CINXE.COM
Search results for: Stan van Hoesel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Stan van Hoesel</title> <meta name="description" content="Search results for: Stan van Hoesel"> <meta name="keywords" content="Stan van Hoesel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Stan van Hoesel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Stan van Hoesel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Stan van Hoesel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Rajabighamchi">Farzaneh Rajabighamchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20van%20Hoesel"> Stan van Hoesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20Defryn"> Christof Defryn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=warehouse%20optimization" title="warehouse optimization">warehouse optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20picking%20problem" title=" order picking problem"> order picking problem</a>, <a href="https://publications.waset.org/abstracts/search?q=generalised%20travelling%20salesman%20problem" title=" generalised travelling salesman problem"> generalised travelling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/151459/order-picking-problem-an-exact-and-heuristic-algorithms-for-the-generalized-travelling-salesman-problem-with-geographical-overlap-between-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Contributions at the Define of the Vortex Plane Cyclic Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petre%20Stan">Petre Stan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marinica%20Stan"> Marinica Stan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new way to define the vortex plane cyclic motion is exposed, starting from the physical cause of reacting the vortex. The Navier-Stokes equations are used in cylindrical coordinates for viscous fluids in laminar motion, and are integrated in case of a infinite long revolving cylinder which rotates around a pintle in a viscous fluid that occupies the entire space up to infinite. In this way, a revolving field of velocities in fluid is obtained, having the shape of a vortex in which the intensity is obtained objectively, being given by the physical phenomenon that generates this vortex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20coordinates" title="cylindrical coordinates">cylindrical coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid" title=" viscous fluid"> viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20plane" title=" vortex plane "> vortex plane </a> </p> <a href="https://publications.waset.org/abstracts/129131/contributions-at-the-define-of-the-vortex-plane-cyclic-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall">Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Eames"> Philip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya"> Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum" title="vacuum">vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-plate%20solar%20collector" title=" flat-plate solar collector"> flat-plate solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a> </p> <a href="https://publications.waset.org/abstracts/48208/experimental-measurements-of-evacuated-enclosure-thermal-insulation-effectiveness-for-vacuum-flat-plate-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Current Developments in Flat-Plate Vacuum Solar Thermal Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya">Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Henshall"> Paul Henshall</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Eames"> Phillip Eames</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Moss"> Roger Moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Shire"> Stan Shire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20box%20calorimeter" title="hot box calorimeter">hot box calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20collector" title=" solar thermal collector"> solar thermal collector</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20insulation" title=" vacuum insulation"> vacuum insulation</a> </p> <a href="https://publications.waset.org/abstracts/49273/current-developments-in-flat-plate-vacuum-solar-thermal-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Assessment of Some Local Clay Minerals Used for the Production of Floor Tiles: Panacea for Economic Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekenyem%20Stan%20Chinweike">Ekenyem Stan Chinweike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The suitability of some clay deposits in south eastern Nigeria (Unwana, Ekebedi and Nsu) as materials for the production of floor tiles was investigated. The clay samples were analyzed using wet classical method to determine their chemical composition. Floor tile test specimens were produced using standard method. The test specimens were tested for physical properties such as compressive strength and porosity at 1050◦c and 1150◦c temperature levels. The chemical analysis showed the following results: Unwana (5102 52.24%, AL2o3, 27.20%, Fe2o3 7%, T102 (1.52%), Ekebedi (S102 (58.53%), Al2o3 28.42%, Fe2o3 7%, Ti o2 (1.12%),NSU SIo2 (58.16%), Al2O3 (28.42%), Fe2O3 1.89%, T102 (0.82%) The compressive strength of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively: 15MPa, 13.75MPa and 13.5MPa. At 1150◦c, the values are 16.2MPa and 16.0MPa for Ekebedi and Nsu clays respectively. The porosity of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively31.57%, 23.15% and 24.21%. At 1150◦c, the values are 23.65% and 24.75% for Ekebedi and Nsu respectively. The three clays can be used for production of tiles but Ekebedi has the highest compressive strength which makes it the most suitable clay for the production of floor tiles when compared with floor tiles of the same nominal size stipulated by ASTM standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feldspar" title="feldspar">feldspar</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz" title=" quartz"> quartz</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a> </p> <a href="https://publications.waset.org/abstracts/15206/assessment-of-some-local-clay-minerals-used-for-the-production-of-floor-tiles-panacea-for-economic-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chami">S. Chami</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chauvin"> J. Chauvin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Demarest"> T. Demarest</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Ng"> Stan Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Straus"> M. Straus</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Jahner"> W. Jahner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiographic" title=" electrocardiographic"> electrocardiographic</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signals%20processing" title=" signals processing"> signals processing</a> </p> <a href="https://publications.waset.org/abstracts/114879/cardiokey-a-binary-and-multi-class-machine-learning-approach-to-identify-individuals-using-electrocardiographic-signals-on-wearable-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubna%20Eljabu">Lubna Eljabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Etemad"> Mohammad Etemad</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Matwin"> Stan Matwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20temporal%20data%20mining" title="spatial temporal data mining">spatial temporal data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20mining" title=" trajectory mining"> trajectory mining</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20similarity" title=" trajectory similarity"> trajectory similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20optimization" title=" resource optimization"> resource optimization</a> </p> <a href="https://publications.waset.org/abstracts/137077/destination-port-detection-for-vessels-an-analytic-tool-for-optimizing-port-authorities-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effects of Planned Pre-laboratory Discussion on Physics Students’ Acquisition of Science Process Skills in Kontagora, Niger State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akano%20Benedict%20Ubawuike">Akano Benedict Ubawuike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of pre-laboratory discussion on physics students’ acquisition of science process skills. The study design was quasi-experimental and purposive sampling technique was applied in selecting two schools in Kontagora Town for the research based on the availability of a good physics laboratory. Intact classes already grouped by the school for the sake of small laboratory space and equipment, comprising Thirty (30) students, 15 for experimental group in School A and 15 for control in school B were the subjects for the research. The instrument used for data collection was the lesson prepared for pre – practical discussion and researcher made Science Process Skill Test (SPST ) and two (2) research questions, and two (2) research hypotheses were developed to guide the study. The data collected were analyzed using means and t-Test statistics at 0.05 level of significance. The study revealed that pre-laboratory discussion was found to be more efficacious in enhancing students’ acquisition of science process skills. It also revealed that gender, had no significant effect on students’ acquisition of science process skills. Based on the findings, it was recommended among others that teachers should encourage students to develop interest in practical activities by engaging them in pre-laboratory discussion and providing instructional materials that will challenge them to be actively involved during practical lessons. It is also recommended that Ministries of Education and professional organizations like Science Teachers' Association of Nigeria (STAN) should organize workshops, seminars and conferences for physics teachers and Physics concepts should be taught with practical activity so that the students will do science instead of learning about science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physics" title="physics">physics</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory" title=" laboratory"> laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=discussion" title=" discussion"> discussion</a>, <a href="https://publications.waset.org/abstracts/search?q=students" title=" students"> students</a>, <a href="https://publications.waset.org/abstracts/search?q=acquisition" title=" acquisition"> acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20process%20skills" title=" science process skills"> science process skills</a> </p> <a href="https://publications.waset.org/abstracts/151983/effects-of-planned-pre-laboratory-discussion-on-physics-students-acquisition-of-science-process-skills-in-kontagora-niger-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Methanotrophic Activity in a Landfill Bio-Cover through a Subzero Winter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Berenjkar">Parvin Berenjkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuyan%20Yuan"> Qiuyan Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Sparling"> Richard Sparling</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Lozecznik"> Stan Lozecznik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landfills highly contribute to anthropological global warming through CH₄ emissions. Landfills are usually capped by a conventional soil cover to control the migration of gases. Methane is consumed by CH₄-oxidizing microorganisms known as methanotrophs that naturally exist in the landfill soil cover. The growth of methanotrophs can be optimized in a bio-cover that typically consists of a gas distribution layer (GDL) to homogenize landfill gas fluxes and an overlying oxidation layer composed of suitable materials that support methanotrophic populations. Materials such as mature yard waste composts can provide an inexpensive and favourable porous support for the growth and activity of methanotrophs. In areas with seasonal cold climates, it is valuable to know if methanotrophs in a bio-cover can survive in winter until the next spring, and how deep they are active in the bio-cover to mitigate CH₄. In this study, a pilot bio-cover was constructed in a closed landfill cell in Winnipeg that has a very cold climate in Canada. The bio-cover has a surface area of 2.5 m x 3.5 m and 1.5 m of depth, filled with 50 cm of gravel as a GDL and 70 cm of biosolids compost amended with yard and leaf waste compost. The observed in situ potential of methanotrophs for CH₄ oxidation was investigated at a specific period of time from December 2016 to April 2017 as well as November 2017 to April 2018, when the transition to surface frost and thawing happens in the bio-cover. Compost samples taken from different depths of the bio-cover were incubated in the laboratory under standardized conditions; an optimal air: methane atmosphere, at 22ºC, but at in situ moisture content. Results showed that the methanotrophs were alive oxidizing methane without a lag, indicating that there was the potential for methanotrophic activity at some depths of the bio-cover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-cover" title="bio-cover">bio-cover</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=methanotrophic%20activity" title=" methanotrophic activity"> methanotrophic activity</a> </p> <a href="https://publications.waset.org/abstracts/120919/the-methanotrophic-activity-in-a-landfill-bio-cover-through-a-subzero-winter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Composite Materials from Epoxidized Linseed Oil and Lignin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Komartin">R. S. Komartin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Balanuca"> B. Balanuca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stan"> R. Stan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> the last decades, studies about the use of polymeric materials of plant origin, considering environmental concerns, have captured the interest of researchers because these represent an alternative to petroleum-derived materials. Vegetable oils are one of the preferred alternatives for petroleum-based raw materials having long aliphatic chains similar to hydrocarbons which means that can be processed using conventional chemistry. Epoxidized vegetable oils (EVO) are among the most interesting products derived from oil both for their high reactivity (epoxy group) and for the potential to react with compounds from various classes. As in the case of epoxy resins starting from petrochemical raw materials, those obtained from EVO can be crosslinked with different agents to build polymeric networks and can also be reinforced with various additives to improve their thermal and mechanical performances. Among the multitude of known EVO, the most common in industrial practice are epoxidized linseed oils (ELO) and epoxidized soybean oils (ESO), the first with an iodine index over 180, the second having a lower iodine index but being cheaper. On the other hand, lignin (Ln) is the second natural organic material as a spread, whose use has long been hampered because of the high costs associated with its isolation and purification. In this context, our goal was to obtain new composite materials with satisfactory intermediate properties in terms of stiffness and elasticity using the characteristics of ELO and Ln and choosing the proper curing procedure. In the present study linseed oil (LO) epoxidation was performed using peracetic acid generated in situ. The obtained bio-based epoxy resin derived from linseed oil was used further to produce the new composites byloading Ln in various mass ratios. The resulted ELO-Ln blends were subjected to a dual-curing protocol, namely photochemical and thermal. The new ELO-Ln composites were investigated by FTIR spectrometry, thermal stability, water affinity, and morphology. The positive effect of lignin regarding the thermal stability of the composites could be proved. The results highlight again the still largely unexplored potential of lignin in industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20curing" title=" dual curing"> dual curing</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20linseed%20oil" title=" epoxidized linseed oil"> epoxidized linseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a> </p> <a href="https://publications.waset.org/abstracts/142341/composite-materials-from-epoxidized-linseed-oil-and-lignin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Vegetable Oil-Based Anticorrosive Coatings for Metals Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brindusa%20Balanuca">Brindusa Balanuca</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Stan"> Raluca Stan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Ott"> Cristina Ott</a>, <a href="https://publications.waset.org/abstracts/search?q=Matei%20Raicopol"> Matei Raicopol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticorrosion%20protection" title="anticorrosion protection">anticorrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobe%20layers" title=" hydrophobe layers"> hydrophobe layers</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylates" title=" methacrylates"> methacrylates</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/78930/vegetable-oil-based-anticorrosive-coatings-for-metals-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Development of a Bi-National Thyroid Cancer Clinical Quality Registry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liane%20J.%20Ioannou">Liane J. Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Serpell"> Jonathan Serpell</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Dean"> Joanne Dean</a>, <a href="https://publications.waset.org/abstracts/search?q=Cino%20Bendinelli"> Cino Bendinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Gough"> Jenny Gough</a>, <a href="https://publications.waset.org/abstracts/search?q=Dean%20Lisewski"> Dean Lisewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Miller"> Julie Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Win%20Meyer-Rochow"> Win Meyer-Rochow</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20Sidhu"> Stan Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Duncan%20Topliss"> Duncan Topliss</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Walters"> David Walters</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Zalcberg"> John Zalcberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Susannah%20Ahern"> Susannah Ahern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The occurrence of thyroid cancer is increasing throughout the developed world, including Australia and New Zealand, and since the 1990s has become the fastest increasing malignancy. Following the success of a number of institutional databases that monitor outcomes after thyroid surgery, the Australian and New Zealand Endocrine Surgeons (ANZES) agreed to auspice the development of a bi-national thyroid cancer registry. Objectives: To establish a bi-national population-based clinical quality registry with the aim of monitoring and improving the quality of care provided to patients diagnosed with thyroid cancer in Australia and New Zealand. Patients and Methods: The Australian and New Zealand Thyroid Cancer Registry (ANZTCR) captures clinical data for all patients, over the age of 18 years, diagnosed with thyroid cancer, confirmed by histopathology report, that have been diagnosed, assessed or treated at a contributing hospital. Data is collected by endocrine surgeons using a web-based interface, REDCap, primarily via direct data entry. Results: A multi-disciplinary Steering Committee was formed, and with operational support from Monash University the ANZTCR was established in early 2017. The pilot phase of the registry is currently operating in Victoria, New South Wales, Queensland, Western Australia and South Australia, with over 30 sites expected to come on board across Australia and New Zealand in 2018. A modified-Delphi process was undertaken to determine the key quality indicators to be reported by the registry, and a minimum dataset was developed comprising information regarding thyroid cancer diagnosis, pathology, surgery, and 30-day follow up. Conclusion: There are very few established thyroid cancer registries internationally, yet clinical quality registries have shown valuable outcomes and patient benefits in other cancers. The establishment of the ANZTCR provides the opportunity for Australia and New Zealand to further understand the current practice in the treatment of thyroid cancer and reasons for variation in outcomes. The engagement of endocrine surgeons in supporting this initiative is crucial. While the pilot registry has a focus on early clinical outcomes, it is anticipated that future collection of longer-term outcome data particularly for patients with the poor prognostic disease will add significant further value to the registry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid%20cancer" title="thyroid cancer">thyroid cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20registry" title=" clinical registry"> clinical registry</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20health" title=" population health"> population health</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20improvement" title=" quality improvement"> quality improvement</a> </p> <a href="https://publications.waset.org/abstracts/95307/development-of-a-bi-national-thyroid-cancer-clinical-quality-registry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20G.%20Smirnova">Tatiana G. Smirnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20G.%20Benjamin"> Stan G. Benjamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land-surface%20models" title="land-surface models">land-surface models</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20prediction" title=" weather prediction"> weather prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary-layer%20processes" title=" boundary-layer processes"> boundary-layer processes</a> </p> <a href="https://publications.waset.org/abstracts/166925/improved-soil-and-snow-treatment-with-the-rapid-update-cycle-land-surface-model-for-regional-and-global-weather-predictions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Priceputu">Adrian Priceputu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Mihaela%20Stan"> Elena Mihaela Stan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20penetration%20test" title="cone penetration test">cone penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20optimization" title=" foundation optimization"> foundation optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power%20stations" title=" solar power stations"> solar power stations</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20pile%20foundations" title=" steel pile foundations"> steel pile foundations</a> </p> <a href="https://publications.waset.org/abstracts/186531/optimization-of-metal-pile-foundations-for-solar-power-stations-using-cone-penetration-test-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Comparisons of Drop Jump and Countermovement Jump Performance for Male Basketball Players with and without Low-Dye Taping Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung%20Yan%20Natalia%20Yeung">Chung Yan Natalia Yeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Kit%20Indy%20Ho"> Man Kit Indy Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kin%20Yu%20Stan%20Chan"> Kin Yu Stan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Pui%20Kipper%20Lam"> Ho Pui Kipper Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Wah%20Genie%20Tong"> Man Wah Genie Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tze%20Chung%20Jim%20Luk"> Tze Chung Jim Luk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive foot pronation is a well-known risk factor of knee and foot injuries such as patellofemoral pain, patellar and Achilles tendinopathy, and plantar fasciitis. Low-Dye taping (LDT) application is not uncommon for basketball players to control excessive foot pronation for pain control and injury prevention. The primary potential benefits of using LDT include providing additional supports to medial longitudinal arch and restricting the excessive midfoot and subtalar motion in weight-bearing activities such as running and landing. Meanwhile, restrictions provided by the rigid tape may also potentially limit functional joint movements and sports performance. Coaches and athletes need to weigh the potential benefits and harmful effects before making a decision if applying LDT technique is worthwhile or not. However, the influence of using LDT on basketball-related performance such as explosive and reactive strength is not well understood. Therefore, the purpose of this study was to investigate the change of drop jump (DJ) and countermovement jump (CMJ) performance before and after LDT application for collegiate male basketball players. In this within-subject crossover study, 12 healthy male basketball players (age: 21.7 ± 2.5 years) with at least 3-year regular basketball training experience were recruited. Navicular drop (ND) test was adopted as the screening and only those with excessive pronation (ND ≥ 10mm) were included. Participants with recent lower limb injury history were excluded. Recruited subjects were required to perform both ND, DJ (on a platform of 40cm height) and CMJ (without arms swing) tests in series during taped and non-taped conditions in the counterbalanced order. Reactive strength index (RSI) was calculated by using the flight time divided by the ground contact time measured. For DJ and CMJ tests, the best of three trials was used for analysis. The difference between taped and non-taped conditions for each test was further calculated through standardized effect ± 90% confidence intervals (CI) with clinical magnitude-based inference (MBI). Paired samples T-test showed significant decrease in ND (-4.68 ± 1.44mm; 95% CI: -3.77, -5.60; p < 0.05) while MBI demonstrated most likely beneficial and large effect (standardize effect: -1.59 ± 0.27) in LDT condition. For DJ test, significant increase in both flight time (25.25 ± 29.96ms; 95% CI: 6.22, 44.28; p < 0.05) and RSI (0.22 ± 0.22; 95% CI: 0.08, 0.36; p < 0.05) were observed. In taped condition, MBI showed very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.49) in flight time, possibly beneficial and small effect (standardized effect: -0.26 ± 0.29) in ground contact time and very likely beneficial and moderate effect (standardized effect: 0.77 ± 0.42) in RSI. No significant difference in CMJ was observed (95% CI: -2.73, 2.08; p > 0.05). For basketball players with pes planus, applying LDT could substantially support the foot by elevating the navicular height and potentially provide acute beneficial effects in reactive strength performance. Meanwhile, no significant harmful effect on CMJ was observed. Basketball players may consider applying LDT before the game or training to enhance the reactive strength performance. However since the observed effects in this study could not generalize to other players without excessive foot pronation, further studies on players with normal foot arch or navicular height are recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flight%20time" title="flight time">flight time</a>, <a href="https://publications.waset.org/abstracts/search?q=pes%20planus" title=" pes planus"> pes planus</a>, <a href="https://publications.waset.org/abstracts/search?q=pronated%20foot" title=" pronated foot"> pronated foot</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20strength%20index" title=" reactive strength index"> reactive strength index</a> </p> <a href="https://publications.waset.org/abstracts/97005/comparisons-of-drop-jump-and-countermovement-jump-performance-for-male-basketball-players-with-and-without-low-dye-taping-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>