CINXE.COM
Search results for: electrochemical
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrochemical</title> <meta name="description" content="Search results for: electrochemical"> <meta name="keywords" content="electrochemical"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrochemical" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrochemical"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 750</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrochemical</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">750</span> Electrochemical Regeneration of GIC Adsorbent in a Continuous Electrochemical Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Hussain">S. N. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20A.%20Asghar"> H. M. A. Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sattar"> H. Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20P.%20L.%20Roberts"> E. P. L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arvia™ introduced a novel technology consisting of adsorption followed by electrochemical regeneration with a graphite intercalation compound adsorbent that takes place in a single unit. The adsorbed species may lead to the formation of intermediate by-products products due to incomplete mineralization during electrochemical regeneration. Therefore, the investigation of breakdown products due to incomplete oxidation is of great concern regarding the commercial applications of this process. In the present paper, the formation of the chlorinated breakdown products during continuous process of adsorption and electrochemical regeneration based on a graphite intercalation compound adsorbent has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIC" title="GIC">GIC</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20regeneration" title=" electrochemical regeneration"> electrochemical regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorphenols" title=" chlorphenols"> chlorphenols</a> </p> <a href="https://publications.waset.org/abstracts/13387/electrochemical-regeneration-of-gic-adsorbent-in-a-continuous-electrochemical-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">749</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmad%20Raji">H. Ahmad Raji</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nozari"> M. A. Nozari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20condition" title="electrochemical condition">electrochemical condition</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20strength" title=" ionic strength"> ionic strength</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=xhanthan%20gum" title=" xhanthan gum "> xhanthan gum </a> </p> <a href="https://publications.waset.org/abstracts/116666/the-viscosity-of-xanthan-gum-grout-with-different-ph-and-ionic-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rejane%20Maria%20P.%20da%20Silva">Rejane Maria P. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20X.%20Milagre"> Mariana X. Milagre</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Victor%20de%20S.%20Araujo"> João Victor de S. Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20A.%20de%20Oliveira"> Leandro A. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20A.%20Antunes"> Renato A. Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isolda%20Costa"> Isolda Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Li%20alloys" title="Al-Cu-Li alloys">Al-Cu-Li alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20preparation%20effects" title=" surface preparation effects"> surface preparation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20techniques" title=" electrochemical techniques"> electrochemical techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20corrosion" title=" localized corrosion"> localized corrosion</a> </p> <a href="https://publications.waset.org/abstracts/110369/influence-of-surface-preparation-effects-on-the-electrochemical-behavior-of-2098-t351-al-cu-li-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Boudieb">Naima Boudieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Loucif%20Seaid"> Mohamed Loucif Seaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Rati"> Imad Rati</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benammane"> Imane Benammane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=SIE" title=" SIE"> SIE</a>, <a href="https://publications.waset.org/abstracts/search?q=VC" title=" VC"> VC</a>, <a href="https://publications.waset.org/abstracts/search?q=PANI" title=" PANI"> PANI</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%283" title=" poly(3"> poly(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-ethylenedioxythiophene" title="4-ethylenedioxythiophene">4-ethylenedioxythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDOT" title=" PEDOT"> PEDOT</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20sulfonate" title=" polystyrene sulfonate"> polystyrene sulfonate</a> </p> <a href="https://publications.waset.org/abstracts/182320/synthesis-and-electrochemical-characterization-of-a-copolymer-panipedotpss-for-application-in-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Giwa">A. Giwa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jung"> S. M. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Fang"> W. Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kong"> J. Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Hasan"> S. W. Hasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> MnO<sub>2</sub> nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO<sub>2</sub> nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO<sub>2</sub> resulted in very encouraging results with higher removal efficiencies of such pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-electrochemical" title="bio-electrochemical">bio-electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=novel" title=" novel"> novel</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42431/bio-electrochemical-process-coupled-with-mno2-nanowires-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> 1-Butyl-2,3-Dimethylimidazolium Bis (Trifluoromethanesulfonyl) Imide and Titanium Oxide Based Voltammetric Sensor for the Quantification of Flunarizine Dihydrochloride in Solubilized Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Jain">Rajeev Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimisha%20Jadon"> Nimisha Jadon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshiti%20Singh"> Kshiti Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium oxide nanoparticles and 1-butyl-2,3-dimethylimidazolium bis (trifluoromethane- sulfonyl) imide modified glassy carbon electrode (TiO2/IL/GCE) has been fabricated for electrochemical sensing of flunarizine dihydrochloride (FRH). The electrochemical properties and morphology of the prepared nanocomposite were studied by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The response of the electrochemical sensor was found to be proportional to the concentrations of FRH in the range from 0.5 µg mL-1 to 16 µg mL-1. The detection limit obtained was 0.03 µg mL-1. The proposed method was also applied to the determination of FRH in pharmaceutical formulation and human serum with good recoveries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flunarizine%20dihydrochloride" title="flunarizine dihydrochloride">flunarizine dihydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20serum" title=" human serum"> human serum</a> </p> <a href="https://publications.waset.org/abstracts/80599/1-butyl-23-dimethylimidazolium-bis-trifluoromethanesulfonyl-imide-and-titanium-oxide-based-voltammetric-sensor-for-the-quantification-of-flunarizine-dihydrochloride-in-solubilized-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Investigation of Zinc Corrosion in Tropical Soil Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lebrini">M. Lebrini</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Salhi"> L. Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Deyrat"> C. Deyrat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Roos"> C. Roos</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Nait-Rabah"> O. Nait-Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20corrosion" title="soil corrosion">soil corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanized%20steel" title=" galvanized steel"> galvanized steel</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20technique" title=" electrochemical technique"> electrochemical technique</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20and%20EDX" title=" SEM and EDX"> SEM and EDX</a> </p> <a href="https://publications.waset.org/abstracts/153148/investigation-of-zinc-corrosion-in-tropical-soil-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Scanning Electrochemical Microscopy Studies of Magnesium-Iron Galvanic Couple</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Alfantazi">Akram Alfantazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tirdad%20Nickchi"> Tirdad Nickchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium galvanic corrosion plays an important role in the commercialization of Mg alloys in the automobile industry. This study aims at visualizing the electrochemical activity of the magnesium surface being coupled with pure iron in sulfate-chloride solutions. Scanning electrochemical microscopy was used to monitor the chemical activity of the surface and the data was compared with the conventional corrosion results such as potentiodynamic polarization, linear polarization, and immersion tests. The SECM results showed that the chemical reactivity of Mg is higher than phosphate-permanganate-coated Mg. Regions in the vicinity of the galvanic couple boundary are very active in the magnesium phase and fully protected in the iron phase. Scanning electrochemical microscopy results showed that the conversion coating provided good corrosion resistance for magnesium in the short-term but fails at long-term testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20corrosion" title=" galvanic corrosion"> galvanic corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electrochemical%20microscopy" title=" scanning electrochemical microscopy"> scanning electrochemical microscopy</a> </p> <a href="https://publications.waset.org/abstracts/92833/scanning-electrochemical-microscopy-studies-of-magnesium-iron-galvanic-couple" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kolli">Satish Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Ferancova"> Adriana Ferancova</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Porter"> David Porter</a>, <a href="https://publications.waset.org/abstracts/search?q=Jukka%20K%C3%B6mi"> Jukka Kömi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20technique" title="electrochemical technique">electrochemical technique</a>, <a href="https://publications.waset.org/abstracts/search?q=intergranular%20corrosion" title=" intergranular corrosion"> intergranular corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitization" title=" sensitization"> sensitization</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a> </p> <a href="https://publications.waset.org/abstracts/104242/study-of-intergranular-corrosion-in-austenitic-stainless-steels-using-electrochemical-impedance-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Downhole Corrosion Inhibition Treatment for Water Supply Wells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayif%20Alrasheedi">Nayif Alrasheedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Almutairi"> Sultan Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field-wide, a water supply wells’ downhole corrosion inhibition program is being applied to maintain downhole component integrity and keep the fluid corrosivity below 5 MPY. Batch treatment is currently used to inject the oil field chemical. This work is a case study consisting of analytical procedures used to optimize the frequency of the good corrosion inhibition treatments. During the study, a corrosion cell was fitted with a special three-electrode configuration for electrochemical measurements, electrochemical linear polarization, corrosion monitoring, and microbial analysis. This study revealed that the current practice is not able to mitigate material corrosion in the downhole system for more than three months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole%20corrosion%20inhibition" title="downhole corrosion inhibition">downhole corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20measurements" title=" electrochemical measurements"> electrochemical measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20linear%20polarization" title=" electrochemical linear polarization"> electrochemical linear polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20monitoring" title=" corrosion monitoring"> corrosion monitoring</a> </p> <a href="https://publications.waset.org/abstracts/150495/downhole-corrosion-inhibition-treatment-for-water-supply-wells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessie%20Tibebe">Dessie Tibebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeshifana%20Ayenew"> Yeshifana Ayenew</a>, <a href="https://publications.waset.org/abstracts/search?q=Marye%20Mulugeta"> Marye Mulugeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Yezbie%20Kassa"> Yezbie Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerubabel%20Moges"> Zerubabel Moges</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Yenealem"> Dereje Yenealem</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarekegn%20Fentie"> Tarekegn Fentie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agmas%20Amare"> Agmas Amare</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailu%20Sheferaw%20Ayele"> Hailu Sheferaw Ayele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title=" textile wastewater"> textile wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/174364/treatment-and-characterization-of-cadmium-metal-from-textile-factory-wastewater-by-electrochemical-process-using-aluminum-plate-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Akiyoshi%20Ohashi"> Akiyoshi Ohashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Kindaichi"> Tomonori Kindaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO<sub>2</sub>-IrO<sub>2</sub>) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/93816/pollutants-removal-from-synthetic-wastewater-by-the-combined-electrochemical-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Chouder">Dalila Chouder</a>, <a href="https://publications.waset.org/abstracts/search?q=Djaafer%20Benachour"> Djaafer Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerization" title="polymerization">polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=complexing%20metal%20ions" title=" complexing metal ions"> complexing metal ions</a> </p> <a href="https://publications.waset.org/abstracts/26255/study-of-the-adsorption-of-metal-ions-ag-mg2-ni2-by-the-chemical-and-electrochemical-polydibenzoether-crown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Won%20Kim">Dong Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Ji%20Kim"> Hye Ji Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Young%20Jung"> Hyun Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticle" title=" silica nanoparticle"> silica nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/81400/useful-effects-of-silica-nanoparticles-in-ionic-liquid-electrolyte-for-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Kazemi%20Asl">Ali Akbar Kazemi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Rahsepar"> Mansour Rahsepar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic" title=" non-enzymatic"> non-enzymatic</a> </p> <a href="https://publications.waset.org/abstracts/142299/hydrothermal-synthesis-of-mesoporous-carbon-nanospheres-and-their-electrochemical-properties-for-glucose-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Agar">Meltem Agar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maisem%20Laabei"> Maisem Laabei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Leese"> Hannah Leese</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Estrela"> Pedro Estrela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/171368/development-of-an-aptamer-molecularly-imprinted-polymer-based-electrochemical-sensor-to-detect-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Farsadrooh">Majid Farsadrooh</a>, <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Sabbaghi"> Najmeh Sabbaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Mostashari"> Seyed Mohammad Mostashari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolhasan%20Moradi"> Abolhasan Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20pyrogallol" title=" poly pyrogallol"> poly pyrogallol</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20determination" title=" simultaneous determination"> simultaneous determination</a> </p> <a href="https://publications.waset.org/abstracts/175723/electrochemical-sensor-based-on-polypyrogallol-for-the-simultaneous-detection-of-phenolic-compounds-and-nitrite-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Hajihosseini">Saeedeh Hajihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Aghili"> Zahra Aghili</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Nasirizadeh"> Navid Nasirizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20biosensor" title="DNA biosensor">DNA biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=oracet%20blue" title=" oracet blue"> oracet blue</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title=" Helicobacter pylori"> Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20%28AuE%29" title=" electrode (AuE)"> electrode (AuE)</a> </p> <a href="https://publications.waset.org/abstracts/53867/an-electrochemical-dna-biosensor-based-on-oracet-blue-as-a-label-for-detection-of-helicobacter-pylori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Evaluation of the Inhibitive Effect of Novel Quinoline Schiff Base on Corrosion of Mild Steel in HCl Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Jauhari">Smita Jauhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupendra%20Mistry"> Bhupendra Mistry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff base (E)-2-methyl-N-(tetrazolo[1,5-a]quinolin-4-ylmethylene)aniline (QMA) was synthesized, and its inhibitive effect for mild steel in 1M HCl solution was investigated by weight loss measurement and electrochemical tests.From the weight loss measurements and electrochemical tests, it was observed that the inhibition efficiency increases with the increase in the Schiff base concentration and reaches a maximum at the optimum concentration. This is further confirmed by the decrease in corrosion rate. It is found that the system follows Langmuir adsorption isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base" title="Schiff base">Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20corrosion" title=" acid corrosion"> acid corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization "> polarization </a> </p> <a href="https://publications.waset.org/abstracts/2159/evaluation-of-the-inhibitive-effect-of-novel-quinoline-schiff-base-on-corrosion-of-mild-steel-in-hcl-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Electrochemical Performance of Al-Mn2O3 Based Electrode Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Ul%20Ain%20Bhatti">Noor Ul Ain Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Junaid%20Khan"> M. Junaid Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Ahmad"> Javed Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Saleem"> Murtaza Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20M.%20Ramay"> Shahid M. Ramay</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadat%20A.%20Siddiqi"> Saadat A. Siddiqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn<sub>2</sub>O<sub>3</sub> compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mn2O3" title="Mn2O3">Mn2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20materials" title=" electrode materials"> electrode materials</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20and%20conversion" title=" energy storage and conversion"> energy storage and conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a> </p> <a href="https://publications.waset.org/abstracts/63281/electrochemical-performance-of-al-mn2o3-based-electrode-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Microfluidic Paper-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Manbohi">Ahmad Manbohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hamid%20Ahmadi"> Seyyed Hamid Ahmadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R<sup>²</sup> > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fluids" title="biological fluids">biological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20paper-based%20electrochemical%20biosensors" title="microfluidic paper-based electrochemical biosensors">microfluidic paper-based electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiplex" title=" Multiplex"> Multiplex</a> </p> <a href="https://publications.waset.org/abstracts/77212/microfluidic-paper-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riya%20Thomas">Riya Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Music"> Denis Music</a>, <a href="https://publications.waset.org/abstracts/search?q=Tautgirdas%20Ruzgas"> Tautgirdas Ruzgas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-O%20film" title=" Ti-O film"> Ti-O film</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase" title=" tyrosinase"> tyrosinase</a> </p> <a href="https://publications.waset.org/abstracts/192153/electrochemical-study-of-ti-o-modified-electrode-towards-tyrosinase-catalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sharma"> C. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title="chlorophenolics">chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20treatment" title=" electrochemical treatment"> electrochemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/38459/estimation-and-removal-of-chlorophenolic-compounds-from-paper-mill-waste-water-by-electrochemical-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian-Fang%20Kang">Tian-Fang Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Nan%20Ge"> Chao-Nan Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Li"> Rui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title="acetylcholinesterase">acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=Au-Pd%20nanoparticles" title=" Au-Pd nanoparticles"> Au-Pd nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensors" title=" electrochemical biosensors"> electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=parathion" title=" parathion "> parathion </a> </p> <a href="https://publications.waset.org/abstracts/17756/biosensors-for-parathion-based-on-au-pd-nanoparticles-modified-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Current Approach in Biodosimetry: Electrochemical Detection of DNA Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Jelicova">Marcela Jelicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lierova"> Anna Lierova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Sinkorova"> Zuzana Sinkorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radovan%20Metelka"> Radovan Metelka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, electrochemical methods are used in various research fields, especially for analysis of biological molecules. The fact offers the possibility of using the detection of oxidative damage induced indirectly by γ rays in DNA in biodosimentry. The main goal of our study is to optimize the detection of 8-hydroxyguanine by differential pulse voltammetry. The level of this stable and specific indicator of DNA damage could be determined in DNA isolated from peripheral blood lymphocytes, plasma or urine of irradiated individuals. Screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes were utilized for highly sensitive electrochemical detection of 8-hydroxyguanine. Electrochemical oxidation of 8-hydroxoguanine monitored by differential pulse voltammetry was found pH-dependent and the most intensive signal was recorded at pH 7. After recalculating the current density, several times higher sensitivity was attained in comparison with already published results, which were obtained using screen-printed carbon electrodes with unmodified carbon ink. Subsequently, the modified electrochemical technique was used for the detection of 8-hydroxoguanine in calf thymus DNA samples irradiated by 60Co gamma source in the dose range from 0.5 to 20 Gy using by various types of sample pretreatment and measurement conditions. This method could serve for fast retrospective quantification of absorbed dose in cases of accidental exposure to ionizing radiation and may play an important role in biodosimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodosimetry" title="biodosimetry">biodosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title=" electrochemical detection"> electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=voltametry" title=" voltametry"> voltametry</a>, <a href="https://publications.waset.org/abstracts/search?q=8-hydroxyguanine" title=" 8-hydroxyguanine"> 8-hydroxyguanine</a> </p> <a href="https://publications.waset.org/abstracts/97358/current-approach-in-biodosimetry-electrochemical-detection-of-dna-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Dairy Wastewater Remediation Using Electrochemical Oxidation on Boron Doped Diamond (BDD) Anode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arwa%20Abdelhay">Arwa Abdelhay</a>, <a href="https://publications.waset.org/abstracts/search?q=Inshad%20Jum%E2%80%99h"> Inshad Jum’h</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Albsoul"> Abeer Albsoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalideh%20Alrawashdeh"> Khalideh Alrawashdeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Al%20Tarazi"> Dina Al Tarazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treated wastewater reuse has been considered recently as one of the successful management strategies to overcome water shortage in countries suffering from water scarcity. The non-readily biodegradable and recalcitrant pollutants in wastewater cannot be destructed by conventional treatment methods. This paper deals with the electrochemical treatment of dairy wastewater using a promising non-conventional Boron-Doped Diamond (BDD) anode. During the electrochemical process, different operating parameters were investigated, such as electrolysis time, current density, supporting electrolyte, chemical oxygen demand (COD), turbidity as well as absorbance/color. The experimental work revealed that electrochemical oxidation carried out with no added electrolyte has significantly reduced the COD, turbidity, and color (absorbance) by 72%, 76%, and 78% respectively. Results also showed that raising the current density from 5.1 mA/cm² to 7.7 mA/cm² has boosted COD, and color removal to 82.5%, and 83% respectively. However, the current density did not show any significant effect on the turbidity. Interestingly, it was observed that adding Na₂SO₄ and FeCl₃ as supporting electrolytes brought the COD removal to 91% and 97% respectively. Likewise, turbidity and color removal has been enhanced by the addition of the same supporting electrolytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20doped-diamond%20anode" title="boron doped-diamond anode">boron doped-diamond anode</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20wastewater" title=" dairy wastewater"> dairy wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=supporting%20electrolytes" title=" supporting electrolytes"> supporting electrolytes</a> </p> <a href="https://publications.waset.org/abstracts/92414/dairy-wastewater-remediation-using-electrochemical-oxidation-on-boron-doped-diamond-bdd-anode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sacko">A. Sacko</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nyoni"> H. Nyoni</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20M.%20Msagati"> T. A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ntsendwana"> B. Ntsendwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title="electrochemical detection">electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliated%20graphite" title=" exfoliated graphite"> exfoliated graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs%20%28polycyclic%20aromatic%20hydrocarbons%29" title=" PAHs (polycyclic aromatic hydrocarbons)"> PAHs (polycyclic aromatic hydrocarbons)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20air" title=" urban air"> urban air</a> </p> <a href="https://publications.waset.org/abstracts/78454/electrochemical-detection-of-polycyclic-aromatic-hydrocarbons-in-urban-air-by-exfoliated-graphite-based-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Samadi%20Pakchin">Parvin Samadi Pakchin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Saber"> Reza Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghanbari"> Hossein Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Omidi"> Yadollah Omidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal-off%20electrochemical%20biosensor" title="signal-off electrochemical biosensor">signal-off electrochemical biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=CA125" title=" CA125"> CA125</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20cancer" title=" ovarian cancer"> ovarian cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoparticles" title=" chitosan-gold nanoparticles"> chitosan-gold nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/79114/electrochemical-biosensor-based-on-chitosan-gold-nanoparticles-carbon-nanotubes-for-detection-of-ovarian-cancer-biomarker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>