documents/in/Beta_Regression"},{"id":1323978,"name":"Machine Learning \u0026 Data Mining In Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Data_Mining_In_Pattern_Recognition"},{"id":1340986,"name":"Multivariate Regression Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Regression_Analysis"},{"id":1496485,"name":"Computational Statistics and Data Analysis","url":"https://www.academia.edu/Documents/in/Computational_Statistics_and_Data_Analysis"},{"id":1705138,"name":"Exponentiated Weibull distribution; Record values; Maximum likelihood estimation Bayesian estimation","url":"https://www.academia.edu/Documents/in/Exponentiated_Weibull_distribution_Record_values_Maximum_likelihood_estimation_Bayesian_estimation"},{"id":2010416,"name":"Conditional Independence","url":"https://www.academia.edu/Documents/in/Conditional_Independence"}],"urls":[{"id":7154335,"url":"http://mensxmachina.org/el/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16833515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree"><img alt="Research paper thumbnail of Morphological classification of heartbeats using similarity features and a two-phase decision tree" class="work-thumbnail" src="https://attachments.academia-assets.com/39207490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree">Morphological classification of heartbeats using similarity features and a two-phase decision tree</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DimitraEmmanouilidou">Dimitra Emmanouilidou</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>2008 Computers in Cardiology</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c853102aacc4ee923bd738efad8fbdb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39207490,&quot;asset_id&quot;:16833515,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16833515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16833515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16833515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16833515]").text(description); $(".js-view-count[data-work-id=16833515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16833515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16833515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16833515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c853102aacc4ee923bd738efad8fbdb2" } } $('.js-work-strip[data-work-id=16833515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16833515,"title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree","translated_title":"","metadata":{"grobid_abstract":"Significant clinical information can be obtained from the analysis of the dominant beat morphology. In such respect, the identification of the dominant beats and their averaging can be very helpful, allowing clinicians to perform the measurement of amplitudes and intervals on a beat much cleaner from noise than a generic beat selected from the entire ECG recording.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"2008 Computers in Cardiology","grobid_abstract_attachment_id":39207490},"translated_abstract":null,"internal_url":"https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree","translated_internal_url":"","created_at":"2015-10-15T07:32:02.717-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36285513,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":7301670,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":0,"name":"Ioannis Tsamardinos","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"},{"id":7301672,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":null,"co_author_invite_id":536195,"email":"t***s@csd.uoc.gr","display_order":4194304,"name":"I. Tollis","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"},{"id":7301701,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":33027457,"co_author_invite_id":null,"email":"c***i@ics.forth.gr","display_order":6291456,"name":"F. Chiarugi","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"}],"downloadable_attachments":[{"id":39207490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39207490/thumbnails/1.jpg","file_name":"0849.pdf","download_url":"https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphological_classification_of_heartbea.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39207490/0849-libre.pdf?1444919547=\u0026response-content-disposition=attachment%3B+filename%3DMorphological_classification_of_heartbea.pdf\u0026Expires=1732388431\u0026Signature=F8neV~0qoRJqsU-PvG0sIx0reEUobPs8rfCxnYr9gKS92QQuVhzwyrVlEAlgQmwdDgF91oKfr7gGV9OSrKqRo9bZGeS-VAUSPeHeR8x6Qih1rfJCG8WYjvUpczlTI6Rc~o6uqqgZ81bW7utTfgUUi8pF8w9Dztl6SBVlzwQXsi8B9Vf7xdMsGBoSedqBeWS2DocjSE0oDOId3Rt~-NfoiCh~x5b1lOqKu~CSc7yH8b3IuuzP5I1Fb4XLliq5ZspG0Vb67RnO14zqj5uBjcN9zl0khYZ9-bLr81JiaUan-3HGTDyEsVCDzlwMk7o-uiBSGmyT8~ARwZBJLhZ6bF4UAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":36285513,"first_name":"Dimitra","middle_initials":null,"last_name":"Emmanouilidou","page_name":"DimitraEmmanouilidou","domain_name":"independent","created_at":"2015-10-15T07:29:49.884-07:00","display_name":"Dimitra Emmanouilidou","url":"https://independent.academia.edu/DimitraEmmanouilidou"},"attachments":[{"id":39207490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39207490/thumbnails/1.jpg","file_name":"0849.pdf","download_url":"https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphological_classification_of_heartbea.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39207490/0849-libre.pdf?1444919547=\u0026response-content-disposition=attachment%3B+filename%3DMorphological_classification_of_heartbea.pdf\u0026Expires=1732388431\u0026Signature=F8neV~0qoRJqsU-PvG0sIx0reEUobPs8rfCxnYr9gKS92QQuVhzwyrVlEAlgQmwdDgF91oKfr7gGV9OSrKqRo9bZGeS-VAUSPeHeR8x6Qih1rfJCG8WYjvUpczlTI6Rc~o6uqqgZ81bW7utTfgUUi8pF8w9Dztl6SBVlzwQXsi8B9Vf7xdMsGBoSedqBeWS2DocjSE0oDOId3Rt~-NfoiCh~x5b1lOqKu~CSc7yH8b3IuuzP5I1Fb4XLliq5ZspG0Vb67RnO14zqj5uBjcN9zl0khYZ9-bLr81JiaUan-3HGTDyEsVCDzlwMk7o-uiBSGmyT8~ARwZBJLhZ6bF4UAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction"},{"id":162271,"name":"Decision Tree","url":"https://www.academia.edu/Documents/in/Decision_Tree"},{"id":746681,"name":"Arrhythmia","url":"https://www.academia.edu/Documents/in/Arrhythmia"},{"id":1318938,"name":"Positive predictive value","url":"https://www.academia.edu/Documents/in/Positive_predictive_value"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective"><img alt="Research paper thumbnail of Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/39170695/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective">Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective</a></div><div class="wp-workCard_item"><span>Cancer informatics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0818a5969c69246924bdf71dfcaff23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170695,&quot;asset_id&quot;:16764539,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764539]").text(description); $(".js-view-count[data-work-id=16764539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0818a5969c69246924bdf71dfcaff23" } } $('.js-work-strip[data-work-id=16764539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764539,"title":"Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective","translated_title":"","metadata":{"grobid_abstract":"Sound data analysis is critical to the success of modern molecular medicine research that involves collection and interpretation of mass-throughput data. The novel nature and high-dimensionality in such datasets pose a series of nontrivial data analysis problems. This technical commentary discusses the problems of over-fi tting, error estimation, curse of dimensionality, causal versus predictive modeling, integration of heterogeneous types of data, and lack of standard protocols for data analysis. We attempt to shed light on the nature and causes of these problems and to outline viable methodological approaches to overcome them.","publication_name":"Cancer informatics","grobid_abstract_attachment_id":39170695},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective","translated_internal_url":"","created_at":"2015-10-13T23:42:11.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170695,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170695/thumbnails/1.jpg","file_name":"02e7e51e7c5929d2e7000000.pdf","download_url":"https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Challenges_in_the_Analysis_of_Mass_Throu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170695/02e7e51e7c5929d2e7000000-libre.pdf?1444807034=\u0026response-content-disposition=attachment%3B+filename%3DChallenges_in_the_Analysis_of_Mass_Throu.pdf\u0026Expires=1732388432\u0026Signature=WYYMkntAq2LN0HrxVWyxoJrjo89N2b9PgoqkznPQln6CsL6kaHGeEy0qRRemtMoQwa9WrQEe0vuJXRNRFAZl1cFfEBPclWT58bR3k5VD1DPnKqafka4HlxZ7KXMtWI7DaRYyvWlDsqKUhge8IQA3T0CJVeMXNPKDZRNtrcNYYyWh606KM6C6cfTpMFfPer0oRZdl3tLdBrrbEJ~EdK8BhQTPoWdOvp3WVqyBhH111-b7ReZfuMg0ubZCvDrIPeuc97kZLYID9-3d9TFd-BfFkK4Ead2DfEc28FFNnahw9f2g7FkZ-VQKVeTQNyP1HaV0qRSqcj5Qk8SjotoQah7yKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170695,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170695/thumbnails/1.jpg","file_name":"02e7e51e7c5929d2e7000000.pdf","download_url":"https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Challenges_in_the_Analysis_of_Mass_Throu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170695/02e7e51e7c5929d2e7000000-libre.pdf?1444807034=\u0026response-content-disposition=attachment%3B+filename%3DChallenges_in_the_Analysis_of_Mass_Throu.pdf\u0026Expires=1732388432\u0026Signature=WYYMkntAq2LN0HrxVWyxoJrjo89N2b9PgoqkznPQln6CsL6kaHGeEy0qRRemtMoQwa9WrQEe0vuJXRNRFAZl1cFfEBPclWT58bR3k5VD1DPnKqafka4HlxZ7KXMtWI7DaRYyvWlDsqKUhge8IQA3T0CJVeMXNPKDZRNtrcNYYyWh606KM6C6cfTpMFfPer0oRZdl3tLdBrrbEJ~EdK8BhQTPoWdOvp3WVqyBhH111-b7ReZfuMg0ubZCvDrIPeuc97kZLYID9-3d9TFd-BfFkK4Ead2DfEc28FFNnahw9f2g7FkZ-VQKVeTQNyP1HaV0qRSqcj5Qk8SjotoQah7yKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":16765,"name":"Cancer Prevention","url":"https://www.academia.edu/Documents/in/Cancer_Prevention"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis"},{"id":153168,"name":"Data Collection","url":"https://www.academia.edu/Documents/in/Data_Collection"},{"id":224767,"name":"Prediction Model","url":"https://www.academia.edu/Documents/in/Prediction_Model"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":326380,"name":"Liquid Chromatography / Electrospray Ionization Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Liquid_Chromatography_Electrospray_Ionization_Mass_Spectrometry"},{"id":459495,"name":"Very High Resolution","url":"https://www.academia.edu/Documents/in/Very_High_Resolution"},{"id":538554,"name":"Study design","url":"https://www.academia.edu/Documents/in/Study_design"},{"id":557801,"name":"High Dimensionality","url":"https://www.academia.edu/Documents/in/High_Dimensionality"},{"id":648595,"name":"Cancer Informatics","url":"https://www.academia.edu/Documents/in/Cancer_Informatics"},{"id":681132,"name":"Multidisciplinary Teams","url":"https://www.academia.edu/Documents/in/Multidisciplinary_Teams"},{"id":703835,"name":"Statistical Test","url":"https://www.academia.edu/Documents/in/Statistical_Test"},{"id":1579511,"name":"Array Comparative Genomic Hybridization","url":"https://www.academia.edu/Documents/in/Array_Comparative_Genomic_Hybridization"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions"><img alt="Research paper thumbnail of Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions" class="work-thumbnail" src="https://attachments.academia-assets.com/39170686/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions">Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions</a></div><div class="wp-workCard_item"><span>Journal of Machine Learning Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d2a00414482d2559c24b87d628f1ff25" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170686,&quot;asset_id&quot;:16764538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764538]").text(description); $(".js-view-count[data-work-id=16764538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d2a00414482d2559c24b87d628f1ff25" } } $('.js-work-strip[data-work-id=16764538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764538,"title":"Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions","translated_title":"","metadata":{"publication_name":"Journal of Machine Learning Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions","translated_internal_url":"","created_at":"2015-10-13T23:42:11.085-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170686,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170686/thumbnails/1.jpg","file_name":"02e7e51e7c591ee302000000.pdf","download_url":"https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_Causal_and_Markov_Blanket_Inductio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170686/02e7e51e7c591ee302000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DLocal_Causal_and_Markov_Blanket_Inductio.pdf\u0026Expires=1732388432\u0026Signature=PrpZXU5LHERkflhXCbpJK4pLvRclOohXlQ11B28icvDXLXqRXjHrwNHM3KLUrFotXYu2n2St13~aeKS7dS24zqmSRcsIyr~7v8YoMGSeTGLinBN3QM-9H3cxIP4ddOwzeGc6LhTAeQPKKWvfsrHP6ZSc6KgxrwWBDcfaTuBxrqhhi893Ar4nDewjdjHP04EggF4x25f9sSUb-EdrL392TRGQq4RpUISdNbYTOuR9ygkdK5YUwaDUXqHyiPw~h~3S~zKuzByZO8h~JmQ-L2qsJVNypt9dzhM5oSj5ypR6NubETsgCJQlb9GA~ribYHK~vBv0QcWGQstPH7xIcoVRxvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions","translated_slug":"","page_count":50,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170686,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170686/thumbnails/1.jpg","file_name":"02e7e51e7c591ee302000000.pdf","download_url":"https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_Causal_and_Markov_Blanket_Inductio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170686/02e7e51e7c591ee302000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DLocal_Causal_and_Markov_Blanket_Inductio.pdf\u0026Expires=1732388432\u0026Signature=PrpZXU5LHERkflhXCbpJK4pLvRclOohXlQ11B28icvDXLXqRXjHrwNHM3KLUrFotXYu2n2St13~aeKS7dS24zqmSRcsIyr~7v8YoMGSeTGLinBN3QM-9H3cxIP4ddOwzeGc6LhTAeQPKKWvfsrHP6ZSc6KgxrwWBDcfaTuBxrqhhi893Ar4nDewjdjHP04EggF4x25f9sSUb-EdrL392TRGQq4RpUISdNbYTOuR9ygkdK5YUwaDUXqHyiPw~h~3S~zKuzByZO8h~JmQ-L2qsJVNypt9dzhM5oSj5ypR6NubETsgCJQlb9GA~ribYHK~vBv0QcWGQstPH7xIcoVRxvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":101465,"name":"Causal Discovery","url":"https://www.academia.edu/Documents/in/Causal_Discovery"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":196189,"name":"Sample Size","url":"https://www.academia.edu/Documents/in/Sample_Size"},{"id":291765,"name":"Experimental Evaluation","url":"https://www.academia.edu/Documents/in/Experimental_Evaluation"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets"},{"id":600278,"name":"False discovery rate","url":"https://www.academia.edu/Documents/in/False_discovery_rate"},{"id":703835,"name":"Statistical Test","url":"https://www.academia.edu/Documents/in/Statistical_Test"},{"id":805001,"name":"Small samples","url":"https://www.academia.edu/Documents/in/Small_samples"},{"id":2003775,"name":"Divide and Conquer","url":"https://www.academia.edu/Documents/in/Divide_and_Conquer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764537"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution"><img alt="Research paper thumbnail of Fast Transformation of Temporal Plans for Efficient Execution" class="work-thumbnail" src="https://attachments.academia-assets.com/39170674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution">Fast Transformation of Temporal Plans for Efficient Execution</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="89db62b4dde5c4eeccd727286e755d4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170674,&quot;asset_id&quot;:16764537,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764537"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764537]").text(description); $(".js-view-count[data-work-id=16764537]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764537']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764537, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "89db62b4dde5c4eeccd727286e755d4e" } } $('.js-work-strip[data-work-id=16764537]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764537,"title":"Fast Transformation of Temporal Plans for Efficient Execution","translated_title":"","metadata":{"grobid_abstract":"Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson's algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node. *","grobid_abstract_attachment_id":39170674},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution","translated_internal_url":"","created_at":"2015-10-13T23:42:10.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170674/thumbnails/1.jpg","file_name":"AAAI98-035.pdf","download_url":"https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_Transformation_of_Temporal_Plans_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170674/AAAI98-035-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DFast_Transformation_of_Temporal_Plans_fo.pdf\u0026Expires=1732388432\u0026Signature=FTCODeZnKw6VA6lwJXzVhVSAhaQld2QkEnV6fQfMsBoYgaP7eQfRnaSSlhuts3QIXoZU0-j6zht6rHrnya8bplyFFEISmjdQ22MO1usTgSAlrvDNXoaxRA9UVU-etZ9wfUA5hfmCNgVKaHzWN-6sZ2Dq8kb42CP7lJS3acAp7uymCfijCmcc47h4~bCxTrRIVk0pK4CeV4p5TSzvyDpPT25oGTrNbmfuWSIoJEJL06Trz4jZPxsrVh66GPvvWDv9UU1aWHObmYWeLPKnYJeYIfDutc~fh0bvZYNYz9rYgYoNdE6fl1UuHENsgbXn6Q8qOeK1k94qSeXJfa7V1ysIYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170674/thumbnails/1.jpg","file_name":"AAAI98-035.pdf","download_url":"https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_Transformation_of_Temporal_Plans_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170674/AAAI98-035-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DFast_Transformation_of_Temporal_Plans_fo.pdf\u0026Expires=1732388432\u0026Signature=FTCODeZnKw6VA6lwJXzVhVSAhaQld2QkEnV6fQfMsBoYgaP7eQfRnaSSlhuts3QIXoZU0-j6zht6rHrnya8bplyFFEISmjdQ22MO1usTgSAlrvDNXoaxRA9UVU-etZ9wfUA5hfmCNgVKaHzWN-6sZ2Dq8kb42CP7lJS3acAp7uymCfijCmcc47h4~bCxTrRIVk0pK4CeV4p5TSzvyDpPT25oGTrNbmfuWSIoJEJL06Trz4jZPxsrVh66GPvvWDv9UU1aWHObmYWeLPKnYJeYIfDutc~fh0bvZYNYz9rYgYoNdE6fl1UuHENsgbXn6Q8qOeK1k94qSeXJfa7V1ysIYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":209855,"name":"Time Complexity","url":"https://www.academia.edu/Documents/in/Time_Complexity"},{"id":1906509,"name":"All Pairs Shortest Path","url":"https://www.academia.edu/Documents/in/All_Pairs_Shortest_Path"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution"><img alt="Research paper thumbnail of Reformulating Temporal Plans For Efficient Execution" class="work-thumbnail" src="https://attachments.academia-assets.com/39170672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution">Reformulating Temporal Plans For Efficient Execution</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="951de44a7ae2ed0560cfdf5585456635" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170672,&quot;asset_id&quot;:16764536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764536]").text(description); $(".js-view-count[data-work-id=16764536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "951de44a7ae2ed0560cfdf5585456635" } } $('.js-work-strip[data-work-id=16764536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764536,"title":"Reformulating Temporal Plans For Efficient Execution","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution","translated_internal_url":"","created_at":"2015-10-13T23:42:10.852-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170672/thumbnails/1.jpg","file_name":"00b49520e1395d237b000000.pdf","download_url":"https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reformulating_Temporal_Plans_For_Efficie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170672/00b49520e1395d237b000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DReformulating_Temporal_Plans_For_Efficie.pdf\u0026Expires=1731498795\u0026Signature=DNpUnkNKdfd6tvyU0FGSFxhilfRK-caoPktTAX4HrySgdTPKT9uwPIs~YNBD2ahI4qhkbXcGx0dFVNF46NWQKiYdArGfCledoP2reYNYfVrCvcTPOnzTIUIhd8Fe1ulZ39ohleizqeIVNMHilwhCUarK4XHcVymratDOh7PKl0ZclVRxonmVBFrsO5YE2nMA3i7vCCyGVqOJAxXAJasYPXjvDySN3lG9P5i4QGgZJG~4rLqROy01pUhcDFk5B1bftTFTJXdzscYdmL1OCADfCioR~deM5H4SIBWZoe1ofr64hkN1lUCUKwc3PeI~wKV78dMi0VE6v1tKPCsHyyV42A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reformulating_Temporal_Plans_For_Efficient_Execution","translated_slug":"","page_count":43,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170672/thumbnails/1.jpg","file_name":"00b49520e1395d237b000000.pdf","download_url":"https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reformulating_Temporal_Plans_For_Efficie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170672/00b49520e1395d237b000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DReformulating_Temporal_Plans_For_Efficie.pdf\u0026Expires=1731498795\u0026Signature=DNpUnkNKdfd6tvyU0FGSFxhilfRK-caoPktTAX4HrySgdTPKT9uwPIs~YNBD2ahI4qhkbXcGx0dFVNF46NWQKiYdArGfCledoP2reYNYfVrCvcTPOnzTIUIhd8Fe1ulZ39ohleizqeIVNMHilwhCUarK4XHcVymratDOh7PKl0ZclVRxonmVBFrsO5YE2nMA3i7vCCyGVqOJAxXAJasYPXjvDySN3lG9P5i4QGgZJG~4rLqROy01pUhcDFk5B1bftTFTJXdzscYdmL1OCADfCioR~deM5H4SIBWZoe1ofr64hkN1lUCUKwc3PeI~wKV78dMi0VE6v1tKPCsHyyV42A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764535/esann_2011"><img alt="Research paper thumbnail of esann 2011" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764535/esann_2011">esann 2011</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764535]").text(description); $(".js-view-count[data-work-id=16764535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764535,"title":"esann 2011","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764535/esann_2011","translated_internal_url":"","created_at":"2015-10-13T23:42:10.748-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"esann_2011","translated_slug":"","page_count":null,"language":"lt","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764534"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES"><img alt="Research paper thumbnail of T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES" class="work-thumbnail" src="https://attachments.academia-assets.com/39170666/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES">T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Feature selection is used extensively in biomedical research for biomarker identification and pat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle &amp;quot;orphan&amp;quot; features (not belonging to a cluster). T-ReCS can be used wi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99e1066b697860a967e72d1c6c88e87a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170666,&quot;asset_id&quot;:16764534,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764534"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764534"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764534; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764534]").text(description); $(".js-view-count[data-work-id=16764534]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764534; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764534']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764534, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99e1066b697860a967e72d1c6c88e87a" } } $('.js-work-strip[data-work-id=16764534]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764534,"title":"T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES","translated_title":"","metadata":{"abstract":"Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle \u0026quot;orphan\u0026quot; features (not belonging to a cluster). T-ReCS can be used wi..."},"translated_abstract":"Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle \u0026quot;orphan\u0026quot; features (not belonging to a cluster). T-ReCS can be used wi...","internal_url":"https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES","translated_internal_url":"","created_at":"2015-10-13T23:42:10.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170666/thumbnails/1.jpg","file_name":"542e56ff0cf277d58e8ea220.pdf","download_url":"https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170666/542e56ff0cf277d58e8ea220-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DT_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf\u0026Expires=1732388432\u0026Signature=JqCQGv194T8DO1llmNYeYzN8btXj3TXleQUPRVi95nEJJg1Ppk4S-AaI7yC8Lb8O6KUnSFnoJf2jygXgnVPGETwpUNIZqe34HDc3xG4P4xMb4qX6YIWv6NvKC65fLa9apJ8jN2gJl8ENFLMeHtjVAnHvYEhgmtb5z2FFyfvIntKsjVbvMonGPKx-cpmd5i~kPB0yGbUQ3QaoSuomWk~HCjK9rJJM01yQkR3fqyoINHHbBQM2DgPWq9iWItm1vDvy0o9mcydQIv-ebvF8fKfZlTgRg4zA7tzjPZZetTeIfxkIAvbEV5qEXO4NBxeoCrQ~z5FASXlyArWjAhQ6atB6ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170666/thumbnails/1.jpg","file_name":"542e56ff0cf277d58e8ea220.pdf","download_url":"https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170666/542e56ff0cf277d58e8ea220-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DT_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf\u0026Expires=1732388432\u0026Signature=JqCQGv194T8DO1llmNYeYzN8btXj3TXleQUPRVi95nEJJg1Ppk4S-AaI7yC8Lb8O6KUnSFnoJf2jygXgnVPGETwpUNIZqe34HDc3xG4P4xMb4qX6YIWv6NvKC65fLa9apJ8jN2gJl8ENFLMeHtjVAnHvYEhgmtb5z2FFyfvIntKsjVbvMonGPKx-cpmd5i~kPB0yGbUQ3QaoSuomWk~HCjK9rJJM01yQkR3fqyoINHHbBQM2DgPWq9iWItm1vDvy0o9mcydQIv-ebvF8fKfZlTgRg4zA7tzjPZZetTeIfxkIAvbEV5qEXO4NBxeoCrQ~z5FASXlyArWjAhQ6atB6ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":25780,"name":"Biocomputing","url":"https://www.academia.edu/Documents/in/Biocomputing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine"><img alt="Research paper thumbnail of Text categorization models for high-quality article retrieval in internal medicine" class="work-thumbnail" src="https://attachments.academia-assets.com/39170665/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine">Text categorization models for high-quality article retrieval in internal medicine</a></div><div class="wp-workCard_item"><span>Journal of the American Medical Informatics Association</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e98599796f973f0c67ac4ed3ed1d3f4f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170665,&quot;asset_id&quot;:16764533,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764533]").text(description); $(".js-view-count[data-work-id=16764533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e98599796f973f0c67ac4ed3ed1d3f4f" } } $('.js-work-strip[data-work-id=16764533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764533,"title":"Text categorization models for high-quality article retrieval in internal medicine","translated_title":"","metadata":{"abstract":"OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...","publication_name":"Journal of the American Medical Informatics Association"},"translated_abstract":"OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...","internal_url":"https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine","translated_internal_url":"","created_at":"2015-10-13T23:42:10.538-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170665/thumbnails/1.jpg","file_name":"02e7e51e7c593b3fc3000000.pdf","download_url":"https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_categorization_models_for_high_qual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170665/02e7e51e7c593b3fc3000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DText_categorization_models_for_high_qual.pdf\u0026Expires=1732388432\u0026Signature=BtFl5H8dIo2Pr54bQgogjFca91NeEirotZER9F-pIB-jO2uEN3zrTHmhGJlTiCyq5iSgkYkf~TPLC1Z6jp0GTrrYggWYeIRaknvCbYgjzrSmkpF2JehcjJvGvatv-GeicdLZDnkUD9c0MKghr-zLaOGTlwtweCEz6GjGFyrzR1AKLYSwfyqW9toSh-jtmIMkaroFX-Swg3dQXw-CEjAdrJH4pRb3a9vPP5W6gveifUh2TRcYEDHzb~xzlpipf7zD~xRwOMr1vECByJ8XDpxpTHvN9QYaUtzxMxsqG4m-TZxQgGrSp1uQji2K~PaY5vOp3MId3xpler5nyn0tx98Uxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170665/thumbnails/1.jpg","file_name":"02e7e51e7c593b3fc3000000.pdf","download_url":"https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_categorization_models_for_high_qual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170665/02e7e51e7c593b3fc3000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DText_categorization_models_for_high_qual.pdf\u0026Expires=1732388432\u0026Signature=BtFl5H8dIo2Pr54bQgogjFca91NeEirotZER9F-pIB-jO2uEN3zrTHmhGJlTiCyq5iSgkYkf~TPLC1Z6jp0GTrrYggWYeIRaknvCbYgjzrSmkpF2JehcjJvGvatv-GeicdLZDnkUD9c0MKghr-zLaOGTlwtweCEz6GjGFyrzR1AKLYSwfyqW9toSh-jtmIMkaroFX-Swg3dQXw-CEjAdrJH4pRb3a9vPP5W6gveifUh2TRcYEDHzb~xzlpipf7zD~xRwOMr1vECByJ8XDpxpTHvN9QYaUtzxMxsqG4m-TZxQgGrSp1uQji2K~PaY5vOp3MId3xpler5nyn0tx98Uxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":65390,"name":"Internal Medicine","url":"https://www.academia.edu/Documents/in/Internal_Medicine"},{"id":194916,"name":"ROC Curve","url":"https://www.academia.edu/Documents/in/ROC_Curve"},{"id":203527,"name":"Medline","url":"https://www.academia.edu/Documents/in/Medline"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":900542,"name":"Selection Bias","url":"https://www.academia.edu/Documents/in/Selection_Bias"},{"id":1309706,"name":"Area Under Curve","url":"https://www.academia.edu/Documents/in/Area_Under_Curve"},{"id":1863718,"name":"The American","url":"https://www.academia.edu/Documents/in/The_American"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty"><img alt="Research paper thumbnail of Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/39170680/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty">Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temporal uncertainty is a feature of many real-world planning problems. One of the most successfu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u&amp;#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec1a7bd6861084421b9369811c211397" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170680,&quot;asset_id&quot;:16764532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764532]").text(description); $(".js-view-count[data-work-id=16764532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec1a7bd6861084421b9369811c211397" } } $('.js-work-strip[data-work-id=16764532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764532,"title":"Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty","translated_title":"","metadata":{"abstract":"Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u\u0026#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter..."},"translated_abstract":"Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u\u0026#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter...","internal_url":"https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty","translated_internal_url":"","created_at":"2015-10-13T23:42:10.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170680,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170680/thumbnails/1.jpg","file_name":"00b49520e1396c30c0000000.pdf","download_url":"https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Assessing_the_Probability_of_Legal_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170680/00b49520e1396c30c0000000-libre.pdf?1444807033=\u0026response-content-disposition=attachment%3B+filename%3DAssessing_the_Probability_of_Legal_Execu.pdf\u0026Expires=1732388432\u0026Signature=XQ41Ne8c95cXwK70sRhIAP~cRc2MMbqQ7CAj-YkqShiBny7cesPwhgzg6RgQQ39j0YClQF2AIpNeE8Faat9vOYPF56oq8wCYvJd~ynZE8aFI3sfTZhNi7qMRMRigt7wn-pWl1jNF8xD6XKiqP3exrPbgOjy4kpiti6e2PqNaw1kq7DsC91P4y7MV64Jg9Rh6dLK15yKvgctMeoC43bQE3xl0xVeK3PrPIEibkAqYz7MFbz0AfoTvUAtmDA7noYa7~n9n00hP0HmGMZ7pUqlP2Tv2xksbChidTYrwbSCspdGAXT-gep0ssQTwkQd1U0dUlqtANled-RM-FzufqJeMyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170680,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170680/thumbnails/1.jpg","file_name":"00b49520e1396c30c0000000.pdf","download_url":"https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Assessing_the_Probability_of_Legal_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170680/00b49520e1396c30c0000000-libre.pdf?1444807033=\u0026response-content-disposition=attachment%3B+filename%3DAssessing_the_Probability_of_Legal_Execu.pdf\u0026Expires=1732388432\u0026Signature=XQ41Ne8c95cXwK70sRhIAP~cRc2MMbqQ7CAj-YkqShiBny7cesPwhgzg6RgQQ39j0YClQF2AIpNeE8Faat9vOYPF56oq8wCYvJd~ynZE8aFI3sfTZhNi7qMRMRigt7wn-pWl1jNF8xD6XKiqP3exrPbgOjy4kpiti6e2PqNaw1kq7DsC91P4y7MV64Jg9Rh6dLK15yKvgctMeoC43bQE3xl0xVeK3PrPIEibkAqYz7MFbz0AfoTvUAtmDA7noYa7~n9n00hP0HmGMZ7pUqlP2Tv2xksbChidTYrwbSCspdGAXT-gep0ssQTwkQd1U0dUlqtANled-RM-FzufqJeMyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning"><img alt="Research paper thumbnail of Discovering and Exploiting Entailement Relationships in Multi-Label Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/39170670/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning">Discovering and Exploiting Entailement Relationships in Multi-Label Learning</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work presents a sound probabilistic method for enforcing adherence of the marginal probabili...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33c86efcf8b5002b7dd562514171953c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170670,&quot;asset_id&quot;:16764531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764531]").text(description); $(".js-view-count[data-work-id=16764531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33c86efcf8b5002b7dd562514171953c" } } $('.js-work-strip[data-work-id=16764531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764531,"title":"Discovering and Exploiting Entailement Relationships in Multi-Label Learning","translated_title":"","metadata":{"abstract":"This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself."},"translated_abstract":"This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.","internal_url":"https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning","translated_internal_url":"","created_at":"2015-10-13T23:42:10.305-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170670,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170670/thumbnails/1.jpg","file_name":"55130a1c0cf23203199ac14d.pdf","download_url":"https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Discovering_and_Exploiting_Entailement_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170670/55130a1c0cf23203199ac14d-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DDiscovering_and_Exploiting_Entailement_R.pdf\u0026Expires=1732388432\u0026Signature=ZJsgbD6u1v-6wqr78XYW5xBNZ2NqgumPaw8zvckwS4kDVUUy42Ll1HKYLlDiJm-jy0bYJOPqKEImx7ztBPPOjTbZ7yr1OvTxDsitwrKHWuWTPwUN8wY3YhxcTXgrjLeE2W4LjpRfv0IplwUz2BWGqXRVgeoc-4Y-v8-sf1ViLt4sJ-G9h0e1xcs~RjIIzzVMGIn85E16V5zQNTelPVkpYk44unI6hV7Bg6S4NJHOIXGQ9XpnwoEAMDDqdX5eb8hjNB7bE9JUM1ArLo37Y3KL1lofx5Fy2ikKK-OYJg38BcUx~XmbB3q20ddn2NznWtj2Z2qTp1zzhYlZjUcFiyQWhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170670,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170670/thumbnails/1.jpg","file_name":"55130a1c0cf23203199ac14d.pdf","download_url":"https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Discovering_and_Exploiting_Entailement_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170670/55130a1c0cf23203199ac14d-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DDiscovering_and_Exploiting_Entailement_R.pdf\u0026Expires=1732388432\u0026Signature=ZJsgbD6u1v-6wqr78XYW5xBNZ2NqgumPaw8zvckwS4kDVUUy42Ll1HKYLlDiJm-jy0bYJOPqKEImx7ztBPPOjTbZ7yr1OvTxDsitwrKHWuWTPwUN8wY3YhxcTXgrjLeE2W4LjpRfv0IplwUz2BWGqXRVgeoc-4Y-v8-sf1ViLt4sJ-G9h0e1xcs~RjIIzzVMGIn85E16V5zQNTelPVkpYk44unI6hV7Bg6S4NJHOIXGQ9XpnwoEAMDDqdX5eb8hjNB7bE9JUM1ArLo37Y3KL1lofx5Fy2ikKK-OYJg38BcUx~XmbB3q20ddn2NznWtj2Z2qTp1zzhYlZjUcFiyQWhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764530"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction"><img alt="Research paper thumbnail of Identifying Markov Blankets with Decision Tree Induction" class="work-thumbnail" src="https://attachments.academia-assets.com/39170669/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction">Identifying Markov Blankets with Decision Tree Induction</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Markov blanket of a target variable is the minimum conditioning set of variables that makes t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 &amp;#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfba3a84b436ecdcb0ef9952c4776d1f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170669,&quot;asset_id&quot;:16764530,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764530"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764530"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764530; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764530]").text(description); $(".js-view-count[data-work-id=16764530]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764530; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764530']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764530, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfba3a84b436ecdcb0ef9952c4776d1f" } } $('.js-work-strip[data-work-id=16764530]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764530,"title":"Identifying Markov Blankets with Decision Tree Induction","translated_title":"","metadata":{"abstract":"The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 \u0026#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared."},"translated_abstract":"The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 \u0026#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared.","internal_url":"https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction","translated_internal_url":"","created_at":"2015-10-13T23:42:10.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170669,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170669/thumbnails/1.jpg","file_name":"00b7d514b3a2d3247f000000.pdf","download_url":"https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Markov_Blankets_with_Decisio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170669/00b7d514b3a2d3247f000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Markov_Blankets_with_Decisio.pdf\u0026Expires=1732388432\u0026Signature=aXs8sfKw2t4RAnyOjWoAYDAqLJ6qV23J07TyGa9NBHUTJ5VLPX~X68oeSeTohs-hVGw-FlLfXWy7AEmR8p7qOpfsBwI6r~67D~sFlVWuKOkjBaP8Aa4rfnUCxqVWFeUedwq8IjHy9elAgLwq0xJo7C6MLPNek9s2usth2xoEhEhpft2ADj8tlslujpH9WhtGh2XHBKU29qoZQhgvpZ1KNtIvXUq4z0Gi7JBN-vqtpmMz~T9mQeIWd1ndnVefcxlQftRsWQSl~7wNqquOCXRPYJavpayTvynGcIouPirTkQqpDTJCPE76XxzIX69zDEC~PmfBhinSk6n97QKLCyI5HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identifying_Markov_Blankets_with_Decision_Tree_Induction","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170669,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170669/thumbnails/1.jpg","file_name":"00b7d514b3a2d3247f000000.pdf","download_url":"https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Markov_Blankets_with_Decisio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170669/00b7d514b3a2d3247f000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Markov_Blankets_with_Decisio.pdf\u0026Expires=1732388432\u0026Signature=aXs8sfKw2t4RAnyOjWoAYDAqLJ6qV23J07TyGa9NBHUTJ5VLPX~X68oeSeTohs-hVGw-FlLfXWy7AEmR8p7qOpfsBwI6r~67D~sFlVWuKOkjBaP8Aa4rfnUCxqVWFeUedwq8IjHy9elAgLwq0xJo7C6MLPNek9s2usth2xoEhEhpft2ADj8tlslujpH9WhtGh2XHBKU29qoZQhgvpZ1KNtIvXUq4z0Gi7JBN-vqtpmMz~T9mQeIWd1ndnVefcxlQftRsWQSl~7wNqquOCXRPYJavpayTvynGcIouPirTkQqpDTJCPE76XxzIX69zDEC~PmfBhinSk6n97QKLCyI5HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":101465,"name":"Causal Discovery","url":"https://www.academia.edu/Documents/in/Causal_Discovery"},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams"><img alt="Research paper thumbnail of A Methodological Framework for Statistical Analysis of Social Text Streams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams">A Methodological Framework for Statistical Analysis of Social Text Streams</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764529]").text(description); $(".js-view-count[data-work-id=16764529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764529,"title":"A Methodological Framework for Statistical Analysis of Social Text Streams","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams","translated_internal_url":"","created_at":"2015-10-13T23:42:10.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty"><img alt="Research paper thumbnail of A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/42402146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty">A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan&amp;amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="782f7c4458556e3290a672e1217cfa4f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42402146,&quot;asset_id&quot;:16764528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764528]").text(description); $(".js-view-count[data-work-id=16764528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "782f7c4458556e3290a672e1217cfa4f" } } $('.js-work-strip[data-work-id=16764528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764528,"title":"A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty","translated_title":"","metadata":{"abstract":"In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan\u0026amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan\u0026amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.","internal_url":"https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty","translated_internal_url":"","created_at":"2015-10-13T23:42:09.996-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42402146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42402146/thumbnails/1.jpg","file_name":"A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et.pdf","download_url":"https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Probabilistic_Approach_to_Robust_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42402146/A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et-libre.pdf?1454964410=\u0026response-content-disposition=attachment%3B+filename%3DA_Probabilistic_Approach_to_Robust_Execu.pdf\u0026Expires=1732388432\u0026Signature=TPF1w3B0hUG5IPMltcV1v4n0LFvSZKcCmtPcj6vrh4cfPfhNx2Csu-oiggvT6gCPEftVzcrdnkfRXOSGRH59tpJIxWPqJHv5VGZPMdKqzFNoZHNQZOnDCy2R13c~NIglz01c45ZJjlhPrg1gPInwv3Pz3c5ibw~mOc1LBEPF9~xb3QI0h-Wtpkq~3LvelWGh10Sw8vqLmuGKtBdKrvuaZacj1nbqlI3bZV3NuAdM3tW68drXVKU~7w~9VkaI36HuDg8eL~5B~RUb4WxU7jPJjmKX1VfjSQxggGXTtrPdOAkZAM9c1zsEMIP-ffbjDtmEJEsLKsFKEba0AEDBmsPhsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":42402146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42402146/thumbnails/1.jpg","file_name":"A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et.pdf","download_url":"https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Probabilistic_Approach_to_Robust_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42402146/A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et-libre.pdf?1454964410=\u0026response-content-disposition=attachment%3B+filename%3DA_Probabilistic_Approach_to_Robust_Execu.pdf\u0026Expires=1732388432\u0026Signature=TPF1w3B0hUG5IPMltcV1v4n0LFvSZKcCmtPcj6vrh4cfPfhNx2Csu-oiggvT6gCPEftVzcrdnkfRXOSGRH59tpJIxWPqJHv5VGZPMdKqzFNoZHNQZOnDCy2R13c~NIglz01c45ZJjlhPrg1gPInwv3Pz3c5ibw~mOc1LBEPF9~xb3QI0h-Wtpkq~3LvelWGh10Sw8vqLmuGKtBdKrvuaZacj1nbqlI3bZV3NuAdM3tW68drXVKU~7w~9VkaI36HuDg8eL~5B~RUb4WxU7jPJjmKX1VfjSQxggGXTtrPdOAkZAM9c1zsEMIP-ffbjDtmEJEsLKsFKEba0AEDBmsPhsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6574130,"url":"https://www.researchgate.net/profile/Ioannis_Tsamardinos/publication/221238898_A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty/links/02e7e51e7c5917810d000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems"><img alt="Research paper thumbnail of Efficiently Dispatching Plans Encoded as Simple Temporal Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems">Efficiently Dispatching Plans Encoded as Simple Temporal Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764527]").text(description); $(".js-view-count[data-work-id=16764527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764527,"title":"Efficiently Dispatching Plans Encoded as Simple Temporal Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems","translated_internal_url":"","created_at":"2015-10-13T23:42:09.889-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System"><img alt="Research paper thumbnail of Execution-Time Plan Management for a Cognitive Orthotic System" class="work-thumbnail" src="https://attachments.academia-assets.com/39170671/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System">Execution-Time Plan Management for a Cognitive Orthotic System</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c3bd7da3ce672529a1dfb3caa01b6589" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170671,&quot;asset_id&quot;:16764526,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764526]").text(description); $(".js-view-count[data-work-id=16764526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c3bd7da3ce672529a1dfb3caa01b6589" } } $('.js-work-strip[data-work-id=16764526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764526,"title":"Execution-Time Plan Management for a Cognitive Orthotic System","translated_title":"","metadata":{"grobid_abstract":"In this paper we discuss our work on plan management in the Autominder cognitive orthotic system. Autominder is being designed as part of an initiative on the development of robotic assistants for the elderly. Autominder stores and updates user plans, tracks their execution via input from robot sensors, and provides carefully chosen and timed reminders of the activities to be performed. It will eventually also learn the typical behavior of the user with regard to the execution of these plans. A central component of Autominder is its Plan Manager (PM), which is responsible for the temporal reasoning involved in updating plans and tracking their execution. The PM models plan update problems as disjunctive temporal problems (DTPs) and uses the Epilitis DTPsolving system to handle them. We describe the plan representations and algorithms used by the Plan Manager, and briefly discuss its connections with the rest of the system.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":39170671},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System","translated_internal_url":"","created_at":"2015-10-13T23:42:09.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170671,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170671/thumbnails/1.jpg","file_name":"02e7e51e7c5919516a000000.pdf","download_url":"https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Execution_Time_Plan_Management_for_a_Cog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170671/02e7e51e7c5919516a000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DExecution_Time_Plan_Management_for_a_Cog.pdf\u0026Expires=1732388432\u0026Signature=ICkgO8i453s48UCplpiTcFDWNswjN7rTN6BIg1CSLiPBLhJGCfydrL94lhrzzYAdPLQPAku3YAibZ-QU-ZHxQKFH7oSZaKfVU9Oi-kLU1jIO12t3T3SUdcpuOCS5RgChGohMsBVwI8wHJYI6fr5VtPwGgxsebSK8u~M7eIyNAqMAtu5MyPXaL~8rAJTb9qi7CqWjnCMpaNDWPRBPD0g4VACQwVO1-z~v0GBW8xAj4hTAJUjERbKmsiDliRH32dH-77wB9NgK8WsjduP61u8pkO7Con71x~AFSdqXOnrwVCj2QZ2voTVGljnA3wmNymvlYLGRJ1-OedkqZwTXQ0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170671,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170671/thumbnails/1.jpg","file_name":"02e7e51e7c5919516a000000.pdf","download_url":"https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Execution_Time_Plan_Management_for_a_Cog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170671/02e7e51e7c5919516a000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DExecution_Time_Plan_Management_for_a_Cog.pdf\u0026Expires=1732388433\u0026Signature=CErTd7G9HmBY6CwUqxiOBYOX2jXCL1szKRl3YX2eNf2QnVaf1wX3ycw7L5NWre9yCQ~CEaLhm0GEoBqGNTdqD-uKwRHCEwHjBlYrHYs92dAUdFrpzfM8HDd9bDDIL~vULHj8VrkhL03o3yoIHTvAW64FeTWYlsuTaZHoAHa9LzqvVe~uOUfouY9fD6n57stN3kwXiDtAHN4FczYYT-nabq7acnHxCZgFXTBy5UcOlQGeWyL9klmG1eukJ8XA4SIjmNmz3S8glGODcyNkSlFKWeoiyHayqzaluJqfdWmZdhjBaQZB5VfVUsnyB86UAGRX7rny7sUoiYbzC10Hrmn8LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56484,"name":"Spatial and Temporal Reasoning","url":"https://www.academia.edu/Documents/in/Spatial_and_Temporal_Reasoning"},{"id":451955,"name":"Plan","url":"https://www.academia.edu/Documents/in/Plan"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology"><img alt="Research paper thumbnail of MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology">MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764525]").text(description); $(".js-view-count[data-work-id=16764525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764525,"title":"MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology","translated_title":"","metadata":{"abstract":"We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"PLOS ONE"},"translated_abstract":"We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.","internal_url":"https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology","translated_internal_url":"","created_at":"2015-10-13T23:42:09.674-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2374593" id="papers"><div class="js-work-strip profile--work_container" data-work-id="37454058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER"><img alt="Research paper thumbnail of Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER" class="work-thumbnail" src="https://attachments.academia-assets.com/57421925/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER">Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>F1000Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Feature (or variable) selection is the process of identifying the minimal set of features with th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="eef61111acd5f13151f6338fa65fa368" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:57421925,&quot;asset_id&quot;:37454058,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="37454058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="37454058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37454058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37454058]").text(description); $(".js-view-count[data-work-id=37454058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37454058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='37454058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 37454058, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "eef61111acd5f13151f6338fa65fa368" } } $('.js-work-strip[data-work-id=37454058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":37454058,"title":"Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER","translated_title":"","metadata":{"abstract":"Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.","publication_name":"F1000Research"},"translated_abstract":"Feature (or variable) selection is the process of identifying the minimal set of features with the highest predictive performance on the target variable of interest. Numerous feature selection algorithms have been developed over the years, but only few have been implemented in R as a package. The R package MXM is such an example, which not only offers a variety of feature selection algorithms, but has unique features that make it advantageous over its competitors: a) it contains feature selection algorithms that can treat numerous types of target variables, including continuous, percentages, time to event (survival), binary, nominal, ordinal, clustered, counts, left censored, etc; b) it contains a variety of regression models to plug into the feature selection algorithms; c) it includes an algorithm for detecting multiple solutions (many sets of equivalent features); and d) it includes memory efficient algorithms for high volume data, data that cannot be loaded into R. In this paper we qualitatively compare MXM with other relevant packages and discuss its advantages and disadvantages. We also provide a demonstration of its algorithms using real high-dimensional data from various applications.","internal_url":"https://www.academia.edu/37454058/Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER","translated_internal_url":"","created_at":"2018-09-21T04:17:04.995-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":31894239,"work_id":37454058,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":1,"name":"Ioannis Tsamardinos","title":"Open Peer Review Feature selection with the R package MXM Referee Status: AWAITING PEER"}],"downloadable_attachments":[{"id":57421925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57421925/thumbnails/1.jpg","file_name":"Feature_selection_with_the_R_package_MXM.pdf","download_url":"https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Open_Peer_Review_Feature_selection_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57421925/Feature_selection_with_the_R_package_MXM-libre.pdf?1537528985=\u0026response-content-disposition=attachment%3B+filename%3DOpen_Peer_Review_Feature_selection_with.pdf\u0026Expires=1732121159\u0026Signature=ZQsYfOUwtTqoAMoh2weHwh4YqQp~tWcMVm39rCmT~IueVTVJnk12KksyZ5qyW7A7QbOxIeNIxBM29DTwdvDwUwlgI9kwph-~3zvIB1IloJTxI7XxH0DWciSqTJvOCejgRRheYTGihr6mTMriJTdVNp8tajESJLuKXC9B2pK0O8-835on8h42HdVkAK8zvCnmtwwWq~~ftFaaPXLHP~NYyIMYMzx4~M5ccl1slAIpSymQAVG3nCss72ziHSfcZq6l4E6gQgvcqktx4CuSwpSKX9rUJQ--KH9o3WklXnWSmRsfS8tSFrvokpR0R3AbkLZoWbTCS6J9gjP27sS2lOl9pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Open_Peer_Review_Feature_selection_with_the_R_package_MXM_Referee_Status_AWAITING_PEER","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":57421925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57421925/thumbnails/1.jpg","file_name":"Feature_selection_with_the_R_package_MXM.pdf","download_url":"https://www.academia.edu/attachments/57421925/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Open_Peer_Review_Feature_selection_with.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57421925/Feature_selection_with_the_R_package_MXM-libre.pdf?1537528985=\u0026response-content-disposition=attachment%3B+filename%3DOpen_Peer_Review_Feature_selection_with.pdf\u0026Expires=1732121159\u0026Signature=ZQsYfOUwtTqoAMoh2weHwh4YqQp~tWcMVm39rCmT~IueVTVJnk12KksyZ5qyW7A7QbOxIeNIxBM29DTwdvDwUwlgI9kwph-~3zvIB1IloJTxI7XxH0DWciSqTJvOCejgRRheYTGihr6mTMriJTdVNp8tajESJLuKXC9B2pK0O8-835on8h42HdVkAK8zvCnmtwwWq~~ftFaaPXLHP~NYyIMYMzx4~M5ccl1slAIpSymQAVG3nCss72ziHSfcZq6l4E6gQgvcqktx4CuSwpSKX9rUJQ--KH9o3WklXnWSmRsfS8tSFrvokpR0R3AbkLZoWbTCS6J9gjP27sS2lOl9pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":1012702,"name":"R Packages","url":"https://www.academia.edu/Documents/in/R_Packages"}],"urls":[{"id":8590734,"url":"https://f1000researchdata.s3.amazonaws.com/manuscripts/17707/23556c28-b06b-4e5c-bbbc-d213c74c0880_16216_-_michail_tsagris.pdf?doi=10.12688/f1000research.16216.1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="35742078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data"><img alt="Research paper thumbnail of Feature selection for high-dimensional temporal data" class="work-thumbnail" src="https://attachments.academia-assets.com/55616743/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data">Feature selection for high-dimensional temporal data</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VLagani">Vincenzo Lagani</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>BMC Bioinformatics</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Background: Feature selection is commonly employed for identifying collectively-predictive biomar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional &quot; omics &quot; temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65ca8cba623a6284e3a2b57a97cd7259" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:55616743,&quot;asset_id&quot;:35742078,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="35742078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="35742078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35742078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35742078]").text(description); $(".js-view-count[data-work-id=35742078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35742078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='35742078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 35742078, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65ca8cba623a6284e3a2b57a97cd7259" } } $('.js-work-strip[data-work-id=35742078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":35742078,"title":"Feature selection for high-dimensional temporal data","translated_title":"","metadata":{"doi":"10.1186/s12859-018-2023-7","abstract":"Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional \" omics \" temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"BMC Bioinformatics"},"translated_abstract":"Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional \" omics \" temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.","internal_url":"https://www.academia.edu/35742078/Feature_selection_for_high_dimensional_temporal_data","translated_internal_url":"","created_at":"2018-01-23T12:10:51.614-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":30964159,"work_id":35742078,"tagging_user_id":71523,"tagged_user_id":33460367,"co_author_invite_id":null,"email":"v***i@yahoo.it","display_order":1,"name":"Vincenzo Lagani","title":"Feature selection for high-dimensional temporal data"},{"id":30964160,"work_id":35742078,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":2,"name":"Ioannis Tsamardinos","title":"Feature selection for high-dimensional temporal data"}],"downloadable_attachments":[{"id":55616743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55616743/thumbnails/1.jpg","file_name":"Feature_selection_for_high_dimensional_temporal_data_-_2018.pdf","download_url":"https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_selection_for_high_dimensional_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55616743/Feature_selection_for_high_dimensional_temporal_data_-_2018-libre.pdf?1516738774=\u0026response-content-disposition=attachment%3B+filename%3DFeature_selection_for_high_dimensional_t.pdf\u0026Expires=1732266103\u0026Signature=B6wC8cbiVfjbLekYNSVBfjJPV1XDziepN3O0Wr0cjVD7saK67UPI2bP8fuld699WjsYMn4yENQU87kz5JMPkSULCDf2eg7Z8vj0tXRUF-agWyJs~~oCBRwuk3rjF1QEHce27pPnTl8uOim03XAyPLLrpFOWZX4pbZT6k0uI2DlnwuObY5iWtJdY4G2aK~BB9rPo~6WEZnlm-wmacJo1~tEDeeD~epj4b2D-uYqOhjppIcO15CxOy~jsZA4Ht3nMal7Wx6hy6E5BCsJfhVR4oki9kM8s3wXd22GxNeyj1HDxk99ijOf7NsqGT13ZTNzTO9QdC7SA~2zITcCQX9dpk4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_selection_for_high_dimensional_temporal_data","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":55616743,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/55616743/thumbnails/1.jpg","file_name":"Feature_selection_for_high_dimensional_temporal_data_-_2018.pdf","download_url":"https://www.academia.edu/attachments/55616743/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_selection_for_high_dimensional_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/55616743/Feature_selection_for_high_dimensional_temporal_data_-_2018-libre.pdf?1516738774=\u0026response-content-disposition=attachment%3B+filename%3DFeature_selection_for_high_dimensional_t.pdf\u0026Expires=1732266103\u0026Signature=B6wC8cbiVfjbLekYNSVBfjJPV1XDziepN3O0Wr0cjVD7saK67UPI2bP8fuld699WjsYMn4yENQU87kz5JMPkSULCDf2eg7Z8vj0tXRUF-agWyJs~~oCBRwuk3rjF1QEHce27pPnTl8uOim03XAyPLLrpFOWZX4pbZT6k0uI2DlnwuObY5iWtJdY4G2aK~BB9rPo~6WEZnlm-wmacJo1~tEDeeD~epj4b2D-uYqOhjppIcO15CxOy~jsZA4Ht3nMal7Wx6hy6E5BCsJfhVR4oki9kM8s3wXd22GxNeyj1HDxk99ijOf7NsqGT13ZTNzTO9QdC7SA~2zITcCQX9dpk4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="26594306"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications"><img alt="Research paper thumbnail of Towards Robust and Versatile Causal Discovery for Business Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/46882579/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications">Towards Robust and Versatile Causal Discovery for Business Applications</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/GBorboudakis">Giorgos Borboudakis</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Causal discovery algorithms can induce some of the causal relations from the data, commonly in th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6bc65eeaf9f359f3a1e566aa4108ebae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:46882579,&quot;asset_id&quot;:26594306,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26594306"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26594306"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26594306; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26594306]").text(description); $(".js-view-count[data-work-id=26594306]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26594306; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26594306']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26594306, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6bc65eeaf9f359f3a1e566aa4108ebae" } } $('.js-work-strip[data-work-id=26594306]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26594306,"title":"Towards Robust and Versatile Causal Discovery for Business Applications","translated_title":"","metadata":{"abstract":"Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website."},"translated_abstract":"Causal discovery algorithms can induce some of the causal relations from the data, commonly in the form of a causal network such as a causal Bayesian network. Arguably however , all such algorithms lack far behind what is necessary for a true business application. We develop an initial version of a new, general causal discovery algorithm called ETIO with many features suitable for business applications. These include (a) ability to accept prior causal knowledge (e.g., taking senior driving courses improves driving skills), (b) admitting the presence of latent confounding factors, (c) admitting the possibility of (a certain type of) selection bias in the data (e.g., clients sampled mostly from a given region), (d) ability to analyze data with missing-by-design (i.e., not planned to measure) values (e.g., if two companies merge and their databases measure different attributes), and (e) ability to analyze data from different interventions (e.g., prior and posterior to an advertisement campaign). ETIO is an instance of the logical approach to integrative causal discovery that has been relatively recently introduced and enables the solution of complex reverse-engineering problems in causal discovery. ETIO is compared against the state-of-the-art and is shown to be more effective in terms of speed, with only a slight degradation in terms of learning accuracy, while incorporating all the features above.The code is available on the mensxmachina.org website.","internal_url":"https://www.academia.edu/26594306/Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications","translated_internal_url":"","created_at":"2016-06-29T04:19:19.592-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":21882562,"work_id":26594306,"tagging_user_id":24434052,"tagged_user_id":33051818,"co_author_invite_id":4888842,"email":"b***k@csd.uoc.gr","affiliation":"University of Crete","display_order":1,"name":"Giorgos Borboudakis","title":"Towards Robust and Versatile Causal Discovery for Business Applications"}],"downloadable_attachments":[{"id":46882579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46882579/thumbnails/1.jpg","file_name":"KDD_2016_-_ETIO_final.pdf","download_url":"https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_Robust_and_Versatile_Causal_Disc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46882579/KDD_2016_-_ETIO_final-libre.pdf?1467199815=\u0026response-content-disposition=attachment%3B+filename%3DTowards_Robust_and_Versatile_Causal_Disc.pdf\u0026Expires=1732388431\u0026Signature=KZuS5bmnBOcLFPFA~YHKWA6quoxipnjejPiyOdRSJuDQP74ROpRGF440RvneCIG~WCJXMb6WuC4JBSmrD37BtWSRTmt7oEUmwf3r~ubCJlupu4wCwLfVtHIEj74DQ5yih0Yf6ba6D8bN-LsC0KrmOXf9gHIwOImRFqfsc~G2-y6HJWImDbRbmmbjDGmQ~8DUIRLGjX0gSvaZEmQvRk3XiZ949vFB~ScQRexccZNaSmEejcvXfTghrioQiP8dmIDPjRcXj01tjn7nR8pk1QUQ9Zedu2NjTF5QPl4cEhscsydMNws1k-dgxwwmINKPpDIL5ot87Q2lpdo8VNMgRrv9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Towards_Robust_and_Versatile_Causal_Discovery_for_Business_Applications","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":46882579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46882579/thumbnails/1.jpg","file_name":"KDD_2016_-_ETIO_final.pdf","download_url":"https://www.academia.edu/attachments/46882579/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Towards_Robust_and_Versatile_Causal_Disc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46882579/KDD_2016_-_ETIO_final-libre.pdf?1467199815=\u0026response-content-disposition=attachment%3B+filename%3DTowards_Robust_and_Versatile_Causal_Disc.pdf\u0026Expires=1732388431\u0026Signature=KZuS5bmnBOcLFPFA~YHKWA6quoxipnjejPiyOdRSJuDQP74ROpRGF440RvneCIG~WCJXMb6WuC4JBSmrD37BtWSRTmt7oEUmwf3r~ubCJlupu4wCwLfVtHIEj74DQ5yih0Yf6ba6D8bN-LsC0KrmOXf9gHIwOImRFqfsc~G2-y6HJWImDbRbmmbjDGmQ~8DUIRLGjX0gSvaZEmQvRk3XiZ949vFB~ScQRexccZNaSmEejcvXfTghrioQiP8dmIDPjRcXj01tjn7nR8pk1QUQ9Zedu2NjTF5QPl4cEhscsydMNws1k-dgxwwmINKPpDIL5ot87Q2lpdo8VNMgRrv9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25733523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets"><img alt="Research paper thumbnail of Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets" class="work-thumbnail" src="https://attachments.academia-assets.com/54339180/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets">Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VLagani">Vincenzo Lagani</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The statistically equivalent signature (SES) algorithm is a method for feature selection inspired...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning &#39;mind from the machine&#39; in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8c88c2d7ea7ece2f8e2c02d2daa72325" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:54339180,&quot;asset_id&quot;:25733523,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25733523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25733523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25733523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25733523]").text(description); $(".js-view-count[data-work-id=25733523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25733523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25733523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25733523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8c88c2d7ea7ece2f8e2c02d2daa72325" } } $('.js-work-strip[data-work-id=25733523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25733523,"title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets","translated_title":"","metadata":{"abstract":"The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning 'mind from the machine' in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.","journal_name":"Journal of Statistical software"},"translated_abstract":"The statistically equivalent signature (SES) algorithm is a method for feature selection inspired by the principles of constrained-based learning of Bayesian Networks. Most of the currently available feature-selection methods return only a single subset of features, supposedly the one with the highest predictive power. We argue that in several domains multiple subsets can achieve close to maximal predictive accuracy, and that arbitrarily providing only one has several drawbacks. The SES method attempts to identify multiple, predictive feature subsets whose performances are statistically equivalent. Under that respect SES subsumes and extends previous feature selection algorithms, like the max-min parent children algorithm. SES is implemented in an homonym function included in the R package MXM, standing for mens ex machina, meaning 'mind from the machine' in Latin. The MXM implementation of SES handles several data-analysis tasks, namely classification, regression and survival analysis. In this paper we present the SES algorithm, its implementation, and provide examples of use of the SES function in R. Furthermore, we analyze three publicly available data sets to illustrate the equivalence of the signatures retrieved by SES and to contrast SES against the state-of-the-art feature selection method LASSO. Our results provide initial evidence that the two methods perform comparably well in terms of pre-dictive accuracy and that multiple, equally predictive signatures are actually present in real world data.","internal_url":"https://www.academia.edu/25733523/Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets","translated_internal_url":"","created_at":"2016-05-30T22:02:46.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20786147,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":6338583,"co_author_invite_id":null,"email":"g***s@hotmail.com","affiliation":"Foundation for Research and Technology - Hellas","display_order":0,"name":"Giorgos Athineou","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"},{"id":20786149,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":6291456,"name":"Ioannis Tsamardinos","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"},{"id":20786150,"work_id":25733523,"tagging_user_id":71523,"tagged_user_id":33460367,"co_author_invite_id":null,"email":"v***i@yahoo.it","display_order":7340032,"name":"Vincenzo Lagani","title":"Feature Selection with the R Package MXM: Discovering Statistically-Equivalent Feature Subsets"}],"downloadable_attachments":[{"id":54339180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54339180/thumbnails/1.jpg","file_name":"v80i07.pdf","download_url":"https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_with_the_R_Package_MXM.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54339180/v80i07-libre.pdf?1504590138=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_with_the_R_Package_MXM.pdf\u0026Expires=1731498795\u0026Signature=WslY2-8uRdSCfnwyeSNBleg-botF67Lp~DD9jGSnpWyQSjHUEVpZmnSjDAgMYF2NSdqZTOjHWGvW~Q4Uhr2ls0A8Sp6s5Gc0omn-3KsqEVYDg-0hND~p6vMTyq2omzBdm5n~O2a3FmODLzAK5DN05aq1AvNo8bLEzd1ZIxsIOk5JQ0BxNn4KbuSQXC1fMdz0g86JgRR-BdYj43xMTKDgAHdoyI6pRh7EHOmJcZjpdTPxjgO85sUnLPj48A04v1gNzK-B2pmwqRPzb9tE4Ml3gcMByuSuZifDFGoWiPYEEwWFBzZvaKdSar-dudasam35DZ9cjtH~hR9NL8MpM1eKbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_Selection_with_the_R_Package_MXM_Discovering_Statistically_Equivalent_Feature_Subsets","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":54339180,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/54339180/thumbnails/1.jpg","file_name":"v80i07.pdf","download_url":"https://www.academia.edu/attachments/54339180/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_with_the_R_Package_MXM.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/54339180/v80i07-libre.pdf?1504590138=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_with_the_R_Package_MXM.pdf\u0026Expires=1731498795\u0026Signature=WslY2-8uRdSCfnwyeSNBleg-botF67Lp~DD9jGSnpWyQSjHUEVpZmnSjDAgMYF2NSdqZTOjHWGvW~Q4Uhr2ls0A8Sp6s5Gc0omn-3KsqEVYDg-0hND~p6vMTyq2omzBdm5n~O2a3FmODLzAK5DN05aq1AvNo8bLEzd1ZIxsIOk5JQ0BxNn4KbuSQXC1fMdz0g86JgRR-BdYj43xMTKDgAHdoyI6pRh7EHOmJcZjpdTPxjgO85sUnLPj48A04v1gNzK-B2pmwqRPzb9tE4Ml3gcMByuSuZifDFGoWiPYEEwWFBzZvaKdSar-dudasam35DZ9cjtH~hR9NL8MpM1eKbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing"},{"id":1565,"name":"Data Analysis (Engineering)","url":"https://www.academia.edu/Documents/in/Data_Analysis_Engineering_"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":2536,"name":"Graphs Theory","url":"https://www.academia.edu/Documents/in/Graphs_Theory"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics"},{"id":3058,"name":"Biostatistics","url":"https://www.academia.edu/Documents/in/Biostatistics"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics"},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis"},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods"},{"id":8218,"name":"Networks","url":"https://www.academia.edu/Documents/in/Networks"},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning"},{"id":10610,"name":"Survival Analysis","url":"https://www.academia.edu/Documents/in/Survival_Analysis"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":16895,"name":"Modelling","url":"https://www.academia.edu/Documents/in/Modelling"},{"id":17429,"name":"Structural Bioinformatics","url":"https://www.academia.edu/Documents/in/Structural_Bioinformatics"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models"},{"id":22613,"name":"Probability and statistics","url":"https://www.academia.edu/Documents/in/Probability_and_statistics"},{"id":24089,"name":"Causality","url":"https://www.academia.edu/Documents/in/Causality"},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks"},{"id":28523,"name":"Causal Inference","url":"https://www.academia.edu/Documents/in/Causal_Inference"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":29223,"name":"Graphical Models","url":"https://www.academia.edu/Documents/in/Graphical_Models"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression"},{"id":32701,"name":"Data Mining in Bioinformatics","url":"https://www.academia.edu/Documents/in/Data_Mining_in_Bioinformatics"},{"id":32703,"name":"Graph/Network Algorithms","url":"https://www.academia.edu/Documents/in/Graph_Network_Algorithms"},{"id":34344,"name":"Data mining (Data Analysis)","url":"https://www.academia.edu/Documents/in/Data_mining_Data_Analysis_"},{"id":39699,"name":"Probabilistic Graphical Models","url":"https://www.academia.edu/Documents/in/Probabilistic_Graphical_Models"},{"id":40172,"name":"Generalized Linear models","url":"https://www.academia.edu/Documents/in/Generalized_Linear_models"},{"id":43027,"name":"Computational Statistic","url":"https://www.academia.edu/Documents/in/Computational_Statistic"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":57644,"name":"Automatic Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Automatic_Classification_Machine_Learning_"},{"id":57948,"name":"Regression Testing","url":"https://www.academia.edu/Documents/in/Regression_Testing"},{"id":62081,"name":"Quantile Regression","url":"https://www.academia.edu/Documents/in/Quantile_Regression"},{"id":63857,"name":"Categorical data analysis","url":"https://www.academia.edu/Documents/in/Categorical_data_analysis"},{"id":65870,"name":"Mixed Effects Models","url":"https://www.academia.edu/Documents/in/Mixed_Effects_Models"},{"id":75348,"name":"Cox Regression","url":"https://www.academia.edu/Documents/in/Cox_Regression"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":87557,"name":"Linear Mixed Models","url":"https://www.academia.edu/Documents/in/Linear_Mixed_Models"},{"id":95929,"name":"Longitudinal data analysis","url":"https://www.academia.edu/Documents/in/Longitudinal_data_analysis"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":125564,"name":"Statistical Significance","url":"https://www.academia.edu/Documents/in/Statistical_Significance"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data"},{"id":129502,"name":"Poisson regression","url":"https://www.academia.edu/Documents/in/Poisson_regression"},{"id":135987,"name":"Hypothesis testing","url":"https://www.academia.edu/Documents/in/Hypothesis_testing"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition"},{"id":178621,"name":"Logistic Regression Odds Ratio for Categorical Data Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Odds_Ratio_for_Categorical_Data_Analysis"},{"id":187402,"name":"Cross Validation","url":"https://www.academia.edu/Documents/in/Cross_Validation"},{"id":199316,"name":"Multiple Linear Regression","url":"https://www.academia.edu/Documents/in/Multiple_Linear_Regression"},{"id":212320,"name":"Logistic Regression Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Analysis"},{"id":212650,"name":"Automatic Feature Selection","url":"https://www.academia.edu/Documents/in/Automatic_Feature_Selection"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics"},{"id":337526,"name":"Statistical Modeling and Machine Learning Algorithms for Data Mining, Inference, Prediction and Classification Problems","url":"https://www.academia.edu/Documents/in/Statistical_Modeling_and_Machine_Learning_Algorithms_for_Data_Mining_Inference_Prediction_and_Clas"},{"id":382620,"name":"Multinomial logit models","url":"https://www.academia.edu/Documents/in/Multinomial_logit_models"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining"},{"id":413194,"name":"Analysis of Variance","url":"https://www.academia.edu/Documents/in/Analysis_of_Variance"},{"id":491921,"name":"Graphical causal modeling","url":"https://www.academia.edu/Documents/in/Graphical_causal_modeling"},{"id":505701,"name":"Spearman Correlation","url":"https://www.academia.edu/Documents/in/Spearman_Correlation"},{"id":559503,"name":"Machine Learning Big Data","url":"https://www.academia.edu/Documents/in/Machine_Learning_Big_Data"},{"id":596654,"name":"Computer Science and Statistics","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Statistics"},{"id":653603,"name":"Generalised Linear Mixed Models","url":"https://www.academia.edu/Documents/in/Generalised_Linear_Mixed_Models"},{"id":706066,"name":"Philosophy of causality","url":"https://www.academia.edu/Documents/in/Philosophy_of_causality"},{"id":732654,"name":"Hill Climbing","url":"https://www.academia.edu/Documents/in/Hill_Climbing"},{"id":742501,"name":"Multinomial Logistic Regression","url":"https://www.academia.edu/Documents/in/Multinomial_Logistic_Regression"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression"},{"id":818258,"name":"Model Selection Criteria","url":"https://www.academia.edu/Documents/in/Model_Selection_Criteria"},{"id":895950,"name":"Big data analysis","url":"https://www.academia.edu/Documents/in/Big_data_analysis"},{"id":923749,"name":"Quantile Regression - Bayesian Inference - Machine Learning - Biostatistics","url":"https://www.academia.edu/Documents/in/Quantile_Regression_-_Bayesian_Inference_-_Machine_Learning_-_Biostatistics"},{"id":972948,"name":"Stepwise Regression","url":"https://www.academia.edu/Documents/in/Stepwise_Regression"},{"id":999290,"name":"Multi Class Classification","url":"https://www.academia.edu/Documents/in/Multi_Class_Classification"},{"id":1181584,"name":"Beta Regression","url":"https://www.academia.edu/Documents/in/Beta_Regression"},{"id":1323978,"name":"Machine Learning \u0026 Data Mining In Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Data_Mining_In_Pattern_Recognition"},{"id":1340986,"name":"Multivariate Regression Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Regression_Analysis"},{"id":1496485,"name":"Computational Statistics and Data Analysis","url":"https://www.academia.edu/Documents/in/Computational_Statistics_and_Data_Analysis"},{"id":1705138,"name":"Exponentiated Weibull distribution; Record values; Maximum likelihood estimation Bayesian estimation","url":"https://www.academia.edu/Documents/in/Exponentiated_Weibull_distribution_Record_values_Maximum_likelihood_estimation_Bayesian_estimation"},{"id":2010416,"name":"Conditional Independence","url":"https://www.academia.edu/Documents/in/Conditional_Independence"}],"urls":[{"id":7154335,"url":"http://mensxmachina.org/el/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16833515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree"><img alt="Research paper thumbnail of Morphological classification of heartbeats using similarity features and a two-phase decision tree" class="work-thumbnail" src="https://attachments.academia-assets.com/39207490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree">Morphological classification of heartbeats using similarity features and a two-phase decision tree</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DimitraEmmanouilidou">Dimitra Emmanouilidou</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span>2008 Computers in Cardiology</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c853102aacc4ee923bd738efad8fbdb2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39207490,&quot;asset_id&quot;:16833515,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16833515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16833515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16833515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16833515]").text(description); $(".js-view-count[data-work-id=16833515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16833515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16833515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16833515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c853102aacc4ee923bd738efad8fbdb2" } } $('.js-work-strip[data-work-id=16833515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16833515,"title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree","translated_title":"","metadata":{"grobid_abstract":"Significant clinical information can be obtained from the analysis of the dominant beat morphology. In such respect, the identification of the dominant beats and their averaging can be very helpful, allowing clinicians to perform the measurement of amplitudes and intervals on a beat much cleaner from noise than a generic beat selected from the entire ECG recording.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"2008 Computers in Cardiology","grobid_abstract_attachment_id":39207490},"translated_abstract":null,"internal_url":"https://www.academia.edu/16833515/Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree","translated_internal_url":"","created_at":"2015-10-15T07:32:02.717-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":36285513,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":7301670,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":0,"name":"Ioannis Tsamardinos","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"},{"id":7301672,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":null,"co_author_invite_id":536195,"email":"t***s@csd.uoc.gr","display_order":4194304,"name":"I. Tollis","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"},{"id":7301701,"work_id":16833515,"tagging_user_id":36285513,"tagged_user_id":33027457,"co_author_invite_id":null,"email":"c***i@ics.forth.gr","display_order":6291456,"name":"F. Chiarugi","title":"Morphological classification of heartbeats using similarity features and a two-phase decision tree"}],"downloadable_attachments":[{"id":39207490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39207490/thumbnails/1.jpg","file_name":"0849.pdf","download_url":"https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphological_classification_of_heartbea.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39207490/0849-libre.pdf?1444919547=\u0026response-content-disposition=attachment%3B+filename%3DMorphological_classification_of_heartbea.pdf\u0026Expires=1732388431\u0026Signature=F8neV~0qoRJqsU-PvG0sIx0reEUobPs8rfCxnYr9gKS92QQuVhzwyrVlEAlgQmwdDgF91oKfr7gGV9OSrKqRo9bZGeS-VAUSPeHeR8x6Qih1rfJCG8WYjvUpczlTI6Rc~o6uqqgZ81bW7utTfgUUi8pF8w9Dztl6SBVlzwQXsi8B9Vf7xdMsGBoSedqBeWS2DocjSE0oDOId3Rt~-NfoiCh~x5b1lOqKu~CSc7yH8b3IuuzP5I1Fb4XLliq5ZspG0Vb67RnO14zqj5uBjcN9zl0khYZ9-bLr81JiaUan-3HGTDyEsVCDzlwMk7o-uiBSGmyT8~ARwZBJLhZ6bF4UAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Morphological_classification_of_heartbeats_using_similarity_features_and_a_two_phase_decision_tree","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":36285513,"first_name":"Dimitra","middle_initials":null,"last_name":"Emmanouilidou","page_name":"DimitraEmmanouilidou","domain_name":"independent","created_at":"2015-10-15T07:29:49.884-07:00","display_name":"Dimitra Emmanouilidou","url":"https://independent.academia.edu/DimitraEmmanouilidou"},"attachments":[{"id":39207490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39207490/thumbnails/1.jpg","file_name":"0849.pdf","download_url":"https://www.academia.edu/attachments/39207490/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Morphological_classification_of_heartbea.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39207490/0849-libre.pdf?1444919547=\u0026response-content-disposition=attachment%3B+filename%3DMorphological_classification_of_heartbea.pdf\u0026Expires=1732388431\u0026Signature=F8neV~0qoRJqsU-PvG0sIx0reEUobPs8rfCxnYr9gKS92QQuVhzwyrVlEAlgQmwdDgF91oKfr7gGV9OSrKqRo9bZGeS-VAUSPeHeR8x6Qih1rfJCG8WYjvUpczlTI6Rc~o6uqqgZ81bW7utTfgUUi8pF8w9Dztl6SBVlzwQXsi8B9Vf7xdMsGBoSedqBeWS2DocjSE0oDOId3Rt~-NfoiCh~x5b1lOqKu~CSc7yH8b3IuuzP5I1Fb4XLliq5ZspG0Vb67RnO14zqj5uBjcN9zl0khYZ9-bLr81JiaUan-3HGTDyEsVCDzlwMk7o-uiBSGmyT8~ARwZBJLhZ6bF4UAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":160144,"name":"Feature Extraction","url":"https://www.academia.edu/Documents/in/Feature_Extraction"},{"id":162271,"name":"Decision Tree","url":"https://www.academia.edu/Documents/in/Decision_Tree"},{"id":746681,"name":"Arrhythmia","url":"https://www.academia.edu/Documents/in/Arrhythmia"},{"id":1318938,"name":"Positive predictive value","url":"https://www.academia.edu/Documents/in/Positive_predictive_value"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective"><img alt="Research paper thumbnail of Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/39170695/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective">Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective</a></div><div class="wp-workCard_item"><span>Cancer informatics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0818a5969c69246924bdf71dfcaff23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170695,&quot;asset_id&quot;:16764539,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764539]").text(description); $(".js-view-count[data-work-id=16764539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0818a5969c69246924bdf71dfcaff23" } } $('.js-work-strip[data-work-id=16764539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764539,"title":"Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective","translated_title":"","metadata":{"grobid_abstract":"Sound data analysis is critical to the success of modern molecular medicine research that involves collection and interpretation of mass-throughput data. The novel nature and high-dimensionality in such datasets pose a series of nontrivial data analysis problems. This technical commentary discusses the problems of over-fi tting, error estimation, curse of dimensionality, causal versus predictive modeling, integration of heterogeneous types of data, and lack of standard protocols for data analysis. We attempt to shed light on the nature and causes of these problems and to outline viable methodological approaches to overcome them.","publication_name":"Cancer informatics","grobid_abstract_attachment_id":39170695},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764539/Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective","translated_internal_url":"","created_at":"2015-10-13T23:42:11.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170695,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170695/thumbnails/1.jpg","file_name":"02e7e51e7c5929d2e7000000.pdf","download_url":"https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Challenges_in_the_Analysis_of_Mass_Throu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170695/02e7e51e7c5929d2e7000000-libre.pdf?1444807034=\u0026response-content-disposition=attachment%3B+filename%3DChallenges_in_the_Analysis_of_Mass_Throu.pdf\u0026Expires=1732388432\u0026Signature=WYYMkntAq2LN0HrxVWyxoJrjo89N2b9PgoqkznPQln6CsL6kaHGeEy0qRRemtMoQwa9WrQEe0vuJXRNRFAZl1cFfEBPclWT58bR3k5VD1DPnKqafka4HlxZ7KXMtWI7DaRYyvWlDsqKUhge8IQA3T0CJVeMXNPKDZRNtrcNYYyWh606KM6C6cfTpMFfPer0oRZdl3tLdBrrbEJ~EdK8BhQTPoWdOvp3WVqyBhH111-b7ReZfuMg0ubZCvDrIPeuc97kZLYID9-3d9TFd-BfFkK4Ead2DfEc28FFNnahw9f2g7FkZ-VQKVeTQNyP1HaV0qRSqcj5Qk8SjotoQah7yKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Challenges_in_the_Analysis_of_Mass_Throughput_Data_A_Technical_Commentary_from_the_Statistical_Machine_Learning_Perspective","translated_slug":"","page_count":30,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170695,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170695/thumbnails/1.jpg","file_name":"02e7e51e7c5929d2e7000000.pdf","download_url":"https://www.academia.edu/attachments/39170695/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Challenges_in_the_Analysis_of_Mass_Throu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170695/02e7e51e7c5929d2e7000000-libre.pdf?1444807034=\u0026response-content-disposition=attachment%3B+filename%3DChallenges_in_the_Analysis_of_Mass_Throu.pdf\u0026Expires=1732388432\u0026Signature=WYYMkntAq2LN0HrxVWyxoJrjo89N2b9PgoqkznPQln6CsL6kaHGeEy0qRRemtMoQwa9WrQEe0vuJXRNRFAZl1cFfEBPclWT58bR3k5VD1DPnKqafka4HlxZ7KXMtWI7DaRYyvWlDsqKUhge8IQA3T0CJVeMXNPKDZRNtrcNYYyWh606KM6C6cfTpMFfPer0oRZdl3tLdBrrbEJ~EdK8BhQTPoWdOvp3WVqyBhH111-b7ReZfuMg0ubZCvDrIPeuc97kZLYID9-3d9TFd-BfFkK4Ead2DfEc28FFNnahw9f2g7FkZ-VQKVeTQNyP1HaV0qRSqcj5Qk8SjotoQah7yKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":156,"name":"Genetics","url":"https://www.academia.edu/Documents/in/Genetics"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":16765,"name":"Cancer Prevention","url":"https://www.academia.edu/Documents/in/Cancer_Prevention"},{"id":27784,"name":"Gene expression","url":"https://www.academia.edu/Documents/in/Gene_expression"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis"},{"id":153168,"name":"Data Collection","url":"https://www.academia.edu/Documents/in/Data_Collection"},{"id":224767,"name":"Prediction Model","url":"https://www.academia.edu/Documents/in/Prediction_Model"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":326380,"name":"Liquid Chromatography / Electrospray Ionization Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Liquid_Chromatography_Electrospray_Ionization_Mass_Spectrometry"},{"id":459495,"name":"Very High Resolution","url":"https://www.academia.edu/Documents/in/Very_High_Resolution"},{"id":538554,"name":"Study design","url":"https://www.academia.edu/Documents/in/Study_design"},{"id":557801,"name":"High Dimensionality","url":"https://www.academia.edu/Documents/in/High_Dimensionality"},{"id":648595,"name":"Cancer Informatics","url":"https://www.academia.edu/Documents/in/Cancer_Informatics"},{"id":681132,"name":"Multidisciplinary Teams","url":"https://www.academia.edu/Documents/in/Multidisciplinary_Teams"},{"id":703835,"name":"Statistical Test","url":"https://www.academia.edu/Documents/in/Statistical_Test"},{"id":1579511,"name":"Array Comparative Genomic Hybridization","url":"https://www.academia.edu/Documents/in/Array_Comparative_Genomic_Hybridization"},{"id":1827413,"name":"Curse of Dimensionality","url":"https://www.academia.edu/Documents/in/Curse_of_Dimensionality"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions"><img alt="Research paper thumbnail of Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions" class="work-thumbnail" src="https://attachments.academia-assets.com/39170686/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions">Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions</a></div><div class="wp-workCard_item"><span>Journal of Machine Learning Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d2a00414482d2559c24b87d628f1ff25" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170686,&quot;asset_id&quot;:16764538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764538]").text(description); $(".js-view-count[data-work-id=16764538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d2a00414482d2559c24b87d628f1ff25" } } $('.js-work-strip[data-work-id=16764538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764538,"title":"Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions","translated_title":"","metadata":{"publication_name":"Journal of Machine Learning Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764538/Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions","translated_internal_url":"","created_at":"2015-10-13T23:42:11.085-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170686,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170686/thumbnails/1.jpg","file_name":"02e7e51e7c591ee302000000.pdf","download_url":"https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_Causal_and_Markov_Blanket_Inductio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170686/02e7e51e7c591ee302000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DLocal_Causal_and_Markov_Blanket_Inductio.pdf\u0026Expires=1732388432\u0026Signature=PrpZXU5LHERkflhXCbpJK4pLvRclOohXlQ11B28icvDXLXqRXjHrwNHM3KLUrFotXYu2n2St13~aeKS7dS24zqmSRcsIyr~7v8YoMGSeTGLinBN3QM-9H3cxIP4ddOwzeGc6LhTAeQPKKWvfsrHP6ZSc6KgxrwWBDcfaTuBxrqhhi893Ar4nDewjdjHP04EggF4x25f9sSUb-EdrL392TRGQq4RpUISdNbYTOuR9ygkdK5YUwaDUXqHyiPw~h~3S~zKuzByZO8h~JmQ-L2qsJVNypt9dzhM5oSj5ypR6NubETsgCJQlb9GA~ribYHK~vBv0QcWGQstPH7xIcoVRxvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Local_Causal_and_Markov_Blanket_Induction_for_Causal_Discovery_and_Feature_Selection_for_Classification_Part_II_Analysis_and_Extensions","translated_slug":"","page_count":50,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170686,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170686/thumbnails/1.jpg","file_name":"02e7e51e7c591ee302000000.pdf","download_url":"https://www.academia.edu/attachments/39170686/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_Causal_and_Markov_Blanket_Inductio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170686/02e7e51e7c591ee302000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DLocal_Causal_and_Markov_Blanket_Inductio.pdf\u0026Expires=1732388432\u0026Signature=PrpZXU5LHERkflhXCbpJK4pLvRclOohXlQ11B28icvDXLXqRXjHrwNHM3KLUrFotXYu2n2St13~aeKS7dS24zqmSRcsIyr~7v8YoMGSeTGLinBN3QM-9H3cxIP4ddOwzeGc6LhTAeQPKKWvfsrHP6ZSc6KgxrwWBDcfaTuBxrqhhi893Ar4nDewjdjHP04EggF4x25f9sSUb-EdrL392TRGQq4RpUISdNbYTOuR9ygkdK5YUwaDUXqHyiPw~h~3S~zKuzByZO8h~JmQ-L2qsJVNypt9dzhM5oSj5ypR6NubETsgCJQlb9GA~ribYHK~vBv0QcWGQstPH7xIcoVRxvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":101465,"name":"Causal Discovery","url":"https://www.academia.edu/Documents/in/Causal_Discovery"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":196189,"name":"Sample Size","url":"https://www.academia.edu/Documents/in/Sample_Size"},{"id":291765,"name":"Experimental Evaluation","url":"https://www.academia.edu/Documents/in/Experimental_Evaluation"},{"id":408793,"name":"Empirical Evaluation","url":"https://www.academia.edu/Documents/in/Empirical_Evaluation"},{"id":521483,"name":"Large Data Sets","url":"https://www.academia.edu/Documents/in/Large_Data_Sets"},{"id":600278,"name":"False discovery rate","url":"https://www.academia.edu/Documents/in/False_discovery_rate"},{"id":703835,"name":"Statistical Test","url":"https://www.academia.edu/Documents/in/Statistical_Test"},{"id":805001,"name":"Small samples","url":"https://www.academia.edu/Documents/in/Small_samples"},{"id":2003775,"name":"Divide and Conquer","url":"https://www.academia.edu/Documents/in/Divide_and_Conquer"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764537"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution"><img alt="Research paper thumbnail of Fast Transformation of Temporal Plans for Efficient Execution" class="work-thumbnail" src="https://attachments.academia-assets.com/39170674/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution">Fast Transformation of Temporal Plans for Efficient Execution</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="89db62b4dde5c4eeccd727286e755d4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170674,&quot;asset_id&quot;:16764537,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764537"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764537]").text(description); $(".js-view-count[data-work-id=16764537]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764537']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764537, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "89db62b4dde5c4eeccd727286e755d4e" } } $('.js-work-strip[data-work-id=16764537]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764537,"title":"Fast Transformation of Temporal Plans for Efficient Execution","translated_title":"","metadata":{"grobid_abstract":"Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson's algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node. *","grobid_abstract_attachment_id":39170674},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764537/Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution","translated_internal_url":"","created_at":"2015-10-13T23:42:10.965-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170674/thumbnails/1.jpg","file_name":"AAAI98-035.pdf","download_url":"https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_Transformation_of_Temporal_Plans_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170674/AAAI98-035-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DFast_Transformation_of_Temporal_Plans_fo.pdf\u0026Expires=1732388432\u0026Signature=FTCODeZnKw6VA6lwJXzVhVSAhaQld2QkEnV6fQfMsBoYgaP7eQfRnaSSlhuts3QIXoZU0-j6zht6rHrnya8bplyFFEISmjdQ22MO1usTgSAlrvDNXoaxRA9UVU-etZ9wfUA5hfmCNgVKaHzWN-6sZ2Dq8kb42CP7lJS3acAp7uymCfijCmcc47h4~bCxTrRIVk0pK4CeV4p5TSzvyDpPT25oGTrNbmfuWSIoJEJL06Trz4jZPxsrVh66GPvvWDv9UU1aWHObmYWeLPKnYJeYIfDutc~fh0bvZYNYz9rYgYoNdE6fl1UuHENsgbXn6Q8qOeK1k94qSeXJfa7V1ysIYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fast_Transformation_of_Temporal_Plans_for_Efficient_Execution","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170674,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170674/thumbnails/1.jpg","file_name":"AAAI98-035.pdf","download_url":"https://www.academia.edu/attachments/39170674/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fast_Transformation_of_Temporal_Plans_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170674/AAAI98-035-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DFast_Transformation_of_Temporal_Plans_fo.pdf\u0026Expires=1732388432\u0026Signature=FTCODeZnKw6VA6lwJXzVhVSAhaQld2QkEnV6fQfMsBoYgaP7eQfRnaSSlhuts3QIXoZU0-j6zht6rHrnya8bplyFFEISmjdQ22MO1usTgSAlrvDNXoaxRA9UVU-etZ9wfUA5hfmCNgVKaHzWN-6sZ2Dq8kb42CP7lJS3acAp7uymCfijCmcc47h4~bCxTrRIVk0pK4CeV4p5TSzvyDpPT25oGTrNbmfuWSIoJEJL06Trz4jZPxsrVh66GPvvWDv9UU1aWHObmYWeLPKnYJeYIfDutc~fh0bvZYNYz9rYgYoNdE6fl1UuHENsgbXn6Q8qOeK1k94qSeXJfa7V1ysIYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":209855,"name":"Time Complexity","url":"https://www.academia.edu/Documents/in/Time_Complexity"},{"id":1906509,"name":"All Pairs Shortest Path","url":"https://www.academia.edu/Documents/in/All_Pairs_Shortest_Path"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution"><img alt="Research paper thumbnail of Reformulating Temporal Plans For Efficient Execution" class="work-thumbnail" src="https://attachments.academia-assets.com/39170672/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution">Reformulating Temporal Plans For Efficient Execution</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="951de44a7ae2ed0560cfdf5585456635" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170672,&quot;asset_id&quot;:16764536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764536]").text(description); $(".js-view-count[data-work-id=16764536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "951de44a7ae2ed0560cfdf5585456635" } } $('.js-work-strip[data-work-id=16764536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764536,"title":"Reformulating Temporal Plans For Efficient Execution","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764536/Reformulating_Temporal_Plans_For_Efficient_Execution","translated_internal_url":"","created_at":"2015-10-13T23:42:10.852-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170672/thumbnails/1.jpg","file_name":"00b49520e1395d237b000000.pdf","download_url":"https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reformulating_Temporal_Plans_For_Efficie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170672/00b49520e1395d237b000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DReformulating_Temporal_Plans_For_Efficie.pdf\u0026Expires=1731498795\u0026Signature=DNpUnkNKdfd6tvyU0FGSFxhilfRK-caoPktTAX4HrySgdTPKT9uwPIs~YNBD2ahI4qhkbXcGx0dFVNF46NWQKiYdArGfCledoP2reYNYfVrCvcTPOnzTIUIhd8Fe1ulZ39ohleizqeIVNMHilwhCUarK4XHcVymratDOh7PKl0ZclVRxonmVBFrsO5YE2nMA3i7vCCyGVqOJAxXAJasYPXjvDySN3lG9P5i4QGgZJG~4rLqROy01pUhcDFk5B1bftTFTJXdzscYdmL1OCADfCioR~deM5H4SIBWZoe1ofr64hkN1lUCUKwc3PeI~wKV78dMi0VE6v1tKPCsHyyV42A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reformulating_Temporal_Plans_For_Efficient_Execution","translated_slug":"","page_count":43,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170672,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170672/thumbnails/1.jpg","file_name":"00b49520e1395d237b000000.pdf","download_url":"https://www.academia.edu/attachments/39170672/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reformulating_Temporal_Plans_For_Efficie.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170672/00b49520e1395d237b000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DReformulating_Temporal_Plans_For_Efficie.pdf\u0026Expires=1731498795\u0026Signature=DNpUnkNKdfd6tvyU0FGSFxhilfRK-caoPktTAX4HrySgdTPKT9uwPIs~YNBD2ahI4qhkbXcGx0dFVNF46NWQKiYdArGfCledoP2reYNYfVrCvcTPOnzTIUIhd8Fe1ulZ39ohleizqeIVNMHilwhCUarK4XHcVymratDOh7PKl0ZclVRxonmVBFrsO5YE2nMA3i7vCCyGVqOJAxXAJasYPXjvDySN3lG9P5i4QGgZJG~4rLqROy01pUhcDFk5B1bftTFTJXdzscYdmL1OCADfCioR~deM5H4SIBWZoe1ofr64hkN1lUCUKwc3PeI~wKV78dMi0VE6v1tKPCsHyyV42A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":129253,"name":"Real Time Control","url":"https://www.academia.edu/Documents/in/Real_Time_Control"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764535/esann_2011"><img alt="Research paper thumbnail of esann 2011" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764535/esann_2011">esann 2011</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764535]").text(description); $(".js-view-count[data-work-id=16764535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764535,"title":"esann 2011","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764535/esann_2011","translated_internal_url":"","created_at":"2015-10-13T23:42:10.748-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"esann_2011","translated_slug":"","page_count":null,"language":"lt","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764534"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES"><img alt="Research paper thumbnail of T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES" class="work-thumbnail" src="https://attachments.academia-assets.com/39170666/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES">T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Feature selection is used extensively in biomedical research for biomarker identification and pat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle &amp;quot;orphan&amp;quot; features (not belonging to a cluster). T-ReCS can be used wi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99e1066b697860a967e72d1c6c88e87a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170666,&quot;asset_id&quot;:16764534,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764534"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764534"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764534; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764534]").text(description); $(".js-view-count[data-work-id=16764534]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764534; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764534']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764534, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99e1066b697860a967e72d1c6c88e87a" } } $('.js-work-strip[data-work-id=16764534]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764534,"title":"T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES","translated_title":"","metadata":{"abstract":"Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle \u0026quot;orphan\u0026quot; features (not belonging to a cluster). T-ReCS can be used wi..."},"translated_abstract":"Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle \u0026quot;orphan\u0026quot; features (not belonging to a cluster). T-ReCS can be used wi...","internal_url":"https://www.academia.edu/16764534/T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES","translated_internal_url":"","created_at":"2015-10-13T23:42:10.648-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170666/thumbnails/1.jpg","file_name":"542e56ff0cf277d58e8ea220.pdf","download_url":"https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170666/542e56ff0cf277d58e8ea220-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DT_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf\u0026Expires=1732388432\u0026Signature=JqCQGv194T8DO1llmNYeYzN8btXj3TXleQUPRVi95nEJJg1Ppk4S-AaI7yC8Lb8O6KUnSFnoJf2jygXgnVPGETwpUNIZqe34HDc3xG4P4xMb4qX6YIWv6NvKC65fLa9apJ8jN2gJl8ENFLMeHtjVAnHvYEhgmtb5z2FFyfvIntKsjVbvMonGPKx-cpmd5i~kPB0yGbUQ3QaoSuomWk~HCjK9rJJM01yQkR3fqyoINHHbBQM2DgPWq9iWItm1vDvy0o9mcydQIv-ebvF8fKfZlTgRg4zA7tzjPZZetTeIfxkIAvbEV5qEXO4NBxeoCrQ~z5FASXlyArWjAhQ6atB6ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_FORMED_GROUPS_OF_FEATURES_WITH_APPLICATION_TO_PREDICTION_OF_CLINICAL_OUTCOMES","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170666/thumbnails/1.jpg","file_name":"542e56ff0cf277d58e8ea220.pdf","download_url":"https://www.academia.edu/attachments/39170666/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"T_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170666/542e56ff0cf277d58e8ea220-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DT_RECS_STABLE_SELECTION_OF_DYNAMICALLY_F.pdf\u0026Expires=1732388432\u0026Signature=JqCQGv194T8DO1llmNYeYzN8btXj3TXleQUPRVi95nEJJg1Ppk4S-AaI7yC8Lb8O6KUnSFnoJf2jygXgnVPGETwpUNIZqe34HDc3xG4P4xMb4qX6YIWv6NvKC65fLa9apJ8jN2gJl8ENFLMeHtjVAnHvYEhgmtb5z2FFyfvIntKsjVbvMonGPKx-cpmd5i~kPB0yGbUQ3QaoSuomWk~HCjK9rJJM01yQkR3fqyoINHHbBQM2DgPWq9iWItm1vDvy0o9mcydQIv-ebvF8fKfZlTgRg4zA7tzjPZZetTeIfxkIAvbEV5qEXO4NBxeoCrQ~z5FASXlyArWjAhQ6atB6ew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":25780,"name":"Biocomputing","url":"https://www.academia.edu/Documents/in/Biocomputing"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine"><img alt="Research paper thumbnail of Text categorization models for high-quality article retrieval in internal medicine" class="work-thumbnail" src="https://attachments.academia-assets.com/39170665/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine">Text categorization models for high-quality article retrieval in internal medicine</a></div><div class="wp-workCard_item"><span>Journal of the American Medical Informatics Association</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exce...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e98599796f973f0c67ac4ed3ed1d3f4f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170665,&quot;asset_id&quot;:16764533,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764533]").text(description); $(".js-view-count[data-work-id=16764533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e98599796f973f0c67ac4ed3ed1d3f4f" } } $('.js-work-strip[data-work-id=16764533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764533,"title":"Text categorization models for high-quality article retrieval in internal medicine","translated_title":"","metadata":{"abstract":"OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...","publication_name":"Journal of the American Medical Informatics Association"},"translated_abstract":"OBJECTIVE Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DESIGN The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naive Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MEASUREMENTS The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average ...","internal_url":"https://www.academia.edu/16764533/Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine","translated_internal_url":"","created_at":"2015-10-13T23:42:10.538-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170665/thumbnails/1.jpg","file_name":"02e7e51e7c593b3fc3000000.pdf","download_url":"https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_categorization_models_for_high_qual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170665/02e7e51e7c593b3fc3000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DText_categorization_models_for_high_qual.pdf\u0026Expires=1732388432\u0026Signature=BtFl5H8dIo2Pr54bQgogjFca91NeEirotZER9F-pIB-jO2uEN3zrTHmhGJlTiCyq5iSgkYkf~TPLC1Z6jp0GTrrYggWYeIRaknvCbYgjzrSmkpF2JehcjJvGvatv-GeicdLZDnkUD9c0MKghr-zLaOGTlwtweCEz6GjGFyrzR1AKLYSwfyqW9toSh-jtmIMkaroFX-Swg3dQXw-CEjAdrJH4pRb3a9vPP5W6gveifUh2TRcYEDHzb~xzlpipf7zD~xRwOMr1vECByJ8XDpxpTHvN9QYaUtzxMxsqG4m-TZxQgGrSp1uQji2K~PaY5vOp3MId3xpler5nyn0tx98Uxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Text_categorization_models_for_high_quality_article_retrieval_in_internal_medicine","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170665/thumbnails/1.jpg","file_name":"02e7e51e7c593b3fc3000000.pdf","download_url":"https://www.academia.edu/attachments/39170665/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Text_categorization_models_for_high_qual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170665/02e7e51e7c593b3fc3000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DText_categorization_models_for_high_qual.pdf\u0026Expires=1732388432\u0026Signature=BtFl5H8dIo2Pr54bQgogjFca91NeEirotZER9F-pIB-jO2uEN3zrTHmhGJlTiCyq5iSgkYkf~TPLC1Z6jp0GTrrYggWYeIRaknvCbYgjzrSmkpF2JehcjJvGvatv-GeicdLZDnkUD9c0MKghr-zLaOGTlwtweCEz6GjGFyrzR1AKLYSwfyqW9toSh-jtmIMkaroFX-Swg3dQXw-CEjAdrJH4pRb3a9vPP5W6gveifUh2TRcYEDHzb~xzlpipf7zD~xRwOMr1vECByJ8XDpxpTHvN9QYaUtzxMxsqG4m-TZxQgGrSp1uQji2K~PaY5vOp3MId3xpler5nyn0tx98Uxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":65390,"name":"Internal Medicine","url":"https://www.academia.edu/Documents/in/Internal_Medicine"},{"id":194916,"name":"ROC Curve","url":"https://www.academia.edu/Documents/in/ROC_Curve"},{"id":203527,"name":"Medline","url":"https://www.academia.edu/Documents/in/Medline"},{"id":255453,"name":"Information Storage and Retrieval","url":"https://www.academia.edu/Documents/in/Information_Storage_and_Retrieval"},{"id":900542,"name":"Selection Bias","url":"https://www.academia.edu/Documents/in/Selection_Bias"},{"id":1309706,"name":"Area Under Curve","url":"https://www.academia.edu/Documents/in/Area_Under_Curve"},{"id":1863718,"name":"The American","url":"https://www.academia.edu/Documents/in/The_American"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty"><img alt="Research paper thumbnail of Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/39170680/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty">Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Temporal uncertainty is a feature of many real-world planning problems. One of the most successfu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u&amp;#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec1a7bd6861084421b9369811c211397" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170680,&quot;asset_id&quot;:16764532,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764532]").text(description); $(".js-view-count[data-work-id=16764532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec1a7bd6861084421b9369811c211397" } } $('.js-work-strip[data-work-id=16764532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764532,"title":"Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty","translated_title":"","metadata":{"abstract":"Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u\u0026#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter..."},"translated_abstract":"Temporal uncertainty is a feature of many real-world planning problems. One of the most successful formalisms for dealing with temporal uncertainty is the Simple Temporal Problem with uncertainty (STP-u). A very attractive feature of STP-u\u0026#39;s is that one can determine in polynomial time whether a given STP-u is dynamically controllable, i.e., whether there is a guaranteed means of execution such that all the constraints are respected, regardless of the exact timing of the uncertain events. Unfortunately, if the STP-u is not dynamically controllable, limitations of the formalism prevent further reasoning about the probability of legal execution. In this paper, we present an alternative formalism, called Probabilistic Simple Temporal Problems (PSTPs), which generalizes STP-u to allow for such reasoning. We show that while it is difficult to compute the exact probability of legal execution, there are methods for bounding the probability both from above and below, and we sketch alter...","internal_url":"https://www.academia.edu/16764532/Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty","translated_internal_url":"","created_at":"2015-10-13T23:42:10.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170680,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170680/thumbnails/1.jpg","file_name":"00b49520e1396c30c0000000.pdf","download_url":"https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Assessing_the_Probability_of_Legal_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170680/00b49520e1396c30c0000000-libre.pdf?1444807033=\u0026response-content-disposition=attachment%3B+filename%3DAssessing_the_Probability_of_Legal_Execu.pdf\u0026Expires=1732388432\u0026Signature=XQ41Ne8c95cXwK70sRhIAP~cRc2MMbqQ7CAj-YkqShiBny7cesPwhgzg6RgQQ39j0YClQF2AIpNeE8Faat9vOYPF56oq8wCYvJd~ynZE8aFI3sfTZhNi7qMRMRigt7wn-pWl1jNF8xD6XKiqP3exrPbgOjy4kpiti6e2PqNaw1kq7DsC91P4y7MV64Jg9Rh6dLK15yKvgctMeoC43bQE3xl0xVeK3PrPIEibkAqYz7MFbz0AfoTvUAtmDA7noYa7~n9n00hP0HmGMZ7pUqlP2Tv2xksbChidTYrwbSCspdGAXT-gep0ssQTwkQd1U0dUlqtANled-RM-FzufqJeMyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Assessing_the_Probability_of_Legal_Execution_of_Plans_with_Temporal_Uncertainty","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170680,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170680/thumbnails/1.jpg","file_name":"00b49520e1396c30c0000000.pdf","download_url":"https://www.academia.edu/attachments/39170680/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Assessing_the_Probability_of_Legal_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170680/00b49520e1396c30c0000000-libre.pdf?1444807033=\u0026response-content-disposition=attachment%3B+filename%3DAssessing_the_Probability_of_Legal_Execu.pdf\u0026Expires=1732388432\u0026Signature=XQ41Ne8c95cXwK70sRhIAP~cRc2MMbqQ7CAj-YkqShiBny7cesPwhgzg6RgQQ39j0YClQF2AIpNeE8Faat9vOYPF56oq8wCYvJd~ynZE8aFI3sfTZhNi7qMRMRigt7wn-pWl1jNF8xD6XKiqP3exrPbgOjy4kpiti6e2PqNaw1kq7DsC91P4y7MV64Jg9Rh6dLK15yKvgctMeoC43bQE3xl0xVeK3PrPIEibkAqYz7MFbz0AfoTvUAtmDA7noYa7~n9n00hP0HmGMZ7pUqlP2Tv2xksbChidTYrwbSCspdGAXT-gep0ssQTwkQd1U0dUlqtANled-RM-FzufqJeMyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning"><img alt="Research paper thumbnail of Discovering and Exploiting Entailement Relationships in Multi-Label Learning" class="work-thumbnail" src="https://attachments.academia-assets.com/39170670/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning">Discovering and Exploiting Entailement Relationships in Multi-Label Learning</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work presents a sound probabilistic method for enforcing adherence of the marginal probabili...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="33c86efcf8b5002b7dd562514171953c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170670,&quot;asset_id&quot;:16764531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764531]").text(description); $(".js-view-count[data-work-id=16764531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "33c86efcf8b5002b7dd562514171953c" } } $('.js-work-strip[data-work-id=16764531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764531,"title":"Discovering and Exploiting Entailement Relationships in Multi-Label Learning","translated_title":"","metadata":{"abstract":"This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself."},"translated_abstract":"This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.","internal_url":"https://www.academia.edu/16764531/Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning","translated_internal_url":"","created_at":"2015-10-13T23:42:10.305-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170670,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170670/thumbnails/1.jpg","file_name":"55130a1c0cf23203199ac14d.pdf","download_url":"https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Discovering_and_Exploiting_Entailement_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170670/55130a1c0cf23203199ac14d-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DDiscovering_and_Exploiting_Entailement_R.pdf\u0026Expires=1732388432\u0026Signature=ZJsgbD6u1v-6wqr78XYW5xBNZ2NqgumPaw8zvckwS4kDVUUy42Ll1HKYLlDiJm-jy0bYJOPqKEImx7ztBPPOjTbZ7yr1OvTxDsitwrKHWuWTPwUN8wY3YhxcTXgrjLeE2W4LjpRfv0IplwUz2BWGqXRVgeoc-4Y-v8-sf1ViLt4sJ-G9h0e1xcs~RjIIzzVMGIn85E16V5zQNTelPVkpYk44unI6hV7Bg6S4NJHOIXGQ9XpnwoEAMDDqdX5eb8hjNB7bE9JUM1ArLo37Y3KL1lofx5Fy2ikKK-OYJg38BcUx~XmbB3q20ddn2NznWtj2Z2qTp1zzhYlZjUcFiyQWhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Discovering_and_Exploiting_Entailement_Relationships_in_Multi_Label_Learning","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170670,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170670/thumbnails/1.jpg","file_name":"55130a1c0cf23203199ac14d.pdf","download_url":"https://www.academia.edu/attachments/39170670/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Discovering_and_Exploiting_Entailement_R.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170670/55130a1c0cf23203199ac14d-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DDiscovering_and_Exploiting_Entailement_R.pdf\u0026Expires=1732388432\u0026Signature=ZJsgbD6u1v-6wqr78XYW5xBNZ2NqgumPaw8zvckwS4kDVUUy42Ll1HKYLlDiJm-jy0bYJOPqKEImx7ztBPPOjTbZ7yr1OvTxDsitwrKHWuWTPwUN8wY3YhxcTXgrjLeE2W4LjpRfv0IplwUz2BWGqXRVgeoc-4Y-v8-sf1ViLt4sJ-G9h0e1xcs~RjIIzzVMGIn85E16V5zQNTelPVkpYk44unI6hV7Bg6S4NJHOIXGQ9XpnwoEAMDDqdX5eb8hjNB7bE9JUM1ArLo37Y3KL1lofx5Fy2ikKK-OYJg38BcUx~XmbB3q20ddn2NznWtj2Z2qTp1zzhYlZjUcFiyQWhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764530"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction"><img alt="Research paper thumbnail of Identifying Markov Blankets with Decision Tree Induction" class="work-thumbnail" src="https://attachments.academia-assets.com/39170669/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction">Identifying Markov Blankets with Decision Tree Induction</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Markov blanket of a target variable is the minimum conditioning set of variables that makes t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 &amp;#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfba3a84b436ecdcb0ef9952c4776d1f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170669,&quot;asset_id&quot;:16764530,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764530"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764530"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764530; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764530]").text(description); $(".js-view-count[data-work-id=16764530]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764530; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764530']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764530, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfba3a84b436ecdcb0ef9952c4776d1f" } } $('.js-work-strip[data-work-id=16764530]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764530,"title":"Identifying Markov Blankets with Decision Tree Induction","translated_title":"","metadata":{"abstract":"The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 \u0026#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared."},"translated_abstract":"The Markov blanket of a target variable is the minimum conditioning set of variables that makes the target independent of all other variables. Markov blankets inform feature selection, aid in causal discovery and serve as a basis for scalable methods of constructing Bayesian networks. We apply decision tree induction to the task of Markov blanket identification. Notably, we compare (a) C5.0, a widely used algorithm for decision rule induction, (b) C5C, which post-processes C5.0 \u0026#39;s rule set to retain the most frequently referenced variables and (c) PC, a standard method for Bayesian network induction. C5C performs as well as or better than C5.0 and PC across a number of data sets. Our modest variation of an inexpensive, accurate, off-the-shelf induction engine mitigates the need for specialized procedures, and establishes baseline performance against which specialized algorithms can be compared.","internal_url":"https://www.academia.edu/16764530/Identifying_Markov_Blankets_with_Decision_Tree_Induction","translated_internal_url":"","created_at":"2015-10-13T23:42:10.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170669,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170669/thumbnails/1.jpg","file_name":"00b7d514b3a2d3247f000000.pdf","download_url":"https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Markov_Blankets_with_Decisio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170669/00b7d514b3a2d3247f000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Markov_Blankets_with_Decisio.pdf\u0026Expires=1732388432\u0026Signature=aXs8sfKw2t4RAnyOjWoAYDAqLJ6qV23J07TyGa9NBHUTJ5VLPX~X68oeSeTohs-hVGw-FlLfXWy7AEmR8p7qOpfsBwI6r~67D~sFlVWuKOkjBaP8Aa4rfnUCxqVWFeUedwq8IjHy9elAgLwq0xJo7C6MLPNek9s2usth2xoEhEhpft2ADj8tlslujpH9WhtGh2XHBKU29qoZQhgvpZ1KNtIvXUq4z0Gi7JBN-vqtpmMz~T9mQeIWd1ndnVefcxlQftRsWQSl~7wNqquOCXRPYJavpayTvynGcIouPirTkQqpDTJCPE76XxzIX69zDEC~PmfBhinSk6n97QKLCyI5HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identifying_Markov_Blankets_with_Decision_Tree_Induction","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170669,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170669/thumbnails/1.jpg","file_name":"00b7d514b3a2d3247f000000.pdf","download_url":"https://www.academia.edu/attachments/39170669/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Markov_Blankets_with_Decisio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170669/00b7d514b3a2d3247f000000-libre.pdf?1444807036=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Markov_Blankets_with_Decisio.pdf\u0026Expires=1732388432\u0026Signature=aXs8sfKw2t4RAnyOjWoAYDAqLJ6qV23J07TyGa9NBHUTJ5VLPX~X68oeSeTohs-hVGw-FlLfXWy7AEmR8p7qOpfsBwI6r~67D~sFlVWuKOkjBaP8Aa4rfnUCxqVWFeUedwq8IjHy9elAgLwq0xJo7C6MLPNek9s2usth2xoEhEhpft2ADj8tlslujpH9WhtGh2XHBKU29qoZQhgvpZ1KNtIvXUq4z0Gi7JBN-vqtpmMz~T9mQeIWd1ndnVefcxlQftRsWQSl~7wNqquOCXRPYJavpayTvynGcIouPirTkQqpDTJCPE76XxzIX69zDEC~PmfBhinSk6n97QKLCyI5HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":101465,"name":"Causal Discovery","url":"https://www.academia.edu/Documents/in/Causal_Discovery"},{"id":274599,"name":"Bayesian Network","url":"https://www.academia.edu/Documents/in/Bayesian_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams"><img alt="Research paper thumbnail of A Methodological Framework for Statistical Analysis of Social Text Streams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams">A Methodological Framework for Statistical Analysis of Social Text Streams</a></div><div class="wp-workCard_item"><span>Communications in Computer and Information Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764529]").text(description); $(".js-view-count[data-work-id=16764529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764529,"title":"A Methodological Framework for Statistical Analysis of Social Text Streams","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Communications in Computer and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764529/A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams","translated_internal_url":"","created_at":"2015-10-13T23:42:10.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_Methodological_Framework_for_Statistical_Analysis_of_Social_Text_Streams","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty"><img alt="Research paper thumbnail of A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty" class="work-thumbnail" src="https://attachments.academia-assets.com/42402146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty">A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan&amp;amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="782f7c4458556e3290a672e1217cfa4f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:42402146,&quot;asset_id&quot;:16764528,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764528]").text(description); $(".js-view-count[data-work-id=16764528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "782f7c4458556e3290a672e1217cfa4f" } } $('.js-work-strip[data-work-id=16764528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764528,"title":"A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty","translated_title":"","metadata":{"abstract":"In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan\u0026amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"In Temporal Planning a typical assumption is that the agent controls the execu- tion time of all events such as starting and ending actions. In real domains how- ever, this assumption is commonly violated and certain events are beyond the di- rect control of the plan\u0026amp;#x27;s executive. Previous work on reasoning with uncontrol- lable events (Simple Temporal Problem with Uncertainty) assumes that we can bound the occurrence of each uncontrollable within a time interval. In principle however, there is no such bounding interval since there is always a non-zero probability the event will occur outside the bounds. Here we develop a new more general formalism called the Probabilistic Simple Temporal Problem (PSTP) fol- lowing a probabilistic approach. We present a method for scheduling a PSTP maximizing the probability of correct execution. Subsequently, we use this method to solve the problem of finding an optimal execution strategy, i.e. a dy- namic schedule where scheduling decisions can be made on-line.","internal_url":"https://www.academia.edu/16764528/A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty","translated_internal_url":"","created_at":"2015-10-13T23:42:09.996-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42402146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42402146/thumbnails/1.jpg","file_name":"A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et.pdf","download_url":"https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Probabilistic_Approach_to_Robust_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42402146/A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et-libre.pdf?1454964410=\u0026response-content-disposition=attachment%3B+filename%3DA_Probabilistic_Approach_to_Robust_Execu.pdf\u0026Expires=1732388432\u0026Signature=TPF1w3B0hUG5IPMltcV1v4n0LFvSZKcCmtPcj6vrh4cfPfhNx2Csu-oiggvT6gCPEftVzcrdnkfRXOSGRH59tpJIxWPqJHv5VGZPMdKqzFNoZHNQZOnDCy2R13c~NIglz01c45ZJjlhPrg1gPInwv3Pz3c5ibw~mOc1LBEPF9~xb3QI0h-Wtpkq~3LvelWGh10Sw8vqLmuGKtBdKrvuaZacj1nbqlI3bZV3NuAdM3tW68drXVKU~7w~9VkaI36HuDg8eL~5B~RUb4WxU7jPJjmKX1VfjSQxggGXTtrPdOAkZAM9c1zsEMIP-ffbjDtmEJEsLKsFKEba0AEDBmsPhsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":42402146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42402146/thumbnails/1.jpg","file_name":"A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et.pdf","download_url":"https://www.academia.edu/attachments/42402146/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Probabilistic_Approach_to_Robust_Execu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42402146/A_Probabilistic_Approach_to_Robust_Execu20160208-20925-8zc9et-libre.pdf?1454964410=\u0026response-content-disposition=attachment%3B+filename%3DA_Probabilistic_Approach_to_Robust_Execu.pdf\u0026Expires=1732388432\u0026Signature=TPF1w3B0hUG5IPMltcV1v4n0LFvSZKcCmtPcj6vrh4cfPfhNx2Csu-oiggvT6gCPEftVzcrdnkfRXOSGRH59tpJIxWPqJHv5VGZPMdKqzFNoZHNQZOnDCy2R13c~NIglz01c45ZJjlhPrg1gPInwv3Pz3c5ibw~mOc1LBEPF9~xb3QI0h-Wtpkq~3LvelWGh10Sw8vqLmuGKtBdKrvuaZacj1nbqlI3bZV3NuAdM3tW68drXVKU~7w~9VkaI36HuDg8eL~5B~RUb4WxU7jPJjmKX1VfjSQxggGXTtrPdOAkZAM9c1zsEMIP-ffbjDtmEJEsLKsFKEba0AEDBmsPhsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6574130,"url":"https://www.researchgate.net/profile/Ioannis_Tsamardinos/publication/221238898_A_Probabilistic_Approach_to_Robust_Execution_of_Temporal_Plans_with_Uncertainty/links/02e7e51e7c5917810d000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems"><img alt="Research paper thumbnail of Efficiently Dispatching Plans Encoded as Simple Temporal Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems">Efficiently Dispatching Plans Encoded as Simple Temporal Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764527]").text(description); $(".js-view-count[data-work-id=16764527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764527,"title":"Efficiently Dispatching Plans Encoded as Simple Temporal Problems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764527/Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems","translated_internal_url":"","created_at":"2015-10-13T23:42:09.889-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Efficiently_Dispatching_Plans_Encoded_as_Simple_Temporal_Problems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System"><img alt="Research paper thumbnail of Execution-Time Plan Management for a Cognitive Orthotic System" class="work-thumbnail" src="https://attachments.academia-assets.com/39170671/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System">Execution-Time Plan Management for a Cognitive Orthotic System</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c3bd7da3ce672529a1dfb3caa01b6589" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39170671,&quot;asset_id&quot;:16764526,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764526]").text(description); $(".js-view-count[data-work-id=16764526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c3bd7da3ce672529a1dfb3caa01b6589" } } $('.js-work-strip[data-work-id=16764526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764526,"title":"Execution-Time Plan Management for a Cognitive Orthotic System","translated_title":"","metadata":{"grobid_abstract":"In this paper we discuss our work on plan management in the Autominder cognitive orthotic system. Autominder is being designed as part of an initiative on the development of robotic assistants for the elderly. Autominder stores and updates user plans, tracks their execution via input from robot sensors, and provides carefully chosen and timed reminders of the activities to be performed. It will eventually also learn the typical behavior of the user with regard to the execution of these plans. A central component of Autominder is its Plan Manager (PM), which is responsible for the temporal reasoning involved in updating plans and tracking their execution. The PM models plan update problems as disjunctive temporal problems (DTPs) and uses the Epilitis DTPsolving system to handle them. We describe the plan representations and algorithms used by the Plan Manager, and briefly discuss its connections with the rest of the system.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":39170671},"translated_abstract":null,"internal_url":"https://www.academia.edu/16764526/Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System","translated_internal_url":"","created_at":"2015-10-13T23:42:09.782-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":39170671,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170671/thumbnails/1.jpg","file_name":"02e7e51e7c5919516a000000.pdf","download_url":"https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Execution_Time_Plan_Management_for_a_Cog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170671/02e7e51e7c5919516a000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DExecution_Time_Plan_Management_for_a_Cog.pdf\u0026Expires=1732388432\u0026Signature=ICkgO8i453s48UCplpiTcFDWNswjN7rTN6BIg1CSLiPBLhJGCfydrL94lhrzzYAdPLQPAku3YAibZ-QU-ZHxQKFH7oSZaKfVU9Oi-kLU1jIO12t3T3SUdcpuOCS5RgChGohMsBVwI8wHJYI6fr5VtPwGgxsebSK8u~M7eIyNAqMAtu5MyPXaL~8rAJTb9qi7CqWjnCMpaNDWPRBPD0g4VACQwVO1-z~v0GBW8xAj4hTAJUjERbKmsiDliRH32dH-77wB9NgK8WsjduP61u8pkO7Con71x~AFSdqXOnrwVCj2QZ2voTVGljnA3wmNymvlYLGRJ1-OedkqZwTXQ0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Execution_Time_Plan_Management_for_a_Cognitive_Orthotic_System","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[{"id":39170671,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39170671/thumbnails/1.jpg","file_name":"02e7e51e7c5919516a000000.pdf","download_url":"https://www.academia.edu/attachments/39170671/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Execution_Time_Plan_Management_for_a_Cog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39170671/02e7e51e7c5919516a000000-libre.pdf?1444807037=\u0026response-content-disposition=attachment%3B+filename%3DExecution_Time_Plan_Management_for_a_Cog.pdf\u0026Expires=1732388433\u0026Signature=CErTd7G9HmBY6CwUqxiOBYOX2jXCL1szKRl3YX2eNf2QnVaf1wX3ycw7L5NWre9yCQ~CEaLhm0GEoBqGNTdqD-uKwRHCEwHjBlYrHYs92dAUdFrpzfM8HDd9bDDIL~vULHj8VrkhL03o3yoIHTvAW64FeTWYlsuTaZHoAHa9LzqvVe~uOUfouY9fD6n57stN3kwXiDtAHN4FczYYT-nabq7acnHxCZgFXTBy5UcOlQGeWyL9klmG1eukJ8XA4SIjmNmz3S8glGODcyNkSlFKWeoiyHayqzaluJqfdWmZdhjBaQZB5VfVUsnyB86UAGRX7rny7sUoiYbzC10Hrmn8LA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56484,"name":"Spatial and Temporal Reasoning","url":"https://www.academia.edu/Documents/in/Spatial_and_Temporal_Reasoning"},{"id":451955,"name":"Plan","url":"https://www.academia.edu/Documents/in/Plan"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16764525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology"><img alt="Research paper thumbnail of MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology">MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology</a></div><div class="wp-workCard_item"><span>PLOS ONE</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16764525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16764525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16764525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16764525]").text(description); $(".js-view-count[data-work-id=16764525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16764525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16764525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16764525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16764525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16764525,"title":"MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology","translated_title":"","metadata":{"abstract":"We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"PLOS ONE"},"translated_abstract":"We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.","internal_url":"https://www.academia.edu/16764525/MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology","translated_internal_url":"","created_at":"2015-10-13T23:42:09.674-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":24434052,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MiRduplexSVM_A_High_Performing_MiRNA_Duplex_Prediction_and_Evaluation_Methodology","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":24434052,"first_name":"Ioannis","middle_initials":"","last_name":"Tsamardinos","page_name":"IoannisTsamardinos","domain_name":"crete","created_at":"2015-01-06T08:36:33.720-08:00","display_name":"Ioannis Tsamardinos","url":"https://crete.academia.edu/IoannisTsamardinos"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":220780,"name":"PLoS one","url":"https://www.academia.edu/Documents/in/PLoS_one"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3746901" id="rpackages"><div class="js-work-strip profile--work_container" data-work-id="26809768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/26809768/Rfast_reference_manual"><img alt="Research paper thumbnail of Rfast reference manual" class="work-thumbnail" src="https://attachments.academia-assets.com/56225823/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/26809768/Rfast_reference_manual">Rfast reference manual</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A collection of fast and very fast R functions written in R or C++.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f21099874206402cede56f436ad5b6c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:56225823,&quot;asset_id&quot;:26809768,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/56225823/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="26809768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="26809768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 26809768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=26809768]").text(description); $(".js-view-count[data-work-id=26809768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 26809768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='26809768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 26809768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f21099874206402cede56f436ad5b6c" } } $('.js-work-strip[data-work-id=26809768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":26809768,"title":"Rfast reference manual","translated_title":"","metadata":{"abstract":"A collection of fast and very fast R functions written in R or C++."},"translated_abstract":"A collection of fast and very fast R functions written in R or C++.","internal_url":"https://www.academia.edu/26809768/Rfast_reference_manual","translated_internal_url":"","created_at":"2016-07-07T08:29:58.654-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":22166170,"work_id":26809768,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":1,"name":"Ioannis Tsamardinos","title":"Rfast reference manual"}],"downloadable_attachments":[{"id":56225823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/56225823/thumbnails/1.jpg","file_name":"Rfast.pdf","download_url":"https://www.academia.edu/attachments/56225823/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rfast_reference_manual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/56225823/Rfast-libre.pdf?1522758776=\u0026response-content-disposition=attachment%3B+filename%3DRfast_reference_manual.pdf\u0026Expires=1732266104\u0026Signature=eMuhi0hVCT9GUgmcHE3OIfzeq2Pi7--G3U-CUK~HGYuLBtHkgxEXZ~efKPJFL4jsNPqw8Qv-1X-rinJznCktnRJbCuOkkT0KledS7Qw-0ZrYzUmmunkL~ywpRPBAptE5hTx45JrhUYHMwAyZsYLvGftHeDR5dXRy55jSXlx4q5CXJo3P0Fy0c9qJ8R6kFs9h1vbjdWHl6HwUYTUNXAubXAC8N1m7orbpcJ8aec8EPvEHeaPbIel0wtgqUVdZRlHxchbpdZw~hk3mkyjIkIefVHFfoBozSSt08j6uUdNYDzjGxP64ye05Jj2660FAPT4sKx93QjLUuYqqvGwhUe7xTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Rfast_reference_manual","translated_slug":"","page_count":281,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":56225823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/56225823/thumbnails/1.jpg","file_name":"Rfast.pdf","download_url":"https://www.academia.edu/attachments/56225823/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Rfast_reference_manual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/56225823/Rfast-libre.pdf?1522758776=\u0026response-content-disposition=attachment%3B+filename%3DRfast_reference_manual.pdf\u0026Expires=1732266104\u0026Signature=eMuhi0hVCT9GUgmcHE3OIfzeq2Pi7--G3U-CUK~HGYuLBtHkgxEXZ~efKPJFL4jsNPqw8Qv-1X-rinJznCktnRJbCuOkkT0KledS7Qw-0ZrYzUmmunkL~ywpRPBAptE5hTx45JrhUYHMwAyZsYLvGftHeDR5dXRy55jSXlx4q5CXJo3P0Fy0c9qJ8R6kFs9h1vbjdWHl6HwUYTUNXAubXAC8N1m7orbpcJ8aec8EPvEHeaPbIel0wtgqUVdZRlHxchbpdZw~hk3mkyjIkIefVHFfoBozSSt08j6uUdNYDzjGxP64ye05Jj2660FAPT4sKx93QjLUuYqqvGwhUe7xTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models"},{"id":23892,"name":"Multivariate Data Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Analysis"},{"id":25795,"name":"Testing","url":"https://www.academia.edu/Documents/in/Testing"},{"id":27324,"name":"R programming language","url":"https://www.academia.edu/Documents/in/R_programming_language"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":30157,"name":"C++ Programming","url":"https://www.academia.edu/Documents/in/C_Programming"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression"},{"id":40172,"name":"Generalized Linear models","url":"https://www.academia.edu/Documents/in/Generalized_Linear_models"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis"},{"id":49921,"name":"Multiple testing","url":"https://www.academia.edu/Documents/in/Multiple_testing"},{"id":51264,"name":"Computer Programming","url":"https://www.academia.edu/Documents/in/Computer_Programming"},{"id":57948,"name":"Regression Testing","url":"https://www.academia.edu/Documents/in/Regression_Testing"},{"id":69841,"name":"Standard Deviation","url":"https://www.academia.edu/Documents/in/Standard_Deviation"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":92912,"name":"Statistical modelling with logistic and linear regression","url":"https://www.academia.edu/Documents/in/Statistical_modelling_with_logistic_and_linear_regression"},{"id":107672,"name":"Regression","url":"https://www.academia.edu/Documents/in/Regression"},{"id":123230,"name":"Regression Analysis","url":"https://www.academia.edu/Documents/in/Regression_Analysis"},{"id":129502,"name":"Poisson regression","url":"https://www.academia.edu/Documents/in/Poisson_regression"},{"id":169175,"name":"Mahalanobis Distance Measure","url":"https://www.academia.edu/Documents/in/Mahalanobis_Distance_Measure"},{"id":178621,"name":"Logistic Regression Odds Ratio for Categorical Data Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Odds_Ratio_for_Categorical_Data_Analysis"},{"id":199316,"name":"Multiple Linear Regression","url":"https://www.academia.edu/Documents/in/Multiple_Linear_Regression"},{"id":212320,"name":"Logistic Regression Analysis","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Analysis"},{"id":224578,"name":"Multiple Regression","url":"https://www.academia.edu/Documents/in/Multiple_Regression"},{"id":226711,"name":"Log linear models","url":"https://www.academia.edu/Documents/in/Log_linear_models"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics"},{"id":312699,"name":"Binary data, Logistic Regression, Stochastic Covariates","url":"https://www.academia.edu/Documents/in/Binary_data_Logistic_Regression_Stochastic_Covariates"},{"id":371716,"name":"Pearson Correlation","url":"https://www.academia.edu/Documents/in/Pearson_Correlation"},{"id":399911,"name":"Computer Progamming","url":"https://www.academia.edu/Documents/in/Computer_Progamming"},{"id":425968,"name":"Independent-Sample T-Test","url":"https://www.academia.edu/Documents/in/Independent-Sample_T-Test"},{"id":441203,"name":"Median","url":"https://www.academia.edu/Documents/in/Median"},{"id":504304,"name":"Log-Linear Models","url":"https://www.academia.edu/Documents/in/Log-Linear_Models"},{"id":505701,"name":"Spearman Correlation","url":"https://www.academia.edu/Documents/in/Spearman_Correlation"},{"id":611814,"name":"Correlation coefficient","url":"https://www.academia.edu/Documents/in/Correlation_coefficient"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression"},{"id":839342,"name":"Binary Logistic Regression","url":"https://www.academia.edu/Documents/in/Binary_Logistic_Regression"},{"id":961457,"name":"Generalised Linear Models","url":"https://www.academia.edu/Documents/in/Generalised_Linear_Models"},{"id":968937,"name":"Logistic Regression Model","url":"https://www.academia.edu/Documents/in/Logistic_Regression_Model"},{"id":971907,"name":"Multiple Logistic Regression","url":"https://www.academia.edu/Documents/in/Multiple_Logistic_Regression"},{"id":1012702,"name":"R Packages","url":"https://www.academia.edu/Documents/in/R_Packages"},{"id":1135529,"name":"Interpreting Coefficient of Regression Model","url":"https://www.academia.edu/Documents/in/Interpreting_Coefficient_of_Regression_Model"},{"id":1225848,"name":"Univariate model","url":"https://www.academia.edu/Documents/in/Univariate_model"},{"id":1304879,"name":"Simple Linear Regression","url":"https://www.academia.edu/Documents/in/Simple_Linear_Regression"},{"id":1384603,"name":"Regressione lineare","url":"https://www.academia.edu/Documents/in/Regressione_lineare"},{"id":1387390,"name":"Regresi Linear","url":"https://www.academia.edu/Documents/in/Regresi_Linear"},{"id":1646880,"name":"Variances","url":"https://www.academia.edu/Documents/in/Variances"}],"urls":[{"id":7308837,"url":"https://cran.r-project.org/web/packages/Rfast/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16348963"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16348963/MXM_reference_manual"><img alt="Research paper thumbnail of MXM reference manual" class="work-thumbnail" src="https://attachments.academia-assets.com/57450645/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16348963/MXM_reference_manual">MXM reference manual</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://forth.academia.edu/GiorgosAthineou">Giorgos Athineou</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82">螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://crete.academia.edu/IoannisTsamardinos">Ioannis Tsamardinos</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">MXM is an R package which offers variable selection for high-dimensional data in cases of regress...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are offered.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f47e5bace9e34ee3b13621718264768f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:57450645,&quot;asset_id&quot;:16348963,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/57450645/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16348963"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16348963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16348963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16348963]").text(description); $(".js-view-count[data-work-id=16348963]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16348963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16348963']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16348963, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f47e5bace9e34ee3b13621718264768f" } } $('.js-work-strip[data-work-id=16348963]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16348963,"title":"MXM reference manual","translated_title":"","metadata":{"abstract":"MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are offered. \r\n\r\n"},"translated_abstract":"MXM is an R package which offers variable selection for high-dimensional data in cases of regression and classification. Many regression models are offered. In addition some functions for Bayesian Networks and graphical models are offered. \r\n\r\n","internal_url":"https://www.academia.edu/16348963/MXM_reference_manual","translated_internal_url":"","created_at":"2015-10-01T00:48:43.441-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":71523,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":6512031,"work_id":16348963,"tagging_user_id":71523,"tagged_user_id":32927146,"co_author_invite_id":null,"email":"v***i@ics.forth.gr","affiliation":"Foundation for Research and Technology - Hellas","display_order":-2,"name":"Vincenzo Lagani","title":"MXM reference manual"},{"id":6512032,"work_id":16348963,"tagging_user_id":71523,"tagged_user_id":6338583,"co_author_invite_id":null,"email":"g***s@hotmail.com","affiliation":"Foundation for Research and Technology - Hellas","display_order":-1,"name":"Giorgos Athineou","title":"MXM reference manual"},{"id":6512033,"work_id":16348963,"tagging_user_id":71523,"tagged_user_id":33051818,"co_author_invite_id":null,"email":"b***k@csd.uoc.gr","affiliation":"University of Crete","display_order":1,"name":"Giorgos Borboudakis","title":"MXM reference manual"},{"id":6512030,"work_id":16348963,"tagging_user_id":71523,"tagged_user_id":24434052,"co_author_invite_id":null,"email":"t***t@gmail.com","affiliation":"University of Crete","display_order":2,"name":"Ioannis Tsamardinos","title":"MXM reference manual"}],"downloadable_attachments":[{"id":57450645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57450645/thumbnails/1.jpg","file_name":"MXM.pdf","download_url":"https://www.academia.edu/attachments/57450645/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MXM_reference_manual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57450645/MXM-libre.pdf?1537955051=\u0026response-content-disposition=attachment%3B+filename%3DMXM_reference_manual.pdf\u0026Expires=1731477015\u0026Signature=b3ShgJ-BUxENkG-zoMKJMdTJbcHcVTRfafIWxGa1Oetst8xQMUwgC~5M4x-~N6nF7luZO1gQdAGYcvVW2iPXK~BAMeVWZs-bn-zWhmfqgraMJUYgoWUiTuhIJVIKuNuDAxlfll6l--EM8yKhlI1Q1pUspRPmZc5Wp3SCoqdzMoI1XJcOP3CheEbJWoBOEV9ZEKlUeWnzOWEVsN-FEQ8rDXhy3y7Xrbn8lzhM1X~nCOXgrCAbk20GjJMkr1klYtmSAqg8fBCBfxIBkwXD~5l8iCVBJF6xzU-xi7HEskAqDZeSJjzqU13OhcHpyEqMZFQRLV2CEG8G2EcdG5RhoHJtqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"MXM_reference_manual","translated_slug":"","page_count":261,"language":"en","content_type":"Work","owner":{"id":71523,"first_name":"螠喂蠂伪萎位","middle_initials":null,"last_name":"韦蟽伪纬蟻萎蟼","page_name":"螠喂蠂伪萎位韦蟽伪纬蟻萎蟼","domain_name":"crete","created_at":"2009-10-14T01:59:37.339-07:00","display_name":"螠喂蠂伪萎位 韦蟽伪纬蟻萎蟼","url":"https://crete.academia.edu/%CE%9C%CE%B9%CF%87%CE%B1%CE%AE%CE%BB%CE%A4%CF%83%CE%B1%CE%B3%CF%81%CE%AE%CF%82"},"attachments":[{"id":57450645,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/57450645/thumbnails/1.jpg","file_name":"MXM.pdf","download_url":"https://www.academia.edu/attachments/57450645/download_file?st=MTczMjM4NDgzMyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MXM_reference_manual.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/57450645/MXM-libre.pdf?1537955051=\u0026response-content-disposition=attachment%3B+filename%3DMXM_reference_manual.pdf\u0026Expires=1731477015\u0026Signature=b3ShgJ-BUxENkG-zoMKJMdTJbcHcVTRfafIWxGa1Oetst8xQMUwgC~5M4x-~N6nF7luZO1gQdAGYcvVW2iPXK~BAMeVWZs-bn-zWhmfqgraMJUYgoWUiTuhIJVIKuNuDAxlfll6l--EM8yKhlI1Q1pUspRPmZc5Wp3SCoqdzMoI1XJcOP3CheEbJWoBOEV9ZEKlUeWnzOWEVsN-FEQ8rDXhy3y7Xrbn8lzhM1X~nCOXgrCAbk20GjJMkr1klYtmSAqg8fBCBfxIBkwXD~5l8iCVBJF6xzU-xi7HEskAqDZeSJjzqU13OhcHpyEqMZFQRLV2CEG8G2EcdG5RhoHJtqw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":1351,"name":"Statistical Computing","url":"https://www.academia.edu/Documents/in/Statistical_Computing"},{"id":1352,"name":"Multivariate Statistics","url":"https://www.academia.edu/Documents/in/Multivariate_Statistics"},{"id":1380,"name":"Computer Engineering","url":"https://www.academia.edu/Documents/in/Computer_Engineering"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":2606,"name":"Innovation statistics","url":"https://www.academia.edu/Documents/in/Innovation_statistics"},{"id":4060,"name":"Applied Statistics","url":"https://www.academia.edu/Documents/in/Applied_Statistics"},{"id":4095,"name":"Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Classification_Machine_Learning_"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks"},{"id":4388,"name":"Computational Statistics","url":"https://www.academia.edu/Documents/in/Computational_Statistics"},{"id":4955,"name":"Computational Modelling","url":"https://www.academia.edu/Documents/in/Computational_Modelling"},{"id":5187,"name":"Statistical Analysis","url":"https://www.academia.edu/Documents/in/Statistical_Analysis"},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods"},{"id":6114,"name":"Statistical Genetics","url":"https://www.academia.edu/Documents/in/Statistical_Genetics"},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning"},{"id":12853,"name":"Robust Statistics","url":"https://www.academia.edu/Documents/in/Robust_Statistics"},{"id":14585,"name":"Statistical Modeling","url":"https://www.academia.edu/Documents/in/Statistical_Modeling"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning"},{"id":16682,"name":"Mathematical Modelling","url":"https://www.academia.edu/Documents/in/Mathematical_Modelling"},{"id":16895,"name":"Modelling","url":"https://www.academia.edu/Documents/in/Modelling"},{"id":17429,"name":"Structural Bioinformatics","url":"https://www.academia.edu/Documents/in/Structural_Bioinformatics"},{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models"},{"id":19297,"name":"Microarray Data Analysis","url":"https://www.academia.edu/Documents/in/Microarray_Data_Analysis"},{"id":23892,"name":"Multivariate Data Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Data_Analysis"},{"id":24538,"name":"Computing","url":"https://www.academia.edu/Documents/in/Computing"},{"id":28512,"name":"Bayesian Networks","url":"https://www.academia.edu/Documents/in/Bayesian_Networks"},{"id":32433,"name":"Logistic Regression","url":"https://www.academia.edu/Documents/in/Logistic_Regression"},{"id":32701,"name":"Data Mining in Bioinformatics","url":"https://www.academia.edu/Documents/in/Data_Mining_in_Bioinformatics"},{"id":41482,"name":"Multivariate Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Analysis"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":57644,"name":"Automatic Classification (Machine Learning)","url":"https://www.academia.edu/Documents/in/Automatic_Classification_Machine_Learning_"},{"id":59726,"name":"Bioinfomatics","url":"https://www.academia.edu/Documents/in/Bioinfomatics"},{"id":63857,"name":"Categorical data analysis","url":"https://www.academia.edu/Documents/in/Categorical_data_analysis"},{"id":67968,"name":"Statistical Inference","url":"https://www.academia.edu/Documents/in/Statistical_Inference"},{"id":75348,"name":"Cox Regression","url":"https://www.academia.edu/Documents/in/Cox_Regression"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":113749,"name":"Multivariate","url":"https://www.academia.edu/Documents/in/Multivariate"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data"},{"id":129502,"name":"Poisson regression","url":"https://www.academia.edu/Documents/in/Poisson_regression"},{"id":135987,"name":"Hypothesis testing","url":"https://www.academia.edu/Documents/in/Hypothesis_testing"},{"id":143038,"name":"Machine Learning and Pattern Recognition","url":"https://www.academia.edu/Documents/in/Machine_Learning_and_Pattern_Recognition"},{"id":161594,"name":"High Dimensional Data","url":"https://www.academia.edu/Documents/in/High_Dimensional_Data"},{"id":188474,"name":"Applied Statistics and Statistical Modelling","url":"https://www.academia.edu/Documents/in/Applied_Statistics_and_Statistical_Modelling"},{"id":199316,"name":"Multiple Linear Regression","url":"https://www.academia.edu/Documents/in/Multiple_Linear_Regression"},{"id":224578,"name":"Multiple Regression","url":"https://www.academia.edu/Documents/in/Multiple_Regression"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics"},{"id":371716,"name":"Pearson Correlation","url":"https://www.academia.edu/Documents/in/Pearson_Correlation"},{"id":382620,"name":"Multinomial logit models","url":"https://www.academia.edu/Documents/in/Multinomial_logit_models"},{"id":388661,"name":"Statistical method in gene expression","url":"https://www.academia.edu/Documents/in/Statistical_method_in_gene_expression"},{"id":404238,"name":"Chi-Square","url":"https://www.academia.edu/Documents/in/Chi-Square"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining"},{"id":484415,"name":"Multiple regression analysis","url":"https://www.academia.edu/Documents/in/Multiple_regression_analysis"},{"id":534154,"name":"Statistik","url":"https://www.academia.edu/Documents/in/Statistik"},{"id":537416,"name":"Predictive Modeling and Machine Learning in Social Computing/Big Data","url":"https://www.academia.edu/Documents/in/Predictive_Modeling_and_Machine_Learning_in_Social_Computing_Big_Data"},{"id":544149,"name":"Biostatistics, Bioinformatic, Statistical Genetics","url":"https://www.academia.edu/Documents/in/Biostatistics_Bioinformatic_Statistical_Genetics"},{"id":559503,"name":"Machine Learning Big Data","url":"https://www.academia.edu/Documents/in/Machine_Learning_Big_Data"},{"id":579838,"name":"Experimental Statistics: Statistical Analysis of Experiments","url":"https://www.academia.edu/Documents/in/Experimental_Statistics_Statistical_Analysis_of_Experiments"},{"id":582369,"name":"Ordinal Regression","url":"https://www.academia.edu/Documents/in/Ordinal_Regression"},{"id":611814,"name":"Correlation coefficient","url":"https://www.academia.edu/Documents/in/Correlation_coefficient"},{"id":742501,"name":"Multinomial Logistic Regression","url":"https://www.academia.edu/Documents/in/Multinomial_Logistic_Regression"},{"id":753505,"name":"Chi Square Test","url":"https://www.academia.edu/Documents/in/Chi_Square_Test"},{"id":756715,"name":"Robust Regression","url":"https://www.academia.edu/Documents/in/Robust_Regression"},{"id":795003,"name":"Linear Regression","url":"https://www.academia.edu/Documents/in/Linear_Regression"},{"id":795013,"name":"Test of Independence","url":"https://www.academia.edu/Documents/in/Test_of_Independence"},{"id":839342,"name":"Binary Logistic Regression","url":"https://www.academia.edu/Documents/in/Binary_Logistic_Regression"},{"id":839955,"name":"Robust Statistical Methods","url":"https://www.academia.edu/Documents/in/Robust_Statistical_Methods"},{"id":862259,"name":"Multivariate Statistical Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Analysis"},{"id":966253,"name":"Multivariate Statistical Methods","url":"https://www.academia.edu/Documents/in/Multivariate_Statistical_Methods"},{"id":976616,"name":"Statistical Computing In R","url":"https://www.academia.edu/Documents/in/Statistical_Computing_In_R"},{"id":1007210,"name":"High Dimensional Inference","url":"https://www.academia.edu/Documents/in/High_Dimensional_Inference"},{"id":1181584,"name":"Beta Regression","url":"https://www.academia.edu/Documents/in/Beta_Regression"},{"id":1181591,"name":"Regresi贸n Beta","url":"https://www.academia.edu/Documents/in/Regresion_Beta"},{"id":1340986,"name":"Multivariate Regression Analysis","url":"https://www.academia.edu/Documents/in/Multivariate_Regression_Analysis"},{"id":1496485,"name":"Computational Statistics and Data Analysis","url":"https://www.academia.edu/Documents/in/Computational_Statistics_and_Data_Analysis"},{"id":1583936,"name":"Robust variable selection for high dimensional data","url":"https://www.academia.edu/Documents/in/Robust_variable_selection_for_high_dimensional_data"},{"id":2010416,"name":"Conditional Independence","url":"https://www.academia.edu/Documents/in/Conditional_Independence"}],"urls":[{"id":6036411,"url":"https://cran.r-project.org/web/packages/MXM/index.html"},{"id":8284033,"url":"http://mensxmachina.org/en/software/mxm-package/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "7db325525e7b082f88b5dee81c7edf3a766611a5d74a1bd8409dbef63d301598", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Q7v6mxnK2MoYc6+SHRM3ru2KUQApQ9kshsFEyVNIvsyxjjCI+31u3c7leURN4jMVPQsyGzOZhCYDueuUEnTp+A==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://crete.academia.edu/IoannisTsamardinos" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Aej29qrWSG04XEmyCMD+URFD+Grg8Y26jsq1C5rqwOPz3TzlSGH+eu7Kn2RYMfrqwcKbcfor0LALshpW29aX1w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10