CINXE.COM
Search results for: gas chromatography/mass spectrometry
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gas chromatography/mass spectrometry</title> <meta name="description" content="Search results for: gas chromatography/mass spectrometry"> <meta name="keywords" content="gas chromatography/mass spectrometry"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gas chromatography/mass spectrometry" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gas chromatography/mass spectrometry"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4146</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gas chromatography/mass spectrometry</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4146</span> A Step-by-Step Analytical Protocol For Detecting and Identifying Minor Differences In Like Materials and Polymers Using Pyrolysis -Gas Chromatography/Mass Spectrometry Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting and identifying differences in like polymer materials are key factors in failure and deformulation analysis, and reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. In this presentation, the analysis of the differences in three polystyrene samples is demonstrated. Although the three samples look very similar by Evolve gas analysis (EGA) and Flash pyrolysis, there are indications of small levels of other materials. By performing Thermal desorption-GC/MS, the additive compounds between samples show the differences. EGA, flash pyrolysis, and thermal desorption analysis are the different modes of operations of the micro-furnace pyrolyzer enabling users to perform multiple analytical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gas%20chromatography%2FMass%20spectrometry" title="Gas chromatography/Mass spectrometry">Gas chromatography/Mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139716/a-step-by-step-analytical-protocol-for-detecting-and-identifying-minor-differences-in-like-materials-and-polymers-using-pyrolysis-gas-chromatographymass-spectrometry-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4145</span> Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20A.%20Conlan">Xavier A. Conlan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromatography" title="chromatography">chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry%20methamphetamine" title=" mass spectrometry methamphetamine"> mass spectrometry methamphetamine</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20segmented%20outlet%20flow%20column" title=" parallel segmented outlet flow column"> parallel segmented outlet flow column</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20sciences" title=" forensic sciences"> forensic sciences</a> </p> <a href="https://publications.waset.org/abstracts/23798/chemical-fingerprinting-of-complex-samples-with-the-aid-of-parallel-outlet-flow-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4144</span> Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Pashaei">Reza Pashaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Dzingelevi%C4%8Dien%C4%97"> Reda Dzingelevičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish" title="fish">fish</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20extraction" title=" solid-phase extraction"> solid-phase extraction</a> </p> <a href="https://publications.waset.org/abstracts/143257/multiclass-analysis-of-pharmaceuticals-in-fish-and-shrimp-tissues-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4143</span> New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayalakshmi%20Marella">Vijayalakshmi Marella</a>, <a href="https://publications.waset.org/abstracts/search?q=NageswaraRaoPilli"> NageswaraRaoPilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montelukast" title="Montelukast">Montelukast</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=montelukast%20d6" title=" montelukast d6"> montelukast d6</a>, <a href="https://publications.waset.org/abstracts/search?q=FDA%20guidelines" title=" FDA guidelines"> FDA guidelines</a> </p> <a href="https://publications.waset.org/abstracts/29304/new-method-for-the-determination-of-montelukast-in-human-plasma-by-solid-phase-extraction-using-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4142</span> Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Malik"> Ashok Kumar Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20phase%20sorptive%20extraction" title="fabric phase sorptive extraction">fabric phase sorptive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry" title=" gas chromatography-mass spectrometry"> gas chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title=" organochlorine pesticides"> organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20pretreatment" title=" sample pretreatment"> sample pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/80494/use-of-fabric-phase-sorptive-extraction-with-gas-chromatography-mass-spectrometry-for-the-determination-of-organochlorine-pesticides-in-various-aqueous-and-juice-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4141</span> Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20A.%20Siddique">Nadeem A. Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mujeeb"> Mohd Mujeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahkashan"> Kahkashan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=delphinium%20denudatum" title=" delphinium denudatum"> delphinium denudatum</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/56463/aflatoxins-characterization-in-remedial-plant-delphinium-denudatum-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4140</span> Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jarmkom">K. Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eakwaropas"> P. Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Khobjai"> W. Khobjai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Techaeoi"> S. Techaeoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20analysis" title="GC-MS analysis">GC-MS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Pang-Rum" title=" Pang-Rum"> Pang-Rum</a> </p> <a href="https://publications.waset.org/abstracts/61580/stability-of-essential-oils-in-pang-rum-by-gas-chromatography-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4139</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bazaralieva">A. B. Bazaralieva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Turgumbayeva"> A. A. Turgumbayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20sativum" title="Allium sativum">Allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/152011/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4138</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bazaraliyeva%20Aigerim%20Bakytzhanovna">Bazaraliyeva Aigerim Bakytzhanovna</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgumbayeva%20Aknur%20Amanbekovna"> Turgumbayeva Aknur Amanbekovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20sativum" title="allium sativum">allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/151198/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4137</span> Deformulation and Comparative Analysis of Apparently Similar Polymers Using Multiple Modes of Pyrolysis-Gc/Ms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting and identifying differences in like polymer materials are key factors in deformulation, comparative analysis as well as reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro-furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. This presentation demonstrates the study of two similar polymers by performing different mode of operations in the same system: Evolve gas analysis (EGA), Flash pyrolysis, Thermal desorption analysis, and Heart-cutting analysis. Unknown polymer materials and their chemical compositions are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry" title="gas chromatography/mass spectrometry">gas chromatography/mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139719/deformulation-and-comparative-analysis-of-apparently-similar-polymers-using-multiple-modes-of-pyrolysis-gcms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4136</span> Composition and in Vitro Antimicrobial Activity of Three Eryngium L. Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mickiene">R. Mickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Friese"> A. Friese</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Rosler"> U. Rosler</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maruska"> A. Maruska</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ragazinskiene"> O. Ragazinskiene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on phytochemistry and antimicrobial activities of compounds isolated and identified from three species of Eryngium. The antimicrobial activity of extracts from Eryngiumplanum L., Eryngium maritimum L., Eryngium campestre L. grown in Lithuania, were tested by the method of series dilutions, against different bacteria species: Escherichia coli, Proteus vulgaris and Staphylococcus aureus with and without antibiotic resistances, originating from livestock. The antimicrobial activity of extracts was described by determination of the minimal inhibitory concentration. Preliminary results show that the minimal inhibitory concentration range between 8.0 % and 17.0 % for the different Eryngium extracts and bacterial species.The total amounts ofphenolic compounds and total amounts of flavonoids were tested in the methanolic extracts of the plants. Identification and evaluation of the phenolic compounds were performed by liquid chromatography. The essential oils were analyzed by gas chromatography mass spectrometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activities" title="antimicrobial activities">antimicrobial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryngium%20L.%20species" title=" Eryngium L. species"> Eryngium L. species</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20mass%20spectrometry" title=" gas chromatography mass spectrometry"> gas chromatography mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/4219/composition-and-in-vitro-antimicrobial-activity-of-three-eryngium-l-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4135</span> Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyan%20Li">Fangyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Min%20Lee"> Lin Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu%20Peh"> Hui Zhu Peh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoet%20Harn%20Chan"> Shoet Harn Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advantame" title="advantame">advantame</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetener" title=" sweetener"> sweetener</a> </p> <a href="https://publications.waset.org/abstracts/26887/determination-of-a-novel-artificial-sweetener-advantame-in-food-by-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4134</span> Heroin and Opiates Metabolites Tracing by Gas-Chromatography Isotope Ratio Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Te%20Yen">Yao-Te Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Hsin%20Cheng"> Chao-Hsin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Shun%20Huang"> Meng-Shun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Zong%20Cyue"> Shan-Zong Cyue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'Poppy-seed defense' has been a serious problem all over the world, that is because the opiates metabolites in urine are difficult to distinguish where they come from precisely. In this research, a powerful analytic method has been developed to trace the opiates metabolites in urine by Gas-Chromatography Isotope Ratio Mass Spectrometry (GC-IRMS). In order to eliminate the interference of synthesis to heroin or metabolism through human body, opiates metabolites in urine and sized heroin were hydrolyzed to morphine. Morphine is the key compound for tracing between opiates metabolites and seized heroin in this research. By matching δ13C and δ15N values through morphine, it is successful to distinguish the opiates metabolites coming from heroin or medicine. We tested seven heroin abuser’s metabolites and seized heroin in crime sites, the result showed that opiates metabolites coming from seized heroin, the variation of δ13C and δ15N for morphine are within 0.2 and 2.5‰, respectively. The variation of δ13C and δ15N for morphine are reasonable with the result of matrix match experiments. Above all, the uncertainty of 'Poppy-seed defense' can be solved easily by this analytic method, it provides the direct evidence for judge to make accurate conviction without hesitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poppy-seed%20defense" title="poppy-seed defense">poppy-seed defense</a>, <a href="https://publications.waset.org/abstracts/search?q=heroin" title=" heroin"> heroin</a>, <a href="https://publications.waset.org/abstracts/search?q=opiates%20metabolites" title=" opiates metabolites"> opiates metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=isotope%20ratio%20mass%20spectrometry" title=" isotope ratio mass spectrometry"> isotope ratio mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/74236/heroin-and-opiates-metabolites-tracing-by-gas-chromatography-isotope-ratio-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4133</span> Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Gonzalez">Alexandre Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Benfodda"> Zohra Benfodda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20B%C3%A9nim%C3%A9lis"> David Bénimélis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Xavier%20Fontaine"> Jean-Xavier Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Molini%C3%A9"> Roland Molinié</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Meffre"> Patrick Meffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillandsia" title="tillandsia">tillandsia</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29" title=" headspace solid phase microextraction (HS-SPME)"> headspace solid phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry%20%28GC-MS%29" title=" gas chromatography-mass spectrometry (GC-MS)"> gas chromatography-mass spectrometry (GC-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=scentless%20flowers" title=" scentless flowers"> scentless flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds%20%28VOCs%29" title=" volatile organic compounds (VOCs)"> volatile organic compounds (VOCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA%20analysis" title=" PCA analysis"> PCA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmap" title=" heatmap"> heatmap</a> </p> <a href="https://publications.waset.org/abstracts/152016/analysis-of-the-volatile-organic-compounds-of-tillandsia-flowers-by-hs-spmegc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4132</span> Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Godwin%20Dennison">Godwin Dennison</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Boulind"> C. E. Boulind</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Gould"> O. Gould</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20de%20Lacy%20Costello"> B. de Lacy Costello</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Allison"> J. Allison</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20White"> P. White</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ewings"> P. Ewings</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wicaksono"> A. Wicaksono</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Curtis"> N. J. Curtis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pullyblank"> A. Pullyblank</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jayne"> D. Jayne</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Covington"> J. A. Covington</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ratcliffe"> N. Ratcliffe</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Francis"> N. K. Francis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compound" title=" volatile organic compound"> volatile organic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20mass%20spectrometry" title=" gas chromatography mass spectrometry"> gas chromatography mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20asymmetric%20ion%20mobility%20spectrometry" title=" field asymmetric ion mobility spectrometry"> field asymmetric ion mobility spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=selected%20ion%20flow%20tube%20mass%20spectrometry" title=" selected ion flow tube mass spectrometry"> selected ion flow tube mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/152812/urinary-volatile-organic-compound-testing-in-fast-track-patients-with-suspected-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4131</span> Antibacterial and Antifungal Activities of the Essential Oil of Pulicaria jaubertii Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Methaq%20Algabr">Methaq Algabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al-Hajj"> Nabil Al-Hajj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameerh%20Jaber"> Ameerh Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Amtellah%20Alshotobi"> Amtellah Alshotobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaima%27a%20Al-suryhi"> Shaima'a Al-suryhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadah%20Whaban"> Gadah Whaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawal%20Alshehari"> Nawal Alshehari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steam distillation of the essential oil of P. jaubertii was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to chromatography–mass spectrometry (GC-MS). The major chemical components identified in P. jaubertii essential oil include carvotanacetone (63.975%), 1-methyl-1,2-propanedione (5.887%), 2,5-dimethoxy-para-cymene (3.303%) and ar-curcumene (3.276%). The antimicrobial activity of the essential oil of P. jaubertii was evaluated against all tested microorganisms. P. jaubertii essential oil inhibited all tested microorganisms except Escherichia coli with a minimum inhibitory concentration (MIC) of 5.0 μg/mL against Staphylococcus aureus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pulicaria%20jaubertii" title="Pulicaria jaubertii">Pulicaria jaubertii</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Carvotancetone" title=" Carvotancetone"> Carvotancetone</a> </p> <a href="https://publications.waset.org/abstracts/160906/antibacterial-and-antifungal-activities-of-the-essential-oil-of-pulicaria-jaubertii-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4130</span> Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juni%20C.%20Kim">Juni C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20R.%20Robuck"> Anna R. Robuck</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20I.%20Walker"> Douglas I. Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposome" title="exposome">exposome</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolome" title=" metabolome"> metabolome</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20metabolomics" title=" computational metabolomics"> computational metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20mass%20spectrometry" title=" high-resolution mass spectrometry"> high-resolution mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a> </p> <a href="https://publications.waset.org/abstracts/157128/establishing-a-computational-screening-framework-to-identify-environmental-exposures-using-untargeted-gas-chromatography-high-resolution-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4129</span> Dairy Wastewater Treatment by Electrochemical and Catalytic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basanti%20Ekka">Basanti Ekka</a>, <a href="https://publications.waset.org/abstracts/search?q=Talis%20Juhna"> Talis Juhna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysis" title="catalysis">catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20wastewater" title=" dairy wastewater"> dairy wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20method" title=" electrochemical method"> electrochemical method</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/111262/dairy-wastewater-treatment-by-electrochemical-and-catalytic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4128</span> GC-MS Analysis of Essential Oil from the Leaves and Fruits of Artemesia Campestris from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakchiche">B. Bakchiche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Guenane"> H. Guenane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bireche"> M. Bireche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Noureddinne"> A. Noureddinne</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gherib"> A. Gherib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical composition of the essential oils obtained by hydrodistillation from Artemisia campestris L (family Asteraceae) collected in Djebel Amour (Sahara Atlas, Algeria). Aerial parts were also evaluated by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The analyses for leaves and fruits of A. campestris resulted in the identification of thirty-one compounds, representing 91.8 % of the total oil and the yields were 0.33% (v/dry weight). The main components were β-pinene and sabinene (25.6% and 17% respectively) followed by α-pinene (9.9%), limonene (6.6 %) and p-cymene (4.1%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemesia%20campestris" title=" Artemesia campestris"> Artemesia campestris</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/14921/gc-ms-analysis-of-essential-oil-from-the-leaves-and-fruits-of-artemesia-campestris-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4127</span> Development of Biotechnological Emulsion Based on Bullfrog (Rana catesbeiana Shaw) Oil: A Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lourena%20M.%20Ver%C3%ADssimo">Lourena M. Veríssimo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20A.%20Machado"> Lucas A. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Rutckeviski"> Renata Rutckeviski</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20H.%20Xavier%20J%C3%BAnior"> Francisco H. Xavier Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89verton%20N.%20Alencar"> Éverton N. Alencar</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreza%20R.%20V.%20Morais"> Andreza R. V. Morais</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20R.%20F.%20Dantas"> Teresa R. F. Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20M.%20Oliveira"> Christian M. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arn%C3%B3bio%20A.%20Silva%20J%C3%BAnior"> Arnóbio A. Silva Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryvaldo%20S.%20T.%20Egito"> Eryvaldo S. T. Egito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to obtain emulsion systems based on bullfrog oil (BO). The BO was extracted at 80ºC and analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). The critical Hydrophilic-Lipophilic Balance (HLBc) Assay of the BO was performed through BO, Tween® 20, Span® 80 and deionized water mixtures using an Ultra-Turrax® and determined using dynamic light scattering, pH, electrical conductivity and creaming rate. Then, a pseudoternary phase diagram (PPD) was constructed by water titration. The GC/MS analysis of BO suggested Methyl Oleate (9.26%) as major compound. The HLBc was 12.1, wherein the correspondent emulsion showed a pH of 4.83±1.29, electrical conductivity of 103.65 µS, creaming rate of 2.51±0.54%, droplet size of 207.07±8.31 nm and polydispersity index of 0.212±0.005. The PPD showed different formulations characterized as O/W emulsions. Thus, the PPD proved to be a useful tool to produce BO emulsions, in which their constituents may vary within the range of the desired system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullfrog%20%28Rana%20catesbeiana%20Shaw%29%20oil" title="bullfrog (Rana catesbeiana Shaw) oil">bullfrog (Rana catesbeiana Shaw) oil</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20production" title=" emulsion production"> emulsion production</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic-lipophilic%20balance" title=" hydrophilic-lipophilic balance"> hydrophilic-lipophilic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry%20analysis" title=" gas chromatography/mass spectrometry analysis"> gas chromatography/mass spectrometry analysis</a> </p> <a href="https://publications.waset.org/abstracts/11772/development-of-biotechnological-emulsion-based-on-bullfrog-rana-catesbeiana-shaw-oil-a-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4126</span> Synthetic Cannabinoids: Extraction, Identification and Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niki%20K.%20Burns">Niki K. Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20R.%20Pearson"> James R. Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Stevenson"> Paul G. Stevenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20A.%20Conlan"> Xavier A. Conlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospray%20mass%20spectrometry" title="electrospray mass spectrometry">electrospray mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title=" high performance liquid chromatography"> high performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20phase%20extraction" title=" solid phase extraction"> solid phase extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cannabinoids" title=" synthetic cannabinoids"> synthetic cannabinoids</a> </p> <a href="https://publications.waset.org/abstracts/23354/synthetic-cannabinoids-extraction-identification-and-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4125</span> GC-MS Analysis of Essential Oil From Satureja Hispidula: A Medicinal Plant from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habiba%20Rechek">Habiba Rechek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Haouat"> Ammar Haouat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratiba%20Mekkiou"> Ratiba Mekkiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20C.%20G.%20A.%20Pinto"> Diana C. G. A. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20M.%20S.%20Silva"> Artur M. S. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satureja hispidula is an aromatic and medicinal plant belonging to the family of Lamiaceae native to Algeria, just like mint or thyme. Although she is less known to the general public than her more famous cousins, this species has many therapeutic properties that have been used for centuries in traditional medicine of some regions. For generations, Satureja hispidula has been used in traditional medicine to treat various ailments, including respiratory diseases and diabetes. Its aroma, often described as close to that of mint, gives it a special interest in aromatherapy. Due to the growing interest in the beneficial properties of plant-derived essential oils, the aim of this study is to analyze the chemical composition of S. hispidula essential oil by gas chromatography coupled with mass spectrometry (GC-MS). Identifying the main constituents of essential oil will allow better understanding its chemical nature and exploring its potential for culinary and therapeutic application. The study of the essential oil of S. hispidula reveals a composition rich in 83 compounds, including menthone, pulegone and piperitone as main constituents. This gas chromatography analysis coupled with mass spectrometry provides valuable information about the chemical nature of this oil. However, more in-depth studies are needed to explore the potentially health-enhancing properties of this essential oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satureja%20hispidula" title="satureja hispidula">satureja hispidula</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=menthone" title=" menthone"> menthone</a>, <a href="https://publications.waset.org/abstracts/search?q=pulegone" title=" pulegone"> pulegone</a> </p> <a href="https://publications.waset.org/abstracts/188874/gc-ms-analysis-of-essential-oil-from-satureja-hispidula-a-medicinal-plant-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4124</span> Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanghui%20Xu">Yanghui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Ou"> Qin Ou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xintu%20Wang"> Xintu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Hou"> Feng Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Li"> Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Peter%20van%20der%20Hoek"> Jan Peter van der Hoek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Liu"> Gang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoplastics" title=" nanoplastics"> nanoplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concentration" title=" mass concentration"> mass concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=WWTPs" title=" WWTPs"> WWTPs</a>, <a href="https://publications.waset.org/abstracts/search?q=Py-GC%2FMS" title=" Py-GC/MS"> Py-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/165249/assessing-the-mass-concentration-of-microplastics-and-nanoplastics-in-wastewater-treatment-plants-by-pyrolysis-gas-chromatographymass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4123</span> Simultaneous Quantification of Glycols in New and Recycled Anti-Freeze Liquids by GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Madalin%20Danila">George Madalin Danila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaiella%20Cretu"> Mihaiella Cretu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Puscasu"> Cristian Puscasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycol-based anti-freeze liquids, commonly composed of ethylene glycol or propylene glycol, have important uses in automotive cooling, but they should be handled with care due to their toxicity; ethylene glycol is highly toxic to humans and animals. A fast, accurate, precise, and robust method was developed for the simultaneous quantification of 7 most important glycols and their isomers. Glycols were analyzed from diluted sample solution of coolants using gas-chromatography coupled with mass spectrometry in single ion monitoring mode. Results: The method was developed and validated for 7 individual glycols (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol). Limits of detection (1-2 μg/mL) and limit of quantification (10 μg/mL) obtained were appropriate. The present method was applied for the determination of glycols in 10 different anti-freeze liquids commercially available on the Romanian market, proving to be reliable. A method that requires only a two-step dilution of anti-freeze samples combined with direct liquid injection GC-MS was validated for the simultaneous quantification of 7 glycols (and their isomers) in 10 different types of anti-freeze liquids. The results obtained in the validation procedure proved that the GC-MS method is sensitive and precise for the quantification of glycols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycols" title="glycols">glycols</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-freeze" title=" anti-freeze"> anti-freeze</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-chromatography" title=" gas-chromatography"> gas-chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a> </p> <a href="https://publications.waset.org/abstracts/178902/simultaneous-quantification-of-glycols-in-new-and-recycled-anti-freeze-liquids-by-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4122</span> On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Murthy%20Akurathi">Narayana Murthy Akurathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Lakshmi%20Marella"> Vijaya Lakshmi Marella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20critical%20fluid%20extraction%20%28SFE%29" title="super critical fluid extraction (SFE)">super critical fluid extraction (SFE)</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20critical%20fluid%20chromatography%20%28SFC%29" title=" super critical fluid chromatography (SFC)"> super critical fluid chromatography (SFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=LCMS%2FMS" title=" LCMS/MS"> LCMS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMS%2FMS" title=" GCMS/MS"> GCMS/MS</a> </p> <a href="https://publications.waset.org/abstracts/29307/on-line-super-critical-fluid-extraction-supercritical-fluid-chromatography-mass-spectrometry-a-technique-in-pharmaceutical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4121</span> Antibacterial Activities, Chemical Constitutes and Acute Toxicity of Peganum Harmala L. Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samy%20Selim">Samy Selim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural products are still major sources of innovative therapeutic agents for various conditions, including infectious diseases. Peganum harmala L. oil had wide range uses as traditional medicinal plants. The current study was designed to evaluate the antibacterial activity of P. harmala essential oil. The chemical constitutes and toxicity of these oils was also determined to obtain further information on the correlation between the chemical contents and antibacterial activity. The antibacterial effect of the essential oils of P. harmala oil was studied against some foodborne pathogenic bacteria species. The oil of plant was subjected to gas chromatography-mass spectrometry (GC/MS). The impact of oils administration on the change in rate of weight gain and complete blood picture in hamsters were investigated. P. harmala oil had strong antibacterial effect against bacterial species especially at minimum inhibitory concentration (MIC) less than 75.0 μg/ml. From the oil of P. harmala, forty one compounds were identified, and the major constituent was 1-hexyl-2-nitrocyclohexane (9.07%). Acute toxicity test was performed on hamsters and showed complete survival after 14 days, and there were no toxicity symptoms occurred. This study demonstrated that these essential oils seemed to be destitute of toxic effect which could compromise the medicinal use of these plants in folk medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20mass%20spectrometry" title="analysis mass spectrometry">analysis mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activities" title=" antibacterial activities"> antibacterial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constitutes" title=" chemical constitutes"> chemical constitutes</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20gain" title=" weight gain"> weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/2219/antibacterial-activities-chemical-constitutes-and-acute-toxicity-of-peganum-harmala-l-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4120</span> Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Mon%20Saw">Su Mon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Rothnagel"> Joe Rothnagel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=HEK293%20cells" title=" HEK293 cells"> HEK293 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography-mass%20spectrometry" title=" liquid chromatography-mass spectrometry"> liquid chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=ProteinPilot" title=" ProteinPilot"> ProteinPilot</a>, <a href="https://publications.waset.org/abstracts/search?q=Strong%20Cation%20Exchange%20Chromatography" title=" Strong Cation Exchange Chromatography"> Strong Cation Exchange Chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS-PAGE" title=" SDS-PAGE"> SDS-PAGE</a>, <a href="https://publications.waset.org/abstracts/search?q=sPEPs" title=" sPEPs"> sPEPs</a> </p> <a href="https://publications.waset.org/abstracts/55031/identification-and-characterization-of-small-peptides-encoded-by-small-open-reading-frames-using-mass-spectrometry-and-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4119</span> Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Walsh">Ian Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Nguyen-Khuong"> Terry Nguyen-Khuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20H.%20%20Taron"> Christopher H. Taron</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20M.%20Rudd"> Pauline M. Rudd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20glycan%20assignment" title=" automated glycan assignment"> automated glycan assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/79339/glycan-analyzer-software-to-annotate-glycan-structures-from-exoglycosidase-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4118</span> Identification of Lipo-Alkaloids and Fatty Acids in Aconitum carmichaelii Using Liquid Chromatography–Mass Spectrometry and Gas Chromatography–Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liang">Ying Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Li"> Na Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipo-alkaloid is a kind of C19-norditerpenoid alkaloids existed in Aconitum species, which usually contains an aconitane skeleton and one or two fatty acid residues. The structures are very similar to that of diester-type alkaloids, which are considered as the main bioactive components in Aconitum carmichaelii. They have anti-inflammatory, anti-nociceptive, and anti-proliferative activities. So far, more than 200 lipo-alkaloids were reported from plants, semisynthesis, and biotransformations. In our research, by the combination of ultra-high performance liquid chromatography-quadruple-time of flight mass spectrometry (UHPLC-Q-TOF-MS) and an in-house database, 148 lipo-alkaloids were identified from A. carmichaelii, including 93 potential new compounds and 38 compounds with oxygenated fatty acid moieties. To our knowledge, this is the first time of the reporting of the oxygenated fatty acids as the side chains in naturally-occurring lipo-alkaloids. Considering the fatty acid residues in lipo-alkaloids should come from the free acids in the plant, the fatty acids and their relationship with lipo-alkaloids were further investigated by GC-MS and LC-MS. Among 17 fatty acids identified by GC-MS, 12 were detected as the side chains of lipo-alkaloids, which accounted for about 1/3 of total lipo-alkaloids, while these fatty acid residues were less than 1/4 of total fatty acid residues. And, total of 37 fatty acids were determined by UHPCL-Q-TOF-MS, including 18 oxidized fatty acids firstly identified from A. carmichaelii. These fatty acids were observed as the side chains of lipo-alkaloids. In addition, although over 140 lipo-alkaloids were identified, six lipo-alkaloids, 8-O-linoleoyl-14-benzoylmesaconine (1), 8-O-linoleoyl-14-benzoylaconine (2), 8-O-palmitoyl-14-benzoylmesaconine (3), 8-O-oleoyl-14-benzoylmesaconine (4), 8-O-pal-benzoylaconine (5), and 8-O-ole-Benzoylaconine (6), were found to be the main components, which accounted for over 90% content of total lipo-alkaloids. Therefore, using these six components as standards, a UHPLC-Triple Quadrupole-MS (UHPLC-QQQ-MS) approach was established to investigate the influence of processing on the contents of lipo-alkaloids. Although it was commonly supposed that the contents of lipo-alkaloids increased after processing, our research showed that no significant change was observed before and after processing. Using the same methods, the lipo-alkaloids in the lateral roots of A. carmichaelii and the roots of A. kusnezoffii were determined and quantified. The contents of lipo-alkaloids in A. kusnezoffii were close to that of the parent roots of A. carmichaelii, while the lateral roots had less lipo-alkaloids than the parent roots. This work was supported by Macao Science and Technology Development Fund (086/2013/A3 and 003/2016/A1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aconitum%20carmichaelii" title="Aconitum carmichaelii">Aconitum carmichaelii</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS" title=" LC-MS"> LC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipo-alkaloids" title=" lipo-alkaloids"> lipo-alkaloids</a> </p> <a href="https://publications.waset.org/abstracts/68569/identification-of-lipo-alkaloids-and-fatty-acids-in-aconitum-carmichaelii-using-liquid-chromatography-mass-spectrometry-and-gas-chromatography-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4117</span> Parabens, Paraben Metabolites and Triclocarban in Sediment Samples from the Trondheim Fjord, Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Vike-Jonas">Kristine Vike-Jonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Susana%20V.%20Gonzalez"> Susana V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olav%20L.%20Bakkerud"> Olav L. Bakkerud</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoline%20S.%20Gjelstad"> Karoline S. Gjelstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20N.%20Aslam"> Shazia N. Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Mikkelsen"> Øyvind Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Asimakopoulos"> Alexandros Asimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> P-hydrobenzoic acid esters (parabens), paraben metabolites, and triclocarban (TCC) are a group of synthetic antimicrobials classified as endocrine disrupting chemicals (EDCs) and emerging pollutants. The aim of this study was to investigate the levels of these compounds in sediment near the effluent of a wastewater treatment plant (WWTP) in the Trondheim Fjord, Norway. Paraben, paraben metabolites, and TCC are high volume production chemicals that are found in a range of consumer products, especially pharmaceuticals and personal care products (PCPs). In this study, six parabens (methyl paraben; MeP, ethyl paraben; EtP, propyl paraben; PrP, butyl paraben; BuP, benzyl paraben; BezP, heptyl paraben; HeP), four paraben metabolites (4-hydroxybenzoic acid; 4-HB, 3,4-dihydroxybenzoic acid; 3,4-DHB, methyl protocatechuic acid; OH-MeP, ethyl protocatechuic acid; OH-EtP) and TCC were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in 64 sediment samples from 10 different locations outside Trondheim, Norway. Of these 11 target analytes, four were detected in 40 % or more of the samples. The sum of six parabens (∑Parabens), four paraben metabolites (∑Metabolites) and TCC in sediment ranged from 4.88 to 11.56 (mean 6.81) ng/g, 52.16 to 368.28 (mean 93.89) ng/g and 0.53 to 3.65 (mean 1.50) ng/g dry sediment, respectively. Pearson correlation coefficients indicated that TCC was positively correlated with OH-MeP, but negatively correlated with 4-HB. To the best of the author’s knowledge, this is the first time parabens, paraben metabolites and TCC have been reported in the Trondheim Fjord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabens" title="parabens">parabens</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/113904/parabens-paraben-metabolites-and-triclocarban-in-sediment-samples-from-the-trondheim-fjord-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>