CINXE.COM

Search results for: rainfed agriculture

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rainfed agriculture</title> <meta name="description" content="Search results for: rainfed agriculture"> <meta name="keywords" content="rainfed agriculture"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rainfed agriculture" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rainfed agriculture"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1606</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rainfed agriculture</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Hedayatipoor">Abolfazl Hedayatipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younesi%20Alamooti"> Mohammad Younesi Alamooti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture" title="rainfed agriculture">rainfed agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=conservative%20tillage" title=" conservative tillage"> conservative tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/86573/the-effect-of-conservative-tillage-on-physical-properties-of-soil-and-yield-of-rainfed-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> Evaluation of Potential Production of Maize Genotypes of Early Maturity in Rainfed Lowland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=St.%20Subaedah">St. Subaedah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Takdir"> A. Takdir</a>, <a href="https://publications.waset.org/abstracts/search?q=Netty"> Netty</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hidrawati"> D. Hidrawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize development at the rainfed lowland after rice is often confronted with the occurrence of drought stress at the time of entering the generative phase, which will cause be hampered crop production. Consequently, in the utilization of the rainfed lowland areas optimally, an effort that can be done using the varieties of early maturity to minimize crop failures due to its short rainy season. The aim of this research was evaluating the potential yield of genotypes of candidates of maize early maturity in the rainfed lowland areas. The study was conducted during May to August 2016 at South Sulawesi, Indonesia. The study used randomized block design to compare 12 treatments and consists of 8 genotypes namely CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8 and the use of four varieties, namely Bima 3, Bima 7, Lamuru and Gumarang. The results showed that genotype of CH2, CH3, CH5, CH 6, CH7 and CH8 harvesting has less than 90 days. There are two genotypes namely genotypes of CH7 and CH8 that have a fairly high production respectively of 7.16 tons / ha and 8.11 tons/ ha and significantly not different from the superior varieties Bima3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20maturity" title=" early maturity"> early maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20potential" title=" yield potential"> yield potential</a> </p> <a href="https://publications.waset.org/abstracts/56489/evaluation-of-potential-production-of-maize-genotypes-of-early-maturity-in-rainfed-lowland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Manivasagam">V. S. Manivasagam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nagarajan"> R. Nagarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AquaCrop" title="AquaCrop">AquaCrop</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20modeling" title=" crop modeling"> crop modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20maize" title=" rainfed maize"> rainfed maize</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/54765/evaluation-of-water-management-options-to-improve-the-crop-yield-and-water-productivity-for-semi-arid-watershed-in-southern-india-using-aquacrop-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Vaezi">Ali Reza Vaezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouldouz%20Bakhshi%20Rad"> Ouldouz Bakhshi Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20area" title="agricultural area">agricultural area</a>, <a href="https://publications.waset.org/abstracts/search?q=gully%20properties" title=" gully properties"> gully properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure" title=" soil structure"> soil structure</a>, <a href="https://publications.waset.org/abstracts/search?q=USLE" title=" USLE"> USLE</a> </p> <a href="https://publications.waset.org/abstracts/174181/relationship-between-gully-development-and-characteristics-of-drainage-area-in-semi-arid-region-nw-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Water Management in Rice Plants of Dry Season in the Rainfed Lowland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Arifin">Zainal Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeri"> Mohammad Saeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to determine the efficiency of irrigation use on the growth and yield of two varieties of rice. Water management research on rainfed lowland rice was carried out in dry season (DS I) 2016 in an area of 10,000 m2 in Bunbarat Village, Rubaru Subdistrict, Sumenep Regency. The research was randomized block design factorial with 8 treatments and repeated 3 times, ie Factor I (varieties): (a) Inpago 9, and (b) Sidenuk; factor II (irrigation): (a) Alternate Wetting and Drying, (b) intermittent, (c) submerged, and (d) inundated. The results showed that dominant weed species such as purslane (Portulaca oleraceae L.) and barnyard grass (Echinochloa crusgalli) were mostly found in rice cultivation with Alternate Wetting and Drying, intermittent and submerged irrigation treatment, while the lowest was inundated irrigation. The use of Sidenuk variety with Alternate Wetting and Drying irrigation yielded 5.7 t/ha dry grain harvest (dgh) and was not significantly different from the inundated watering using the Sidenuk variety (6.2 t/ha dgh). With Alternate Wetting and Drying irrigation technique, water use is more efficient as much as 1,503 m3/ha so as to produce 1 kg of grain, it needs 459 liters of water compared to inundated irrigation (665 liters/kg of grain). Results of analysis of rice farming Sidenuk variety with Alternate Wetting and Drying irrigation has the highest B/C ratio (2.56) so that economically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20management" title="water management">water management</a>, <a href="https://publications.waset.org/abstracts/search?q=varieties" title=" varieties"> varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20lowland" title=" rainfed lowland"> rainfed lowland</a> </p> <a href="https://publications.waset.org/abstracts/90333/water-management-in-rice-plants-of-dry-season-in-the-rainfed-lowland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> Identifying the Phases of Indian Agriculture Towards Desertification: An Introspect of Karnataka State, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Das">Arun Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian agriculture is acclaimed from the dates of Indus civilization (2500 BC). Since this time until the day, there were tremendous expansion in terms of space and technology has taken place. Abrupt growth in technology took place past one and half century. Consequent to this development, the land which was brought under agriculture in the initial stages of introducing agriculture for the first time, that land is not possessing the same physical condition. Either it has lost the productive capacity or modified into semi agriculture land. On the grounds of its capacity and interwoven characteristics seven phases of agriculture scenario has been identified. Most of the land is on the march of desertification. Identifying the stages and the phase of the agriculture scenario is most relevant from the point of view of food security at regional, national and at global level. Secondly decisive measure can put back the degenerating environmental condition into arrest. GIS and Remote sensing applications have been used to identify the phases of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20phases" title="agriculture phases">agriculture phases</a>, <a href="https://publications.waset.org/abstracts/search?q=desertification" title=" desertification"> desertification</a>, <a href="https://publications.waset.org/abstracts/search?q=deforestation" title=" deforestation"> deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=foods%20security" title=" foods security"> foods security</a>, <a href="https://publications.waset.org/abstracts/search?q=transmigration" title=" transmigration "> transmigration </a> </p> <a href="https://publications.waset.org/abstracts/25346/identifying-the-phases-of-indian-agriculture-towards-desertification-an-introspect-of-karnataka-state-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> Urban Land Expansion Impact Assessment on Agriculture Land in Kabul City, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sharif%20Ahmadi">Ahmad Sharif Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Kajita"> Yoshitaka Kajita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kabul city is experiencing urban land expansion in an unprecedented scale, especially since the last decade. With massive population expansion and fast economic development, urban land has increasingly expanded and encroached upon agriculture land during the urbanization history of the city. This paper evaluates the integrated urban land expansion impact on agriculture land in Kabul city since the formation of the basic structure of the city between 1962-1964. The paper studies the temporal and spatial characteristic of agriculture land and agriculture land loss in Kabul city using geographic information system (GIS) and remote sensing till 2008. Many temporal Landsat Thematic Mapper (TM) imageries were interpreted to detect the temporal and spatial characteristics of agriculture land loss. Different interval study periods, however, had vast difference in the agriculture land loss which is due to the urban land expansion trends in the city. the high number of Agriculture land adjacent to the city center and urban fringe have been converted into urban land during the study period in the city, as the agriculture land is highly correlated with the urban land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/63212/urban-land-expansion-impact-assessment-on-agriculture-land-in-kabul-city-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Agriculture Yield Prediction Using Predictive Analytic Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagini%20Sabbineni">Nagini Sabbineni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajini%20T.%20V.%20Kanth"> Rajini T. V. Kanth</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Kiranmayee"> B. V. Kiranmayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20growth" title="agriculture yield growth">agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models" title=" regression models"> regression models</a> </p> <a href="https://publications.waset.org/abstracts/54159/agriculture-yield-prediction-using-predictive-analytic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> Evaluation on Heat and Drought Tolerance Capacity of Chickpea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derya%20Yucel">Derya Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigar%20Ang%C4%B1n"> Nigar Angın</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%BCrdane%20Mart"> Dürdane Mart</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Turkeri"> Meltem Turkeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Catalkaya"> Volkan Catalkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Yucel"> Celal Yucel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed" title=" rainfed"> rainfed</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20susceptibility" title=" stress susceptibility"> stress susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20indice" title=" tolerance indice"> tolerance indice</a> </p> <a href="https://publications.waset.org/abstracts/55821/evaluation-on-heat-and-drought-tolerance-capacity-of-chickpea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Application of Drones in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Taherlouei%20Safa">Reza Taherlouei Safa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aboonajmi"> Mohammad Aboonajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone" title="drone">drone</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20income" title=" farmer income"> farmer income</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/170574/application-of-drones-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> A Review Paper on Data Security in Precision Agriculture Using Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tonderai%20Muchenje">Tonderai Muchenje</a>, <a href="https://publications.waset.org/abstracts/search?q=Xolani%20Mkhwanazi"> Xolani Mkhwanazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=EIDE" title=" EIDE"> EIDE</a> </p> <a href="https://publications.waset.org/abstracts/153861/a-review-paper-on-data-security-in-precision-agriculture-using-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Makram%20Ibrahim%20Salib">Ibrahim Makram Ibrahim Salib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization%20agriculture%20yield%20growth" title=" urbanization agriculture yield growth"> urbanization agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models%20drone" title=" regression models drone"> regression models drone</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20income" title=" farmer income"> farmer income</a> </p> <a href="https://publications.waset.org/abstracts/183735/the-effect-of-artificial-intelligence-on-the-production-of-agricultural-lands-and-labor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> A Framework for Vacant City-Owned Land to Be Utilised for Urban Agriculture: The Case of Cape Town, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Van%20Staden">P. S. Van Staden</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Campbell"> M. M. Campbell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacant City of Cape Town-owned land lying un-utilized and -productive could be developed for land uses such as urban agriculture that may improve the livelihoods of low income families. The new City of Cape Town zoning scheme includes an Urban Agriculture zoning for the first time. Unstructured qualitative interviews among town planners revealed their optimism about this inclusion as it will provide low-income residents with opportunities to generate an income. An existing farming community at Philippi, located within the municipal boundary of the city, was approached and empirical data obtained through questionnaires provided proof that urban agriculture could be viable in a coastal metropolitan city such as Cape Town even if farmers only produce for their own households. The lease method proposed for urban agriculture is a usufruct agreement conferring the right to another party, other than the legal owner, to enjoy the use and advantages of the property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20uses" title="land uses">land uses</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20engineering" title=" food engineering"> food engineering</a> </p> <a href="https://publications.waset.org/abstracts/1494/a-framework-for-vacant-city-owned-land-to-be-utilised-for-urban-agriculture-the-case-of-cape-town-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Gachpaz">Saba Gachpaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Heidari"> Hamid Reza Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20suitability" title="land suitability">land suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/157281/land-suitability-prediction-modelling-for-agricultural-crops-using-machine-learning-approach-a-case-study-of-khuzestan-province-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> The Role of ICT in Engaging Youth in Agricultural Transformation of Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Adedugbe">Adebola Adedugbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the mainstay of most countries in Africa. It employs up to 90 percent of the rural workforce, who are mostly youth and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. This paper identifies the role of ICT as a tool for attracting youths to agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=youth" title=" youth"> youth</a> </p> <a href="https://publications.waset.org/abstracts/16076/the-role-of-ict-in-engaging-youth-in-agricultural-transformation-of-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Sustainable Agriculture of Tribal Farmers: An Analysis in Koraput and Malkangiri Districts of Odisha, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrita%20Mishra">Amrita Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Kanti%20Das"> Tushar Kanti Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of the economy of Odisha. Sustainability of agriculture holds the key for the development of Odisha. The Sustainable Development Goals are a framework of 17 goals and 169 targets across social, economical and environmental areas of sustainable development. Among all the seventeen goals the second goal is focusing on the promotion of Sustainable Agriculture. In this research our main aim is also to contribute an understanding of effectiveness of sustainable agriculture as a tool for rural development in the selected tribal district (i.e. Koraput and Malkangiri) of Odisha. These two districts are comes under KBK districts of Odisha which are identified as most backward districts of Odisha. The objectives of our study are to investigate the effect of sustainable agriculture on the lives of tribal farmers, to study whether the farmers are empowered by their participation in sustainable agriculture initiatives to move towards their own vision of development and to study the investment and profit ratio in sustainable agriculture. This research will help in filling the major gaps in sociological studies of sustainable agriculture. This information will helpful for farmers, development organisations, donors and policy makers in formulating the development of effective initiatives and policies to support the development of sustainable agriculture. In this study, we have taken 210 respondents and used various statistical techniques like chi-square test, one-way ANOVA and percentage analysis. This research shows that sustainable agriculture is an effective development strategy that benefits the tribal farmers to move towards their own vision of Good Fortune. The poor farmers who struggle to feed their families and maintain viable livelihoods on shrinking land for them sustainable agriculture are really benefited. The farmers are using homemade pesticides, manure and also getting the seeds from different development organisations and Government. So the investment in Sustainable Agriculture is very less. All farmers said their lives are now better than before. The creation of farmers groups for training and marketing for the produces was shown to be very important for empowerment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=tribal%20farmers" title=" tribal farmers"> tribal farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=empowerment" title=" empowerment"> empowerment</a> </p> <a href="https://publications.waset.org/abstracts/104576/sustainable-agriculture-of-tribal-farmers-an-analysis-in-koraput-and-malkangiri-districts-of-odisha-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jane%20O.%20Munonye">Jane O. Munonye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; <em>Dioscorea rotundata</em>); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=yam" title=" yam"> yam</a> </p> <a href="https://publications.waset.org/abstracts/61103/a-review-on-climate-change-and-sustainable-agriculture-in-southeast-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Community That Supports Agriculture: A Strategy to Help Family Farmers by Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feguens%20Pierre">Feguens Pierre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a long time, Latin American countries have been introduced to numerous programs and public policies focused on improving the agricultural sector in terms of sustainability, as well as in terms of the relationship between producers and consumers, aimed at improve farmers' income and allow consumers to have access to quality products, encouraging alternative agriculture. Therefore, in Brazil, among the programs, that is, the public policies that have encompassed alternative agriculture, in other words organic, we have the Community that Supports Agriculture (CSA) which ensures a relationship between producers and consumers focused on a solidarity economy, also protecting the environment. This work aims to understand the importance of the Community Supporting Agriculture (CSA), as well as the challenges it has faced over time. Particularly in the case of Brazil. A bibliographic methodology was used to theoretically analyze through several books and articles the performance of (CSA) in Brazil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20supporting%20agriculture" title="community supporting agriculture">community supporting agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=importance" title=" importance"> importance</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=producer" title=" producer"> producer</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer" title=" consumer"> consumer</a> </p> <a href="https://publications.waset.org/abstracts/182117/community-that-supports-agriculture-a-strategy-to-help-family-farmers-by-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelali%20Laamari">Abdelali Laamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Morad%20Faiz"> Morad Faiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Amamou%20And%20Mohamed%20Elkoudrim"> Ali Amamou And Mohamed Elkoudrim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20system" title=" production system"> production system</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/164910/towards-resilient-and-sustainable-integrated-agro-ecosystems-through-appropriate-climate-smart-farming-practices-in-morocco-rainfed-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> A Short Survey of Integrating Urban Agriculture and Environmental Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayeheh%20Khatami">Rayeheh Khatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Toktam%20Hanaei"> Toktam Hanaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Mansouri%20Daneshvar"> Mohammad Reza Mansouri Daneshvar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of the agricultural sector is known as an essential way to achieve development goals in developing countries. Urban agriculture is a way to reduce the vulnerability of urban populations of the world toward global environmental change<span dir="RTL">.</span> It is a sustainable and efficient system to respond to the environmental, social and economic needs of the city, which leads to urban sustainability. Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as poverty, food security, and environmental problems. In this study, we follow a perspective based on urban agriculture literature in order to indicate the urban agriculture&rsquo;s benefits in environmental planning strategies in non-western countries like Iran. The methodological approach adopted is based on qualitative approach and documentary studies. A total of 35 articles (mixed quantitative and qualitative methods studies) were studied in final analysis, which are published in relevant journals that focus on this subject. Studies show the wide range of positive benefits of urban agriculture on food security, nutrition outcomes, health outcomes, environmental outcomes, and social capital. However, there was no definitive conclusion about the negative effects of urban agriculture. This paper provides a conceptual and theoretical basis to know about urban agriculture and its roles in environmental planning, and also conclude the benefits of urban agriculture for researchers, practitioners, and policymakers who seek to create spaces in cities for implementation urban agriculture in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title="urban agriculture">urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20planning" title=" environmental planning"> environmental planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=literature" title=" literature "> literature </a> </p> <a href="https://publications.waset.org/abstracts/112092/a-short-survey-of-integrating-urban-agriculture-and-environmental-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Relationship between Food Inflation and Agriculture Lending Rate in Ghana: A Vector Autoregressive Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20K.%20Dziwornu">Raymond K. Dziwornu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lending rate of agriculture loan has persistently been high and attributed to risk in the sector. This study examined how food inflation and agriculture lending rate react to each other in Ghana using vector autoregressive approach. Quarterly data from 2006 to 2018 was obtained from the Bank of Ghana quarterly bulletin and the Ghana Statistical Service reports. The study found that a positive standard deviation shock to food inflation causes lending rate of agriculture loan to react negatively in the short run, but positively and steadily in the long run. This suggests the need to direct appropriate policy measures to reduce food inflation and consequently, the cost of credit to the agricultural sector for its growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20inflation" title="food inflation">food inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=lending%20rate" title=" lending rate"> lending rate</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20autoregressive" title=" vector autoregressive"> vector autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a> </p> <a href="https://publications.waset.org/abstracts/115221/relationship-between-food-inflation-and-agriculture-lending-rate-in-ghana-a-vector-autoregressive-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Makuteniene">D. Makuteniene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants%20of%20intensity" title=" determinants of intensity"> determinants of intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a> </p> <a href="https://publications.waset.org/abstracts/97199/determinants-of-intensity-of-greenhouse-gas-emission-in-lithuanian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Raj%20Regmi">Krishna Raj Regmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20adaptation" title="climate change adaptation">climate change adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20risk%20management" title=" disaster risk management"> disaster risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-water%20management%20practices" title=" soil-water management practices"> soil-water management practices</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture "> sustainable agriculture </a> </p> <a href="https://publications.waset.org/abstracts/23197/sustainable-agricultural-and-soil-water-management-practices-in-relation-to-climate-change-and-disaster-a-himalayan-country-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Effect of Band Application of Organic Manures on Growth and Yield of Pigeonpea (Cajanus cajan (L.) Millsp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Kalaghatagi">S. B. Kalaghatagi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Guggari"> A. K. Guggari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20S.%20Manikashetti"> Pallavi S. Manikashetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment to study the effect of band application of organic manures on growth and yield of pigeon pea was conducted during 2016-17 at Kharif Seed Farm, College of Agriculture, Vijayapura. The experiment was carried out in randomized block design with thirteen treatments viz., T1 to T6 were band application of vermicompost at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 t ha⁻¹, respectively. The treatments T7 to T12 include band application of sieved FYM at 1, 2, 3, 4, 5 and 6 t ha⁻¹, respectively and were compared with already recommended practice of broadcasting of FYM at 6 t ha⁻¹ (T13); and recommended dose of fertilizer (25:50:0 NPK kg ha⁻¹) was applied commonly to all the treatments. The results revealed that band application of vermicompost (VC) at 3 t ha⁻¹ recorded significantly higher number of pods plant⁻¹ (116), grain weight plant⁻¹ (37.35 g), grain yield (1,647 kg ha⁻¹), stalk yield (2,920 kg ha⁻¹) and harvest index (0.36) and was on par with the band application of VC at 2.0 and 2.5 t ha⁻¹ and sieved FYM at 4.0 and 5.0 t ha⁻¹ as compared to broadcasting of FYM at 6 t ha-1 (99.33, 24.07 g, 1,061 kg ha⁻¹, 2,920 kg ha⁻¹ and 0.36, respectively). Significantly higher net return (Rupees 59,410 ha⁻¹) and benefit cost ratio of 2.92 recorded with band application of VC at 3 t ha⁻¹ over broadcasting of FYM at 6 tonnes per ha (Rupees 25,401 ha⁻¹ and 1.78, respectively). It indicates from the above results that, growing of pigeon pea with band application of VC at 2, 2.5 and 3 t ha⁻¹ and sieved FYM at 4 and 5 t ha⁻¹ leads to saving of 1 tonne of VC and 2 tonnes of FYM per ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20manures" title="organic manures">organic manures</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20pigeonpea" title=" rainfed pigeonpea"> rainfed pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=sieved%20FYM" title=" sieved FYM"> sieved FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/82804/effect-of-band-application-of-organic-manures-on-growth-and-yield-of-pigeonpea-cajanus-cajan-l-millsp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Search for Alternative Strategy to Enhancing Food Security at Household Level: Hybrid Urban Agriculture as a Strategy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyumbaiza%20Tambwe">Nyumbaiza Tambwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to demonstrate that hybrid urban agriculture as the most practiced type of urban agriculture in the majority of cities in sub-Saharan Africa can be taken as an alternative strategy in fighting food insecurity. The practice not only provides food, generates income and fights against unemployment; it constitutes a true back-up for households during crisis linked to the nature of capitalism system. African cities are mostly characterized by rapid population growth, rampant poverty, and high level of unemployment and food insecurity. Those factors and many others are at the origin of the emergence of urban agriculture in many African cities. Based particularly on results of research undertaken in the Democratic Republic of Congo (DRC), but also in comparison with those realized in other parts of the African continent, the paper is a case study. Therefore, the paper firstly describes the situation of food in Africa, secondly, presents hybrid urban agriculture as a household strategy in fighting food insecurity and finally shows possibilities and limits of this practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20strategy" title="alternative strategy">alternative strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20strategy" title=" household strategy"> household strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20urban%20agriculture" title=" hybrid urban agriculture"> hybrid urban agriculture</a> </p> <a href="https://publications.waset.org/abstracts/60868/search-for-alternative-strategy-to-enhancing-food-security-at-household-level-hybrid-urban-agriculture-as-a-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> South Korean Discourse on Bioecomomy in the Sector of Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi%20Sun%20Park">Mi Sun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biotechnology provides us with technological solutions to resource-based challenges facing the global society. A bioeconomy or bio-based economy emerged as all economic activities derived from biotechnology. This paper aims to understand discourses on bioeconomy in the sector of agriculture with three dimensions; media discourse, science discourse, and policy discourse. For achieving research goals, content analysis was applied to this research. Media articles, academic journal articles and policy documents published from 2000 to 2016 were collected in South Korea. The text was coded and analyzed with the categories of speakers and their arguments. The research findings indicate that powerful actors and key messages of bioeconomy in South Korean agriculture. Differences and similarities among media, science, and policy were examined. Therefore this case study can contribute to understanding dynamic interaction and interfaces of media, science and policy discourse on biotechnology in the sector of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=media" title="media">media</a>, <a href="https://publications.waset.org/abstracts/search?q=discourse" title=" discourse"> discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=bioeconomy" title=" bioeconomy"> bioeconomy</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/80074/south-korean-discourse-on-bioecomomy-in-the-sector-of-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Food and Agricultural Waste Management for Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhangi%20Salokhe">Shubhangi Salokhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture encompasses crop and livestock production, forestry, and fisheries for food and non-food products. Farmers combine land, water, commercial inputs, labor, and their management skills into practices and systems that produce food and fibre. Harvesting of agricultural produce is either followed by the processing of fresh produce or storage for later consumption. All these activities result in a vast generation of waste in terms of crop residue or food waste. So, a large amount of agricultural waste is produced every year. Waste arising from food and agricultural sectors has the potential for vast applications. So, agricultural waste management is an essential component of sustainable agriculture. The major portion of the waste comes from the residues of crops on farms, food processing, livestock, aquaculture, and agro-industry waste. Therefore, management of these agricultural wastes is an important task, and it requires robust strategic planning. It can contribute to three pillars of sustainable agriculture development. It protects the environment (environmental pillar), enhances the livelihoods of farmers (economic pillar), and can contribute to increasing the sustainability of the agricultural sector (social pillar). This paper addresses the essential technological aspects, possible solutions, and sound policy concerns to accomplish long-term way out of agriculture waste management and to minimize the negative impact of waste on the environment. The author has developed a sustainable agriculture waste management model for improving the sustainability of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/185982/food-and-agricultural-waste-management-for-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Urban Agriculture for Sustainable Cities: Using Wastewater and Urban Wetlands as Resource</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussnain%20Mukhtar">Hussnain Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Pin%20Lin"> Yu-Pin Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the concept of ecologically engineered system for sustainable agriculture production with the view of sustainable cities development. Sustainable cities offer numerous eco-services to its inhabitants, and where, among other issues, wastewater nutrients can be considered to be a valuable resource to be used for a sustainable enhancement of urban agriculture in wetlands. Existing cities can be transferred from being only consumer of food and other agriculture product into important resource conserving and sustainable generators of these products. The review provides the food production capacity through introduction of wastewater into urban wetlands, potential for nutrient recovery and ecological engineering intervention to reduce the risk of food contamination by pathogens. Finally, we discuss the potential nutrients accumulating in our cities, as an important aspect of sustainable urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20engineering" title="ecological engineering">ecological engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20recovery" title=" nutrient recovery"> nutrient recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/78529/urban-agriculture-for-sustainable-cities-using-wastewater-and-urban-wetlands-as-resource" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Godfrey%20Omulo">Godfrey Omulo</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Birner"> Regina Birner</a>, <a href="https://publications.waset.org/abstracts/search?q=Karlheinz%20Koller"> Karlheinz Koller</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Daum"> Thomas Daum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate-smart%20agriculture" title="climate-smart agriculture">climate-smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20cost" title=" labor cost"> labor cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanized%20conservation%20agriculture" title=" mechanized conservation agriculture"> mechanized conservation agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=Zambia" title=" Zambia"> Zambia</a> </p> <a href="https://publications.waset.org/abstracts/122318/on-farm-mechanized-conservation-agriculture-preliminary-agro-economic-performance-difference-between-disc-harrowing-ripping-and-no-till" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> The Common Agricultural Policy in a Czech Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%C3%A9ta%20Slov%C3%A1kov%C3%A1">Markéta Slováková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The largest share of policy and money within the European Union goes to agriculture. The Union’s Common Agricultural Policy has undergone several transformations in the last five decades, with the main change taking place in the 1990's. This change influenced agriculture in the Czech Republic, inasmuch as the fledgling republic was preparing to join the European Union and adopt its policies. In the 1990s, Czech agriculture passed from a centrally planned economy to a market economy and subsequently adopted the terms of the Common Agricultural Policy. The Czech Republic is also characterized by a significant landscape sphere diversification. Agricultural entrepreneurs in the Czech Republic are still not used the possibility of grants from the European Union. They focus rather on national or regional subsidy titles. Only half of all agricultural entrepreneurs in the Czech Republic use European subsidies. This article focuses on the introduction of the Common Agricultural Policy to the Czech Republic and its subsequent influence on Czech agriculture. It is demonstrated on the implementation rate of the CAP in the EU Member States and the closer focus is on the Czech integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20agricultural%20policy" title="common agricultural policy">common agricultural policy</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Union" title=" European Union"> European Union</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a> </p> <a href="https://publications.waset.org/abstracts/20400/the-common-agricultural-policy-in-a-czech-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rainfed%20agriculture&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10