CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 144 results for author: <span class="mathjax">Littlewood, P B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Littlewood, P B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Littlewood%2C+P+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Littlewood, P B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17944">arXiv:2411.17944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17944">pdf</a>, <a href="https://arxiv.org/format/2411.17944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Gaussian fluctuations of non-reciprocal systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shmakov%2C+S">Sergei Shmakov</a>, <a href="/search/?searchtype=author&amp;query=Osipycheva%2C+G">Glasha Osipycheva</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17944v1-abstract-short" style="display: inline;"> Non-reciprocal systems can be thought of as disobeying Newtons third law - an action does not cause an equal and opposite reaction. In recent years there has been a dramatic rise in interest towards such systems. On a fundamental level, they can be a basis of describing non-equilibrium and active states of matter, with applications ranging from physics to social sciences. However, often the first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17944v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17944v1-abstract-full" style="display: none;"> Non-reciprocal systems can be thought of as disobeying Newtons third law - an action does not cause an equal and opposite reaction. In recent years there has been a dramatic rise in interest towards such systems. On a fundamental level, they can be a basis of describing non-equilibrium and active states of matter, with applications ranging from physics to social sciences. However, often the first step to understanding complex nonlinear models is to linearize about the steady states. It is thus useful to develop a careful understanding of linear non-reciprocal systems, similar to our understanding of Gaussian systems in equilibrium statistical mechanics. In this work we explore simplest linear non-reciprocal models with noise and spatial extent. We describe their regions of stability and show how non-reciprocity can enhance the stability of a system. We demonstrate the appearance of exceptional and critical exceptional points with the respective enhancement of fluctuations for the latter. We show how strong non-reciprocity can lead to a finite-momentum instability. Finally, we comment how non-reciprocity can be a source of colored, $1/f$ type noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17944v1-abstract-full').style.display = 'none'; document.getElementById('2411.17944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04059">arXiv:2309.04059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum interference in superposed lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feng%2C+Y">Yejun Feng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yishu Wang</a>, <a href="/search/?searchtype=author&amp;query=Rosenbaum%2C+T+F">T. F. Rosenbaum</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04059v1-abstract-short" style="display: inline;"> Charge transport in solids at low temperature reveals a material&#39;s mesoscopic properties and structure. Under a magnetic field, Shubnikov-de Haas (SdH) oscillations inform complex quantum transport phenomena that are not limited by the ground state characteristics. Here, in elemental metal Cr with two incommensurately superposed lattices of ions and a spin-density-wave ground state, we reveal that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04059v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04059v1-abstract-full" style="display: none;"> Charge transport in solids at low temperature reveals a material&#39;s mesoscopic properties and structure. Under a magnetic field, Shubnikov-de Haas (SdH) oscillations inform complex quantum transport phenomena that are not limited by the ground state characteristics. Here, in elemental metal Cr with two incommensurately superposed lattices of ions and a spin-density-wave ground state, we reveal that the phases of several low-frequency SdH oscillations in sigma_xx (rho_xx) and sigma_yy (rho_yy) are opposite, contrast with oscillations from normal cyclotron orbits that maintain identical phases. We trace the origin of the low frequency SdH oscillations to quantum interference effects arising from the incommensurate orbits of Cr&#39;s superposed reciprocal lattices, and explain the observed pi-phase shift by the reconnection of anisotropic joint open and closed orbits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04059v1-abstract-full').style.display = 'none'; document.getElementById('2309.04059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Nat. Acad. Sci. USA 121, e2315787121 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09524">arXiv:2306.09524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09524">pdf</a>, <a href="https://arxiv.org/format/2306.09524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Coalescence of limit cycles in the presence of noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shmakov%2C+S">Sergei Shmakov</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09524v2-abstract-short" style="display: inline;"> Complex dynamical systems may exhibit multiple steady states, including time-periodic limit cycles, where the final trajectory depends on initial conditions. With tuning of parameters, limit cycles can proliferate or merge at an exceptional point. Here we ask how dynamics in the vicinity of such a bifurcation are influenced by noise. A pitchfork bifurcation can be used to induce bifurcation behavi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09524v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09524v2-abstract-full" style="display: none;"> Complex dynamical systems may exhibit multiple steady states, including time-periodic limit cycles, where the final trajectory depends on initial conditions. With tuning of parameters, limit cycles can proliferate or merge at an exceptional point. Here we ask how dynamics in the vicinity of such a bifurcation are influenced by noise. A pitchfork bifurcation can be used to induce bifurcation behavior. We model a limit cycle with the normal form of the Hopf oscillator, couple it to the pitchfork, and investigate the resulting dynamical system in the presence of noise. We show that the generating functional for the averages of the dynamical variables factorizes between the pitchfork and the oscillator. The statistical properties of the pitchfork in the presence of noise in its various regimes are investigated and a scaling theory is developed for the correlation and response functions. The analysis is done by perturbative calculations as well as numerical means. Finally, observables illustrating the coupling of a system with a limit cycle to a pitchfork are discussed and the phase-phase correlations are shown to exhibit non-diffusive behavior with universal scaling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09524v2-abstract-full').style.display = 'none'; document.getElementById('2306.09524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03503">arXiv:2303.03503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03503">pdf</a>, <a href="https://arxiv.org/format/2303.03503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Going Beyond the Cumulant Approximation II:Power Series Correction to Single Particle Green&#39;s Function in 1D Holstein Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pandey%2C+B">Bipul Pandey</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03503v1-abstract-short" style="display: inline;"> Previously, we introduced a method for systematically correcting a quasiparticle green&#39;s function via a power series expansion. Here we present an ODE based formalisms of power series correction that goes beyond the cumulant approximation and implement it to 1D Holstein chain for a wide range of coupling strengths in a scalable and inexpensive fashion at both zero and finite temperature. We show t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03503v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03503v1-abstract-full" style="display: none;"> Previously, we introduced a method for systematically correcting a quasiparticle green&#39;s function via a power series expansion. Here we present an ODE based formalisms of power series correction that goes beyond the cumulant approximation and implement it to 1D Holstein chain for a wide range of coupling strengths in a scalable and inexpensive fashion at both zero and finite temperature. We show that this first differential formalism of the power series is both qualitatively and quantitatively in excellent agreement with exact diagonalization results on 1D Holstein chain with dispersive bosons for a large range of electron-boson coupling strength. We investigate carrier mass growth rate and carrier energy displacement across a wide range of coupling strength. Finally, we present a heuristic argument which predicts most of the rich satellite structure without explicit calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03503v1-abstract-full').style.display = 'none'; document.getElementById('2303.03503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11667">arXiv:2207.11667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.11667">pdf</a>, <a href="https://arxiv.org/format/2207.11667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Exceptional points in nonlinear and stochastic dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weis%2C+C">Cheyne Weis</a>, <a href="/search/?searchtype=author&amp;query=Fruchart%2C+M">Michel Fruchart</a>, <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Kawagoe%2C+K">Kyle Kawagoe</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Vitelli%2C+V">Vincenzo Vitelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11667v2-abstract-short" style="display: inline;"> We study a class of bifurcations generically occurring in dynamical systems with non-mutual couplings ranging from models of coupled neurons to predator-prey systems and non-linear oscillators. In these bifurcations, extended attractors such as limit cycles, limit tori, and strange attractors merge and split in a similar way as fixed points in a pitchfork bifurcation. We show that this merging and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11667v2-abstract-full').style.display = 'inline'; document.getElementById('2207.11667v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11667v2-abstract-full" style="display: none;"> We study a class of bifurcations generically occurring in dynamical systems with non-mutual couplings ranging from models of coupled neurons to predator-prey systems and non-linear oscillators. In these bifurcations, extended attractors such as limit cycles, limit tori, and strange attractors merge and split in a similar way as fixed points in a pitchfork bifurcation. We show that this merging and splitting coincides with the coalescence of covariant Lyapunov vectors with vanishing Lyapunov exponents, generalizing the notion of exceptional points to non-linear dynamical systems. We distinguish two classes of bifurcations, corresponding respectively to continuous and discontinuous behaviors of the covariant Lyapunov vectors at the transition. We outline some physical consequences of generalized exceptional points on the dynamics of the system, including non-reciprocal responses, the destruction of isochrons, and enhanced sensitivity to noise. We illustrate our results with concrete examples from neuroscience, ecology, and physics. When applied to interpret existing experimental observations, our analysis suggests a simple explanation for the non-trivial phase delays observed in the population dynamics of plankton communities and the recently measured statistics of rotation reversals for a solid body immersed in a Rayleigh-B茅nard convection cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11667v2-abstract-full').style.display = 'none'; document.getElementById('2207.11667v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14171">arXiv:2205.14171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.14171">pdf</a>, <a href="https://arxiv.org/format/2205.14171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.046801">10.1103/PhysRevLett.131.046801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lamellar fluctuations melt ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Guzm%C3%A1n-Verri%2C+G+G">G. G. Guzm谩n-Verri</a>, <a href="/search/?searchtype=author&amp;query=Liang%2C+C+H">C. H. Liang</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14171v3-abstract-short" style="display: inline;"> We consider a standard Ginzburg-Landau model of a ferroelectric whose electrical polarization is coupled to gradients of elastic strain. At the harmonic level, such flexoelectric interaction is known to hybridize acoustic and optic phonon modes and lead to phases with modulated lattice structures that precede the symmetry broken state for sufficiently large couplings. Here, we use the we use the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14171v3-abstract-full').style.display = 'inline'; document.getElementById('2205.14171v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14171v3-abstract-full" style="display: none;"> We consider a standard Ginzburg-Landau model of a ferroelectric whose electrical polarization is coupled to gradients of elastic strain. At the harmonic level, such flexoelectric interaction is known to hybridize acoustic and optic phonon modes and lead to phases with modulated lattice structures that precede the symmetry broken state for sufficiently large couplings. Here, we use the we use the self-consistent phonon approximation to calculate the effects of thermal and quantum polarization fluctuations on the bare modes to show that such long-range modulated order is unstable at all temperatures. We discuss the implications for the nearly ferroelectric SrTiO$_3$ and KTaO$_3$, and propose that these systems are melted versions of an underlying modulated state which is dominated by non-zero momentum thermal fluctuations except at the very lowest temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14171v3-abstract-full').style.display = 'none'; document.getElementById('2205.14171v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures, 1 table, supplementary information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 046801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13220">arXiv:2203.13220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13220">pdf</a>, <a href="https://arxiv.org/format/2203.13220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum Melting in a Polariton Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Edelman%2C+A">Alexander Edelman</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13220v1-abstract-short" style="display: inline;"> Inspired by the recent experimental observation of strongly coupled polaritons in a Moir茅 heterobilayer, we study a model of dipole-interacting excitons localized on sites of a lattice and coupled to planar cavity photons. We calculate the phase diagram of this system by computing fluctuations around the mean field and determining the stability of the excitation spectrum. We find that the transiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13220v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13220v1-abstract-full" style="display: none;"> Inspired by the recent experimental observation of strongly coupled polaritons in a Moir茅 heterobilayer, we study a model of dipole-interacting excitons localized on sites of a lattice and coupled to planar cavity photons. We calculate the phase diagram of this system by computing fluctuations around the mean field and determining the stability of the excitation spectrum. We find that the transition from the normal state to a polariton condensate is intermediated by a series of ordered states at partial fillings of the exciton lattice, stabilized by the exciton interactions. In particular we predict a supersolid phase in which a polariton condensate coexists with spatial order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13220v1-abstract-full').style.display = 'none'; document.getElementById('2203.13220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07618">arXiv:2202.07618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07618">pdf</a>, <a href="https://arxiv.org/format/2202.07618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.014006">10.1103/PhysRevMaterials.5.014006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-metallicity and electron-hole liquid in two-dimensional C and BN based compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07618v1-abstract-short" style="display: inline;"> Insulating-metallic transition mediated by substitutional atoms is predicted in a series of two-dimensional carbon-based structures. Introducing Si atoms in selected sites of tetrahexcarbon [Carbon 137 (2018) 266] according to rational chemical rules, metallicity by trivial band inversion without band gap opening is induced. Additional substitution of remaining C atoms by BN dimers introduces no c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07618v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07618v1-abstract-full" style="display: none;"> Insulating-metallic transition mediated by substitutional atoms is predicted in a series of two-dimensional carbon-based structures. Introducing Si atoms in selected sites of tetrahexcarbon [Carbon 137 (2018) 266] according to rational chemical rules, metallicity by trivial band inversion without band gap opening is induced. Additional substitution of remaining C atoms by BN dimers introduces no changes in the metallic properties. A series of isomorphous two-dimensional materials with isoelectronic structures derived by exchanging group IV elements exhibiting various band gaps is obtained. Dynamical stability is verified with phonon analysis and beyond the harmonic approximation with molecular dynamics up to room temperature. The semi-metallic compounds have well-nested pockets of carriers and are good candidates for the formation of an excitonic insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07618v1-abstract-full').style.display = 'none'; document.getElementById('2202.07618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 014006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05565">arXiv:2202.05565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05565">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01483-7">10.1038/s41563-023-01483-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kimber%2C+S+A+J">Simon A. J. Kimber</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jiayong Zhang</a>, <a href="/search/?searchtype=author&amp;query=Liang%2C+C+H">Charles H. Liang</a>, <a href="/search/?searchtype=author&amp;query=Guzman-Verri%2C+G+G">Gian G. Guzman-Verri</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+Y">Yongqiang Cheng</a>, <a href="/search/?searchtype=author&amp;query=Abernathy%2C+D+L">Douglas L. Abernathy</a>, <a href="/search/?searchtype=author&amp;query=Hudspeth%2C+J+M">Jessica M. Hudspeth</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+Z">Zhong-Zhen Luo</a>, <a href="/search/?searchtype=author&amp;query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/?searchtype=author&amp;query=Chatterji%2C+T">Tapan Chatterji</a>, <a href="/search/?searchtype=author&amp;query=Ramirez-Cuesta%2C+A+J">Anibal J. Ramirez-Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Billinge%2C+S+J+L">Simon J. L. Billinge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05565v2-abstract-short" style="display: inline;"> Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05565v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05565v2-abstract-full" style="display: none;"> Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique. This collects structural snapshots with varying exposure times, on timescales relevant for atomic motions. In disagreement with previous interpretations, we find the time-averaged structure of GeTe to be crystalline at all temperatures, but with anisotropic anharmonic dynamics at higher temperatures that resemble static disorder at fast shutter speeds, with correlated ferroelectric fluctuations along the $&lt;$100$&gt;$c direction. We show that this anisotropy naturally emerges from a Ginzburg-Landau model that couples polarization fluctuations through long-range elastic interactions. By accessing time-dependent atomic correlations in energy materials, we resolve the long-standing disagreement between local and average structure probes, and show that spontaneous anisotropy is ubiquitous in cubic IV-VI materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05565v2-abstract-full').style.display = 'none'; document.getElementById('2202.05565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, substantial changes, many references removed due to journal limits :-( Please see the supporting information online. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format (see conditions)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials, 22, 311-315 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06715">arXiv:2201.06715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06715">pdf</a>, <a href="https://arxiv.org/format/2201.06715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.136401">10.1103/PhysRevLett.129.136401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Going Beyond the Cumulant Approximation: Power Series Correction to Single Particle Green&#39;s Function in Holstein System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pandey%2C+B">Bipul Pandey</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06715v1-abstract-short" style="display: inline;"> In the context of a single electron two orbital Holstein system coupled to dispersionless bosons, we develop a general method to correct single particle Green&#39;s function using a power series correction(PSC) scheme. We then outline the derivations of various flavors of cumulant approximation through the PSC scheme and explain the assumptions and approximations behind them. Finally, we compute and c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06715v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06715v1-abstract-full" style="display: none;"> In the context of a single electron two orbital Holstein system coupled to dispersionless bosons, we develop a general method to correct single particle Green&#39;s function using a power series correction(PSC) scheme. We then outline the derivations of various flavors of cumulant approximation through the PSC scheme and explain the assumptions and approximations behind them. Finally, we compute and compare PSC spectral function with cumulant and exact diagonalized spectral functions and elucidate three regimes of this problem - two that cumulant explains and one where cumulant fails. We find that the exact and the PSC spectral functions match within spectral broadening across all three regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06715v1-abstract-full').style.display = 'none'; document.getElementById('2201.06715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12250">arXiv:2111.12250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12250">pdf</a>, <a href="https://arxiv.org/format/2111.12250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Fr枚hlich bipolarons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lin%2C+L">L. Lin</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Edelman%2C+A">A. Edelman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12250v1-abstract-short" style="display: inline;"> Following a resurgence of interest in dilute superconductivity in polar semiconductors, we perform a variational calculation to probe the existence of Fr{枚}hlich bipolarons in these materials. Our solution is capable of interpolating between the weak- and strong-coupling limits of the electron-phonon interaction. We predict bipolaron formation in solely the strong-coupling regime, and we are not a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12250v1-abstract-full" style="display: none;"> Following a resurgence of interest in dilute superconductivity in polar semiconductors, we perform a variational calculation to probe the existence of Fr{枚}hlich bipolarons in these materials. Our solution is capable of interpolating between the weak- and strong-coupling limits of the electron-phonon interaction. We predict bipolaron formation in solely the strong-coupling regime, and we are not aware of any existing materials at these parameter values. However, imposing an extrinsic electron size constraint to mimic confinement on the sub-micron scale produces binding in new parts of the phase diagram, including at weak coupling, within reach of the near-ferroelectric perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12250v1-abstract-full').style.display = 'none'; document.getElementById('2111.12250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03138">arXiv:2111.03138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03138">pdf</a>, <a href="https://arxiv.org/format/2111.03138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Normal State Correlates of Plasmon-Polaron Superconductivity in Strontium Titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Edelman%2C+A">Alexander Edelman</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03138v1-abstract-short" style="display: inline;"> We analyze a minimal model of SrTiO3, such as has been historically used to analyze the superconducting state. Treating the electron-phonon and electron-electron interactions on an equal footing, we calculate the normal state properties, focusing on the spectral function. We find a density-driven crossover caused mostly by the adiabaticity of the bosonic modes, but the spectral features of our the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03138v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03138v1-abstract-full" style="display: none;"> We analyze a minimal model of SrTiO3, such as has been historically used to analyze the superconducting state. Treating the electron-phonon and electron-electron interactions on an equal footing, we calculate the normal state properties, focusing on the spectral function. We find a density-driven crossover caused mostly by the adiabaticity of the bosonic modes, but the spectral features of our theory are dominated by coupled plasmon-phonon oscillations rather than the bare phonon features seen in experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03138v1-abstract-full').style.display = 'none'; document.getElementById('2111.03138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15084">arXiv:2109.15084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.15084">pdf</a>, <a href="https://arxiv.org/format/2109.15084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac3cf1">10.1088/1361-648X/ac3cf1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Metastable States in UO$_2$ using Hybrid Functionals and Dynamical Mean Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ratcliff%2C+L+E">Laura E. Ratcliff</a>, <a href="/search/?searchtype=author&amp;query=Genovese%2C+L">Luigi Genovese</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+H">Hyowon Park</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15084v1-abstract-short" style="display: inline;"> A detailed exploration of the $f$-atomic orbital occupancy space for UO$_2$ is performed using a first principles approach based on density functional theory (DFT), employing a full hybrid functional within a systematic basis set. Specifically, the PBE0 functional is combined with an occupancy biasing scheme implemented in a wavelet-based algorithm which is adapted to large supercells. The results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15084v1-abstract-full').style.display = 'inline'; document.getElementById('2109.15084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15084v1-abstract-full" style="display: none;"> A detailed exploration of the $f$-atomic orbital occupancy space for UO$_2$ is performed using a first principles approach based on density functional theory (DFT), employing a full hybrid functional within a systematic basis set. Specifically, the PBE0 functional is combined with an occupancy biasing scheme implemented in a wavelet-based algorithm which is adapted to large supercells. The results are compared with previous DFT+U calculations reported in the literature, while dynamical mean field theory (DMFT) is also performed to provide a further base for comparison. This work shows that the computational complexity of the energy landscape of a correlated $f$-electron oxide is much richer than has previously been demonstrated. The resulting calculations provide evidence of the existence of multiple previously unexplored metastable electronic states of UO$_2$, including those with energies which are lower than previously reported ground states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15084v1-abstract-full').style.display = 'none'; document.getElementById('2109.15084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13176">arXiv:2003.13176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13176">pdf</a>, <a href="https://arxiv.org/format/2003.13176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03375-9">10.1038/s41586-021-03375-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-reciprocal phase transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fruchart%2C+M">Michel Fruchart</a>, <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Vitelli%2C+V">Vincenzo Vitelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13176v5-abstract-short" style="display: inline;"> Out of equilibrium, the lack of reciprocity is the rule rather than the exception. Non-reciprocal interactions occur, for instance, in networks of neurons, directional growth of interfaces, and synthetic active materials. While wave propagation in non-reciprocal media has recently been under intense study, less is known about the consequences of non-reciprocity on the collective behavior of many-b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13176v5-abstract-full').style.display = 'inline'; document.getElementById('2003.13176v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13176v5-abstract-full" style="display: none;"> Out of equilibrium, the lack of reciprocity is the rule rather than the exception. Non-reciprocal interactions occur, for instance, in networks of neurons, directional growth of interfaces, and synthetic active materials. While wave propagation in non-reciprocal media has recently been under intense study, less is known about the consequences of non-reciprocity on the collective behavior of many-body systems. Here, we show that non-reciprocity leads to time-dependent phases where spontaneously broken symmetries are dynamically restored. The resulting phase transitions are controlled by spectral singularities called exceptional points. We describe the emergence of these phases using insights from bifurcation theory and non-Hermitian quantum mechanics. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these non-reciprocal systems range from active time-(quasi)crystals to exceptional-point enforced pattern-formation and hysteresis. Our work paves the way towards a general theory of critical phenomena in non-reciprocal matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13176v5-abstract-full').style.display = 'none'; document.getElementById('2003.13176v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary movies at https://home.uchicago.edu/~vitelli/videos.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 592, 363-369 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06687">arXiv:1912.06687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.06687">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.205125">10.1103/PhysRevB.103.205125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the quantum-fluctuation driven amplitude mode in a microcavity polariton condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Steger%2C+M">Mark Steger</a>, <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Edelman%2C+A+O">Alexander Orson Edelman</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Snoke%2C+D+W">David W Snoke</a>, <a href="/search/?searchtype=author&amp;query=Beaumariage%2C+J">Jonathan Beaumariage</a>, <a href="/search/?searchtype=author&amp;query=Fluegel%2C+B">Brian Fluegel</a>, <a href="/search/?searchtype=author&amp;query=West%2C+K">Ken West</a>, <a href="/search/?searchtype=author&amp;query=Pfeiffer%2C+L+N">Loren N. Pfeiffer</a>, <a href="/search/?searchtype=author&amp;query=Mascarenhas%2C+A">Angelo Mascarenhas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06687v1-abstract-short" style="display: inline;"> The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations reported thus far, the amplitude mode was excited by perturbing the condensate out of equilibrium. Studying an exciton-polariton condensate, here we re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06687v1-abstract-full').style.display = 'inline'; document.getElementById('1912.06687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06687v1-abstract-full" style="display: none;"> The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations reported thus far, the amplitude mode was excited by perturbing the condensate out of equilibrium. Studying an exciton-polariton condensate, here we report the first observation of this mode purely driven by intrinsic quantum fluctuations without such perturbations. By using an ultrahigh quality microcavity and a Raman spectrometer to maximally reject photoluminescence from the condensate, we observe weak but distinct photoluminescence at energies below the condensate emission. We identify this as the so-called ghost branches of the amplitude mode arising from quantum depletion of the condensate into this mode. These energies, as well as the overall structure of the photoluminescence spectra, are in good agreement with our theoretical analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06687v1-abstract-full').style.display = 'none'; document.getElementById('1912.06687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 205125 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03243">arXiv:1908.03243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03243">pdf</a>, <a href="https://arxiv.org/ps/1908.03243">ps</a>, <a href="https://arxiv.org/format/1908.03243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033018">10.1103/PhysRevResearch.2.033018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Critical fluctuations at a many-body exceptional point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03243v3-abstract-short" style="display: inline;"> Critical phenomena arise ubiquitously in various context of physics, from condensed matter, high energy physics, cosmology, to biological systems, and consist of slow and long-distance fluctuations near a phase transition or critical point. Usually, these phenomena are associated with the softening of a massive mode. Here we show that a novel, non-Hermitian-induced mechanism of critical phenomena&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03243v3-abstract-full').style.display = 'inline'; document.getElementById('1908.03243v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03243v3-abstract-full" style="display: none;"> Critical phenomena arise ubiquitously in various context of physics, from condensed matter, high energy physics, cosmology, to biological systems, and consist of slow and long-distance fluctuations near a phase transition or critical point. Usually, these phenomena are associated with the softening of a massive mode. Here we show that a novel, non-Hermitian-induced mechanism of critical phenomena that do not fall into this class can arise in the steady state of generic driven-dissipative many-body systems with coupled binary order parameters such as exciton-polariton condensates and driven-dissipative Bose-Einstein condensates in a double-well potential. The criticality of this ``critical exceptional point&#39;&#39; is attributed to the coalescence of the collective eigenmodes that convert all the thermal-and-dissipative-noise activated fluctuations to the Goldstone mode, leading to anomalously giant phase fluctuations that diverge at spatial dimensions $d\le 4$. Our dynamic renormalization group analysis shows that this gives rise to a strong-coupling fixed point at dimensions as high as $d&lt;8$ associated with a new universality class beyond the classification by Hohenberg and Halperin, indicating how anomalously strong the many-body corrections are at this point. We find that this anomalous enhancement of many-body correlation is due to the appearance of a sound mode at the critical exceptional point despite the system&#39;s dissipative character. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03243v3-abstract-full').style.display = 'none'; document.getElementById('1908.03243v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures including appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033018 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03121">arXiv:1904.03121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03121">pdf</a>, <a href="https://arxiv.org/format/1904.03121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the dilute single band limit in reduced Strontium Titanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bretz-Sullivan%2C+T+M">Terence M. Bretz-Sullivan</a>, <a href="/search/?searchtype=author&amp;query=Edelman%2C+A">Alexander Edelman</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J+S">J. S. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jianjie Zhang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+G">Gensheng Wang</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+C">Clarence Chang</a>, <a href="/search/?searchtype=author&amp;query=Pearson%2C+J+E">John E. Pearson</a>, <a href="/search/?searchtype=author&amp;query=Martinson%2C+A+B">Alex B. Martinson</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+A">Anand Bhattacharya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03121v2-abstract-short" style="display: inline;"> We report on superconductivity in single crystals of SrTiO$_{3-未}$ with carrier densities $\textit{n} &lt; 1.4 \times10^{18}cm^{-3}$, where only a single band is occupied. For all samples in this regime, the resistive transition occurs at $T_{c} \approx 65 \pm 25 \ mK$. We observe a zero resistance state for $\textit{n}$ as low as $1.03 \times10^{17}cm^{-3}$, and a partial resistive transition for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03121v2-abstract-full').style.display = 'inline'; document.getElementById('1904.03121v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03121v2-abstract-full" style="display: none;"> We report on superconductivity in single crystals of SrTiO$_{3-未}$ with carrier densities $\textit{n} &lt; 1.4 \times10^{18}cm^{-3}$, where only a single band is occupied. For all samples in this regime, the resistive transition occurs at $T_{c} \approx 65 \pm 25 \ mK$. We observe a zero resistance state for $\textit{n}$ as low as $1.03 \times10^{17}cm^{-3}$, and a partial resistive transition for $\textit{n} = 3.85 \times10^{16}cm^{-3}$. We observe low critical current densities, relatively high and isotropic upper critical fields, and an absence of diamagnetic screening in these samples. Our findings suggest an inhomogeneous superconducting state, embedded within a homogeneous high-mobility 3-dimensional electron gas. $T_{c}$ does not vary appreciably when $\textit{n}$ changes by more than an order of magnitude, inconsistent with conventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03121v2-abstract-full').style.display = 'none'; document.getElementById('1904.03121v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02758">arXiv:1811.02758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02758">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1820092116">10.1073/pnas.1820092116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear magnetoresistance in the low-field limit in density-wave materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Feng%2C+Y">Yejun Feng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yishu Wang</a>, <a href="/search/?searchtype=author&amp;query=Silevitch%2C+D+M">D. M. Silevitch</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+J+-">J. -Q. Yan</a>, <a href="/search/?searchtype=author&amp;query=Kobayashi%2C+R">Riki Kobayashi</a>, <a href="/search/?searchtype=author&amp;query=Hedo%2C+M">Masato Hedo</a>, <a href="/search/?searchtype=author&amp;query=Nakama%2C+T">Takao Nakama</a>, <a href="/search/?searchtype=author&amp;query=%C5%8Cnuki%2C+Y">Yoshichika 艑nuki</a>, <a href="/search/?searchtype=author&amp;query=Suslov%2C+A+V">A. V. Suslov</a>, <a href="/search/?searchtype=author&amp;query=Mihaila%2C+B">B. Mihaila</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Rosenbaum%2C+T+F">T. F. Rosenbaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02758v1-abstract-short" style="display: inline;"> The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects [1], unusual topological band structures [2], and inhomogeneities that lead to wandering current paths [3, 4] can induce a crossover from quadratic to linear magnetoresistance with increasing magnetic field.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02758v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02758v1-abstract-full" style="display: none;"> The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects [1], unusual topological band structures [2], and inhomogeneities that lead to wandering current paths [3, 4] can induce a crossover from quadratic to linear magnetoresistance with increasing magnetic field. Here we explore a series of metallic charge- and spin-density-wave systems that exhibit extremely large positive linear magnetoresistance. By contrast to other linear MR mechanisms, this effect remains robust down to miniscule magnetic fields of tens of Oersted at low temperature. We frame an explanation of this phenomenon in a semi-classical narrative for a broad category of materials with partially-gapped Fermi surfaces due to density waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02758v1-abstract-full').style.display = 'none'; document.getElementById('1811.02758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02135">arXiv:1811.02135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02135">pdf</a>, <a href="https://arxiv.org/format/1811.02135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum electron transport in ohmic edge contacts between two-dimensional materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dong%2C+W">Wushi Dong</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02135v3-abstract-short" style="display: inline;"> The metal-semiconductor contact is a major factor limiting the shrinking of transistor dimension to further increase device performance. In-plane edge contacts have the potential to achieve lower contact resistance due to stronger orbital hybridization compared to conventional top contacts. However, a quantitative understanding of the electron transport properties in the edge contact is still lack&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02135v3-abstract-full').style.display = 'inline'; document.getElementById('1811.02135v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02135v3-abstract-full" style="display: none;"> The metal-semiconductor contact is a major factor limiting the shrinking of transistor dimension to further increase device performance. In-plane edge contacts have the potential to achieve lower contact resistance due to stronger orbital hybridization compared to conventional top contacts. However, a quantitative understanding of the electron transport properties in the edge contact is still lacking. In this work, we present full-band atomistic quantum transport simulations of the graphene/MoS$_2$ edge contact. By using a Wannier function basis to accurately describe the electronic bands, together with a full self-consistent solution of the electrostatics, we are able to efficiently model device structures on a micron scale, but with atomic level accuracy. We find that the potential barrier created by trapped charges decays fast with distance away from the interface, and is thus thin enough to enable efficient injection of electrons. This results in Ohmic behavior in its I-V characteristics, which agrees with experiments. Our results demonstrate the role played by trapped charges in the formation of a Schottky barrier, and how one can reduce the Schottky barrier height (SBH) by adjusting the relevant parameters of the edge contact system. Our framework can be extended conveniently to incorporate more general nanostructure geometries. For example, a full 3D solution of the electrostatics will also lead to better modeling of the electrical potential. Furthermore, better ab-initio calculations can be conveniently added to our methods to further improve their accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02135v3-abstract-full').style.display = 'none'; document.getElementById('1811.02135v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01273">arXiv:1809.01273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.01273">pdf</a>, <a href="https://arxiv.org/format/1809.01273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.185301">10.1103/PhysRevLett.122.185301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Edelman%2C+A">Alexander Edelman</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+Y">Yoji Ohashi</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01273v4-abstract-short" style="display: inline;"> We propose a novel mechanism for a nonequilibrium phase transition in a $U(1)$-broken phase of an electron-hole-photon system, from a Bose-Einstein condensate of polaritons to a photon laser, induced by the non-Hermitian nature of the condensate. We show that a (uniform) steady state of the condensate can always be classified into two types, namely, arising either from lower or upper-branch polari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01273v4-abstract-full').style.display = 'inline'; document.getElementById('1809.01273v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01273v4-abstract-full" style="display: none;"> We propose a novel mechanism for a nonequilibrium phase transition in a $U(1)$-broken phase of an electron-hole-photon system, from a Bose-Einstein condensate of polaritons to a photon laser, induced by the non-Hermitian nature of the condensate. We show that a (uniform) steady state of the condensate can always be classified into two types, namely, arising either from lower or upper-branch polaritons. We prove (for a general model) and demonstrate (for a particular model of polaritons) that an exceptional point where the two types coalesce marks the endpoint of a first-order-like phase boundary between the two types, similar to a critical point in a liquid-gas phase transition. Since the phase transition found in this paper is not in general triggered by population inversion, our result implies that the second threshold observed in experiments is not necessarily a strong-to-weak-coupling transition, contrary to the widely-believed understanding. Although our calculation mainly aims to clarify polariton physics, our discussion is applicable to general driven-dissipative condensates composed of two complex fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01273v4-abstract-full').style.display = 'none'; document.getElementById('1809.01273v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version. 6 pages and 4 figures + 13 pages and 6 figures of Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 185301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.00794">arXiv:1802.00794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.00794">pdf</a>, <a href="https://arxiv.org/format/1802.00794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.245302">10.1103/PhysRevB.97.245302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoluminescence and gain/absorption spectra of a driven-dissipative electron-hole-photon condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+Y">Yoji Ohashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.00794v3-abstract-short" style="display: inline;"> We investigate theoretically nonequilibrium effects on photoluminescence and gain/absorption spectra of a driven-dissipative exciton-polariton condensate, by employing the combined Hartree-Fock-Bogoliubov theory with the generalized random phase approximation extended to the Keldysh formalism. Our calculated photoluminescence spectra is in semiquantitative agreement with experiments, where feature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00794v3-abstract-full').style.display = 'inline'; document.getElementById('1802.00794v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.00794v3-abstract-full" style="display: none;"> We investigate theoretically nonequilibrium effects on photoluminescence and gain/absorption spectra of a driven-dissipative exciton-polariton condensate, by employing the combined Hartree-Fock-Bogoliubov theory with the generalized random phase approximation extended to the Keldysh formalism. Our calculated photoluminescence spectra is in semiquantitative agreement with experiments, where features such as a blue shift of the emission from the condensate, the appearance of the dispersionless feature of a diffusive Goldstone mode, and the suppression of the dispersive profile of the mode are obtained. We show that the nonequilibrium nature of the exciton-polariton condensate strongly suppresses the visibility of the Bogoliubov dispersion in the negative energy branch (ghost branch) in photoluminescence spectra. We also show that the trace of this branch can be captured as a hole burning effect in gain/absorption spectra. Our results indicate that the nonequilibrium nature of the exciton-polariton condensate strongly reduces quantum depletion, while a scattering channel to the ghost branch is still present. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00794v3-abstract-full').style.display = 'none'; document.getElementById('1802.00794v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 245302 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02865">arXiv:1712.02865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.02865">pdf</a>, <a href="https://arxiv.org/format/1712.02865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.134101">10.1103/PhysRevB.92.134101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large isotropic negative thermal expansion above a structural quantum phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Handunkanda%2C+S+U">Sahan U. Handunkanda</a>, <a href="/search/?searchtype=author&amp;query=Curry%2C+E+B">Erin B. Curry</a>, <a href="/search/?searchtype=author&amp;query=Voronov%2C+V">Vladimir Voronov</a>, <a href="/search/?searchtype=author&amp;query=Said%2C+A+H">Ayman H. Said</a>, <a href="/search/?searchtype=author&amp;query=Guzman-Verri%2C+G+G">Gian G. Guzman-Verri</a>, <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">Richard T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Hancock%2C+J+N">Jason N. Hancock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02865v1-abstract-short" style="display: inline;"> Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02865v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02865v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02865v1-abstract-full" style="display: none;"> Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02865v1-abstract-full').style.display = 'none'; document.getElementById('1712.02865v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 92, 134101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01158">arXiv:1708.01158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.01158">pdf</a>, <a href="https://arxiv.org/format/1708.01158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.1.053601">10.1103/PhysRevMaterials.1.053601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Landau theory and giant room-temperature barocaloric effect in MF$_3$ metal trifluorides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Corrales-Salazar%2C+A">A. Corrales-Salazar</a>, <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">R. T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Guzm%C3%A1n-Verri%2C+G+G">G. G. Guzm谩n-Verri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01158v2-abstract-short" style="display: inline;"> The structural phase transitions of MF$_3$ (M=Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF$_6$ octahedra associated with soft antiferrodistoritive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01158v2-abstract-full').style.display = 'inline'; document.getElementById('1708.01158v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01158v2-abstract-full" style="display: none;"> The structural phase transitions of MF$_3$ (M=Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF$_6$ octahedra associated with soft antiferrodistoritive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous distortions, volume expansion and shear strains as well as $T-P$ phase diagrams. By contrasting our model to experiments we quantify the deviations from mean-field behavior and found that the tilt fluctuations of the MF$_6$ octahedra increase with metal cation size. We apply our model to predict giant barocaloric effects in Sc substituted TiF$_3$ of up to about $15\,$JK$^{-1}$kg$^{-1}$ for modest hydrostatic compressions of $0.2\,$GPa. The effect extends over a wide temperature range of over $140\,$K (including room temperature) due to a large predicted rate $dT_c/dP = 723\,$K GPa$^{-1}$, which exceeds those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the trifluorides are an attractive platform to search for giant barocaloric effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01158v2-abstract-full').style.display = 'none'; document.getElementById('1708.01158v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 1, 053601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08886">arXiv:1704.08886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.08886">pdf</a>, <a href="https://arxiv.org/ps/1704.08886">ps</a>, <a href="https://arxiv.org/format/1704.08886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.035133">10.1103/PhysRevB.99.035133 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge transfer and metallicity in LaNiO$_3$/LaMnO$_3$ superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a>, <a href="/search/?searchtype=author&amp;query=Arsenault%2C+L">Louis-Fran莽ois Arsenault</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+A">Anand Bhattacharya</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08886v1-abstract-short" style="display: inline;"> Motivated by recent experiments, we use the $+U$ extension of the generalized gradient approximation to density functional theory to study superlattices composed of alternating layers of LaNiO$_3$ and LaMnO$_3$. For comparison we also study a rocksalt ((111) double perovskite) structure and bulk LaNiO$_3$ and LaMnO$_3$. A Wannier function analysis indicates that band parameters are transferable fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08886v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08886v1-abstract-full" style="display: none;"> Motivated by recent experiments, we use the $+U$ extension of the generalized gradient approximation to density functional theory to study superlattices composed of alternating layers of LaNiO$_3$ and LaMnO$_3$. For comparison we also study a rocksalt ((111) double perovskite) structure and bulk LaNiO$_3$ and LaMnO$_3$. A Wannier function analysis indicates that band parameters are transferable from bulk to superlattice situations with the exception of the transition metal d-level energy, which has a contribution from the change in d-shell occupancy. The charge transfer from Mn to Ni is found to be moderate in the superlattice, indicating metallic behavior, in contrast to the insulating behavior found in recent experiments, while the rocksalt structure is found to be insulating with a large Mn-Ni charge transfer. We suggest a high density of cation antisite defects may account for the insulating behavior experimentally observed in short-period superlattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08886v1-abstract-full').style.display = 'none'; document.getElementById('1704.08886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 035133 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.06302">arXiv:1702.06302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.06302">pdf</a>, <a href="https://arxiv.org/ps/1702.06302">ps</a>, <a href="https://arxiv.org/format/1702.06302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Giant magnetoelectric effect in pure manganite-manganite heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Paul%2C+S">Sanjukta Paul</a>, <a href="/search/?searchtype=author&amp;query=Pankaj%2C+R">Ravindra Pankaj</a>, <a href="/search/?searchtype=author&amp;query=Yarlagadda%2C+S">Sudhakar Yarlagadda</a>, <a href="/search/?searchtype=author&amp;query=Majumdar%2C+P">Pinaki Majumdar</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.06302v1-abstract-short" style="display: inline;"> Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form ${\rm (Insulator)/(LaMnO_3)_n/(CaMnO_3)_n/(Insulator)}$ show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from ${\rm LaMnO_3}$ to ${\rm CaMnO_3}$ due to repulsion. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06302v1-abstract-full').style.display = 'inline'; document.getElementById('1702.06302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.06302v1-abstract-full" style="display: none;"> Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form ${\rm (Insulator)/(LaMnO_3)_n/(CaMnO_3)_n/(Insulator)}$ show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from ${\rm LaMnO_3}$ to ${\rm CaMnO_3}$ due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06302v1-abstract-full').style.display = 'none'; document.getElementById('1702.06302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version supersedes arXiv:1203.3283</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.02318">arXiv:1701.02318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.02318">pdf</a>, <a href="https://arxiv.org/format/1701.02318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1824-9">10.1038/s41586-019-1824-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cooperative elastic fluctuations provide tuning of the metal-insulator transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Guzm%C3%A1n-Verri%2C+G+G">G. G. Guzm谩n-Verri</a>, <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">R. T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.02318v3-abstract-short" style="display: inline;"> Metal to insulator transitions (MITs) driven by strong electronic correlations are common in condensed matter systems, and are associated with some of the most remarkable collective phenomena in solids, including superconductivity and magnetism. Tuning and control of the transition holds the promise of novel, low power, ultrafast electronics, but the relative roles of doping, chemistry, elastic st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02318v3-abstract-full').style.display = 'inline'; document.getElementById('1701.02318v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.02318v3-abstract-full" style="display: none;"> Metal to insulator transitions (MITs) driven by strong electronic correlations are common in condensed matter systems, and are associated with some of the most remarkable collective phenomena in solids, including superconductivity and magnetism. Tuning and control of the transition holds the promise of novel, low power, ultrafast electronics, but the relative roles of doping, chemistry, elastic strain and other applied fields has made systematic understanding difficult to obtain. Here we point out that existing data on tuning of the MIT in perovskite transition metal oxides through ionic size effects provides evidence of systematic and large effects on the phase transition due to dynamical fluctuations of the elastic strain, which have been usually neglected. This is illustrated by a simple yet quantitative statistical mechanical calculation in a model that incorporates cooperative lattice distortions coupled to the electronic degrees of freedom. We reproduce the observed dependence of the transition temperature on cation radius in the well-studied manganite and nickelate materials. Since the elastic couplings are generically quite strong, these conclusions will broadly generalize to all MITs that couple to a change in lattice symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02318v3-abstract-full').style.display = 'none'; document.getElementById('1701.02318v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, supplementary information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 576, 429 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08622">arXiv:1610.08622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.08622">pdf</a>, <a href="https://arxiv.org/format/1610.08622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.125206">10.1103/PhysRevB.96.125206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical instability of a driven-dissipative electron-hole condensate in the BCS-BEC-crossover region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+Y">Yoji Ohashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08622v3-abstract-short" style="display: inline;"> We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08622v3-abstract-full').style.display = 'inline'; document.getElementById('1610.08622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08622v3-abstract-full" style="display: none;"> We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to $\nabla 胃({\bf r})$ (where $胃({\bf r})$ is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC. Our result suggests that substantial region of the exciton-BEC phase in the phase diagram (in terms of the interaction strength and the decay rate) is unstable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08622v3-abstract-full').style.display = 'none'; document.getElementById('1610.08622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 125206 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05018">arXiv:1608.05018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.05018">pdf</a>, <a href="https://arxiv.org/ps/1608.05018">ps</a>, <a href="https://arxiv.org/format/1608.05018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.241405">10.1103/PhysRevB.93.241405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic properties of 8-Pmmn borophene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05018v1-abstract-short" style="display: inline;"> First-principles calculations on monolayer 8-{\it Pmmn} borophene are reported to reveal unprecedented electronic properties in a two-dimensional material. Based on a Born effective charge analysis, 8-{\it Pmmn} borophene is the first single-element based monolayered material exhibiting two sublattices with substantial ionic features. The observed Dirac cones are actually formed by the p$_z$ orbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05018v1-abstract-full').style.display = 'inline'; document.getElementById('1608.05018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05018v1-abstract-full" style="display: none;"> First-principles calculations on monolayer 8-{\it Pmmn} borophene are reported to reveal unprecedented electronic properties in a two-dimensional material. Based on a Born effective charge analysis, 8-{\it Pmmn} borophene is the first single-element based monolayered material exhibiting two sublattices with substantial ionic features. The observed Dirac cones are actually formed by the p$_z$ orbitals of one of the inequivalent sublattices composed of uniquely four atoms, yielding an underlying hexagonal network topologically equivalent to distorted graphene. A significant physical outcome of this effect includes the possibility of converting metallic 8-{\it Pmmn} borophene into an indirect band gap semiconductor by means of external shear stress. The stability of the strained structures are supported by a phonon frequency analysis. The Dirac cones are sensitive to the formation of vacancies only in the inequivalent sublattice electronically active at the Fermi level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05018v1-abstract-full').style.display = 'none'; document.getElementById('1608.05018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 241405(R) (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08983">arXiv:1506.08983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.08983">pdf</a>, <a href="https://arxiv.org/ps/1506.08983">ps</a>, <a href="https://arxiv.org/format/1506.08983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-016-1552-6">10.1007/s10909-016-1552-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium properties of a pumped-decaying Bose-condensed electron-hole gas in the BCS-BEC crossover region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hanai%2C+R">Ryo Hanai</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Ohashi%2C+Y">Yoji Ohashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08983v1-abstract-short" style="display: inline;"> We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08983v1-abstract-full').style.display = 'inline'; document.getElementById('1506.08983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08983v1-abstract-full" style="display: none;"> We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08983v1-abstract-full').style.display = 'none'; document.getElementById('1506.08983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, Proceedings of QFS-2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Low Temp. Phys. 183, 127-135 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07039">arXiv:1503.07039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07039">pdf</a>, <a href="https://arxiv.org/ps/1503.07039">ps</a>, <a href="https://arxiv.org/format/1503.07039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.035438">10.1103/PhysRevB.92.035438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model of two-dimensional electron gas formation at ferroelectric interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aguado-Puente%2C+P">Pablo Aguado-Puente</a>, <a href="/search/?searchtype=author&amp;query=Bristowe%2C+N+C">Nicholas. C. Bristowe</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+B">Binglun Yin</a>, <a href="/search/?searchtype=author&amp;query=Shirasawa%2C+R">Raku Shirasawa</a>, <a href="/search/?searchtype=author&amp;query=Ghosez%2C+P">Philippe Ghosez</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Artacho%2C+E">Emilio Artacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07039v2-abstract-short" style="display: inline;"> The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07039v2-abstract-full').style.display = 'inline'; document.getElementById('1503.07039v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07039v2-abstract-full" style="display: none;"> The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO$_3$/SrTiO$_3$ heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first principles simulations of free standing slabs of PbTiO$_3$. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a non-volatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07039v2-abstract-full').style.display = 'none'; document.getElementById('1503.07039v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 035438 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.05749">arXiv:1502.05749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.05749">pdf</a>, <a href="https://arxiv.org/format/1502.05749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4932347">10.1063/1.4932347 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plentiful magnetic moments in oxygen deficient SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a>, <a href="/search/?searchtype=author&amp;query=Ganesh%2C+P">P. Ganesh</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.05749v1-abstract-short" style="display: inline;"> Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO$_3$. Hole and electron doping of oxygen deficient SrTiO$_3$ yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defected sites. Different kinds of Ti atomic orbital hybridizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.05749v1-abstract-full').style.display = 'inline'; document.getElementById('1502.05749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.05749v1-abstract-full" style="display: none;"> Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO$_3$. Hole and electron doping of oxygen deficient SrTiO$_3$ yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defected sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO$_{3-未}$ is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono and multi-vacancies and points out the importance of the controled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.05749v1-abstract-full').style.display = 'none'; document.getElementById('1502.05749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, continuation of arXiv:1408.3103</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 3, 100701 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1326">arXiv:1411.1326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.1326">pdf</a>, <a href="https://arxiv.org/format/1411.1326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4950788">10.1063/1.4950788 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Why is the electrocaloric effect so small in ferroelectrics? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Guzm%C3%A1n-Verri%2C+G+G">G. G. Guzm谩n-Verri</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1326v3-abstract-short" style="display: inline;"> Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1326v3-abstract-full').style.display = 'inline'; document.getElementById('1411.1326v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1326v3-abstract-full" style="display: none;"> Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit which provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipole forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1326v3-abstract-full').style.display = 'none'; document.getElementById('1411.1326v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, supplemental material included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 4, 064106 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.3103">arXiv:1408.3103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.3103">pdf</a>, <a href="https://arxiv.org/ps/1408.3103">ps</a>, <a href="https://arxiv.org/format/1408.3103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.115112">10.1103/PhysRevB.92.115112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism and metal-insulator transition in oxygen deficient SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lopez-Bezanilla%2C+A">Alejandro Lopez-Bezanilla</a>, <a href="/search/?searchtype=author&amp;query=Ganesh%2C+P">P. Ganesh</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.3103v2-abstract-short" style="display: inline;"> First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO$_3$ (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3103v2-abstract-full').style.display = 'inline'; document.getElementById('1408.3103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.3103v2-abstract-full" style="display: none;"> First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO$_3$ (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find that while an isolated vacancy behaves as a non-magnetic double donor, manipulation of the doping conditions allows the stability of a single donor state, with emergent local moments coupled ferromagnetically by carriers in the conduction band. Strong local lattice distortions enhance the binding of this state. The energy of the in-gap local moment can be further tuned by orthorhombic strain. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient STO, which may have important implications in the design of optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.3103v2-abstract-full').style.display = 'none'; document.getElementById('1408.3103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Figure 2 amended</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 115112 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.8427">arXiv:1310.8427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.8427">pdf</a>, <a href="https://arxiv.org/format/1310.8427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/26/14/143201">10.1088/0953-8984/26/14/143201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of two-dimensional electron gases at oxide interfaces: insights from theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bristowe%2C+N+C">N C Bristowe</a>, <a href="/search/?searchtype=author&amp;query=Ghosez%2C+P">Philippe Ghosez</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P B Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Artacho%2C+E">Emilio Artacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.8427v2-abstract-short" style="display: inline;"> The response of oxide thin films to polar discontinuities at interfaces and surfaces has generated an enormous activity due to the variety of interesting effects it gives rise to. A case in point is the discovery of the electron gas at the interface between LaAlO3 and SrTiO3, which has since been shown to be quasi-two-dimensional, switchable, magnetic and/or superconducting. Despite these findings&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8427v2-abstract-full').style.display = 'inline'; document.getElementById('1310.8427v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.8427v2-abstract-full" style="display: none;"> The response of oxide thin films to polar discontinuities at interfaces and surfaces has generated an enormous activity due to the variety of interesting effects it gives rise to. A case in point is the discovery of the electron gas at the interface between LaAlO3 and SrTiO3, which has since been shown to be quasi-two-dimensional, switchable, magnetic and/or superconducting. Despite these findings, the origin of the two-dimensional electron gas is highly debated and several possible mechanisms remain. Here we review the main proposed mechanisms and attempt to model expected effects in a quantitative way with the ambition of better constraining what effects can/cannot explain the observed phenomenology. We do it in the framework of a phenomenological model for understanding electronic and/or redox screening of the chemical charge in oxide heterostructures. We also discuss the effect of intermixing, both conserving and non-conserving the total stoichiometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8427v2-abstract-full').style.display = 'none'; document.getElementById('1310.8427v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2014 J. Phys.: Condens. Matter 26 143201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.2816">arXiv:1309.2816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.2816">pdf</a>, <a href="https://arxiv.org/format/1309.2816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.134106">10.1103/PhysRevB.88.134106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paraelectric and Ferroelectric States in a Model for Relaxor Ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Guzm%C3%A1n-Verri%2C+G+G">G. G. Guzm谩n-Verri</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Varma%2C+C+M">C. M. Varma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.2816v1-abstract-short" style="display: inline;"> We study the free energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero temperature. The free energy of such states exhibits an essentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2816v1-abstract-full').style.display = 'inline'; document.getElementById('1309.2816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.2816v1-abstract-full" style="display: none;"> We study the free energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero temperature. The free energy of such states exhibits an essential singularity for weak compositional disorder pointing to their necessary occurrence. Ferroelectric states appear as local minima in the free energy at high temperatures and become stable below a coexistence temperature $T_c$. We calculate the phase diagram in the electric field-temperature plane and find a coexistence line of the polar and non-polar phases which ends at a critical point. First-order phase transitions are induced for fields sufficiently large to cross the region of stability of the metastable paraelectric phase. These polar and non-polar states have distinct structure factors from those of conventional ferroelectrics. We use this theoretical framework to compare and to gain physical understanding of various experimental results in typical relaxors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.2816v1-abstract-full').style.display = 'none'; document.getElementById('1309.2816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 134106 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.7886">arXiv:1307.7886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.7886">pdf</a>, <a href="https://arxiv.org/format/1307.7886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.184104">10.1103/PhysRevB.89.184104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Domain wall fluctuations in ferroelectrics coupled to strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">R. T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.7886v1-abstract-short" style="display: inline;"> Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to pola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7886v1-abstract-full').style.display = 'inline'; document.getElementById('1307.7886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.7886v1-abstract-full" style="display: none;"> Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to polarization fluctuations, and the results depend on $v_s$. For $v_s \to \infty$, the strain mediates an instantaneous electrostrictive interaction, which is long-range in the 90 degree wall case. For finite $v_s$, acoustic phonons damp the wall excitations, producing a continuum in the spectral function. As $v_s\ to 0$, a gapped mode emerges, which corresponds to the polarization oscillating in a fixed strain potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7886v1-abstract-full').style.display = 'none'; document.getElementById('1307.7886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.3720">arXiv:1303.3720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.3720">pdf</a>, <a href="https://arxiv.org/ps/1303.3720">ps</a>, <a href="https://arxiv.org/format/1303.3720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/105/47009">10.1209/0295-5075/105/47009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polariton condensation with saturable molecules dressed by vibrational modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cwik%2C+J+A">Justyna A. Cwik</a>, <a href="/search/?searchtype=author&amp;query=Reja%2C+S">Sahinur Reja</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Keeling%2C+J">Jonathan Keeling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.3720v3-abstract-short" style="display: inline;"> Polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3720v3-abstract-full').style.display = 'inline'; document.getElementById('1303.3720v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.3720v3-abstract-full" style="display: none;"> Polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this we calculate the phase diagram and spectrum of a modified Tavis-Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode. Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence with decreasing temperature and can drive the transition first order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.3720v3-abstract-full').style.display = 'none'; document.getElementById('1303.3720v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 105 (2014) 47009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.5739">arXiv:1302.5739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.5739">pdf</a>, <a href="https://arxiv.org/format/1302.5739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.87.161122">10.1103/PhysRevB.87.161122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nematicity driven by hybridization in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Stanev%2C+V">Valentin Stanev</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.5739v2-abstract-short" style="display: inline;"> In this paper we study an effective model for the normal state of iron-based superconductors. It has separate, but interacting itinerant and localized degrees of freedom, originating from the d_xz and d_yz, and from d_xy iron orbitals respectively. At low temperatures, below a mean-field phase transition, these different states condense together in an excitonic order parameter. We show that at eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5739v2-abstract-full').style.display = 'inline'; document.getElementById('1302.5739v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.5739v2-abstract-full" style="display: none;"> In this paper we study an effective model for the normal state of iron-based superconductors. It has separate, but interacting itinerant and localized degrees of freedom, originating from the d_xz and d_yz, and from d_xy iron orbitals respectively. At low temperatures, below a mean-field phase transition, these different states condense together in an excitonic order parameter. We show that at even lower temperature, after another phase transition, this ordered state can spontaneously break the C_4 lattice symmetry and become nematic. We propose this mechanism as an explanation of the tendency towards nematicity observed in several iron-based compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5739v2-abstract-full').style.display = 'none'; document.getElementById('1302.5739v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, new references added, replaced Fig. 1, fixed several typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 87, 161122(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.2278">arXiv:1210.2278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.2278">pdf</a>, <a href="https://arxiv.org/format/1210.2278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.161411">10.1103/PhysRevB.88.161411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bristowe%2C+N+C">N. C. Bristowe</a>, <a href="/search/?searchtype=author&amp;query=Stengel%2C+M">Massimiliano Stengel</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Artacho%2C+E">Emilio Artacho</a>, <a href="/search/?searchtype=author&amp;query=Pruneda%2C+J+M">J. M. Pruneda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.2278v1-abstract-short" style="display: inline;"> We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V and IV-IV two-dimensional (2D) honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of excess charge that can be simply determined by using the ideal (integer) formal valence charges, regardless of the predominant covalent character of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2278v1-abstract-full').style.display = 'inline'; document.getElementById('1210.2278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.2278v1-abstract-full" style="display: none;"> We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V and IV-IV two-dimensional (2D) honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of excess charge that can be simply determined by using the ideal (integer) formal valence charges, regardless of the predominant covalent character of the bonding in these materials. We justify this finding on fundamental physical grounds, by analyzing the topology of the formal polarization lattice in the parent bulk materials. First principles calculations elucidate an electronic compensation mechanism not dissimilar to oxide interfaces, which is triggered by a Zener-like charge transfer between interfaces of opposite polarity. In particular, we predict the emergence of one dimensional electron and hole gases (1DEG), which in some cases are ferromagnetic half-metallic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.2278v1-abstract-full').style.display = 'none'; document.getElementById('1210.2278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4453">arXiv:1208.4453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.4453">pdf</a>, <a href="https://arxiv.org/format/1208.4453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.166403">10.1103/PhysRevLett.110.166403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmon mode modifies the elastic response of a nanoscale charge density wave system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sengupta%2C+S">Shamashis Sengupta</a>, <a href="/search/?searchtype=author&amp;query=Samudrala%2C+N">Niveditha Samudrala</a>, <a href="/search/?searchtype=author&amp;query=Singh%2C+V">Vibhor Singh</a>, <a href="/search/?searchtype=author&amp;query=Thamizhavel%2C+A">Arumugam Thamizhavel</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Tripathi%2C+V">Vikram Tripathi</a>, <a href="/search/?searchtype=author&amp;query=Deshmukh%2C+M+M">Mandar M. Deshmukh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4453v1-abstract-short" style="display: inline;"> The elastic response of suspended NbSe3 nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (10-100 MHz), bringing the excited phonon frequency in close proximity of the plasmon mode of the electronic condensate - a parameter window not accessible in bulk systems. The interaction between the phonon and p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4453v1-abstract-full').style.display = 'inline'; document.getElementById('1208.4453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4453v1-abstract-full" style="display: none;"> The elastic response of suspended NbSe3 nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (10-100 MHz), bringing the excited phonon frequency in close proximity of the plasmon mode of the electronic condensate - a parameter window not accessible in bulk systems. The interaction between the phonon and plasmon modes strongly modifies the elastic properties at high frequencies. This is manifested in the nanomechanics of the system as a sharp peak in the temperature dependence of the elastic modulus (relative change of 12.8%) in the charge density wave phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4453v1-abstract-full').style.display = 'none'; document.getElementById('1208.4453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 110, 166403 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.2304">arXiv:1208.2304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.2304">pdf</a>, <a href="https://arxiv.org/ps/1208.2304">ps</a>, <a href="https://arxiv.org/format/1208.2304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.184106">10.1103/PhysRevB.86.184106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of rare earth ion size on the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Seman%2C+T+F">T. F. Seman</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+K+H">K. H. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Lookman%2C+T">T. Lookman</a>, <a href="/search/?searchtype=author&amp;query=Saxena%2C+A">A. Saxena</a>, <a href="/search/?searchtype=author&amp;query=Bishop%2C+A+R">A. R. Bishop</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.2304v1-abstract-short" style="display: inline;"> We present a theoretical study on the relation between the size of the rare earth ions, often known as chemical pressure, and the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites. Using a Keating model expressed in terms of atomic scale symmetry modes, we show that there exists a coupling between the uniform shear distortion and the staggered buckling distortion w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2304v1-abstract-full').style.display = 'inline'; document.getElementById('1208.2304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.2304v1-abstract-full" style="display: none;"> We present a theoretical study on the relation between the size of the rare earth ions, often known as chemical pressure, and the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites. Using a Keating model expressed in terms of atomic scale symmetry modes, we show that there exists a coupling between the uniform shear distortion and the staggered buckling distortion within the Jahn-Teller energy term. It is found that this coupling provides a mechanism by which the coherent Jahn-Teller distortion is more stabilized by smaller rare earth ions. We analyze the appearance of the uniform shear distortion below the Jahn-Teller ordering temperature, estimate the Jahn-Teller ordering temperature and its variation between NdMnO3 and LaMnO3, and obtain the relations between distortions. We find good agreement between theoretical results and experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2304v1-abstract-full').style.display = 'none'; document.getElementById('1208.2304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.5610">arXiv:1207.5610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.5610">pdf</a>, <a href="https://arxiv.org/format/1207.5610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.115136">10.1103/PhysRevB.86.115136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Augmented hybrid exact-diagonalization solver for dynamical mean field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weber%2C+C">C. Weber</a>, <a href="/search/?searchtype=author&amp;query=Amaricci%2C+A">A. Amaricci</a>, <a href="/search/?searchtype=author&amp;query=Capone%2C+M">M. Capone</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.5610v1-abstract-short" style="display: inline;"> We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a finite-temperature Lanczos algorithm with an adapted version of the cluster perturbation theory. We show that the augmented diagonalization yields an i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.5610v1-abstract-full').style.display = 'inline'; document.getElementById('1207.5610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.5610v1-abstract-full" style="display: none;"> We present a new methodology to solve the Anderson impurity model, in the context of dynamical mean-field theory, based on the exact diagonalization method. We propose a strategy to effectively refine the exact diagonalization solver by combining a finite-temperature Lanczos algorithm with an adapted version of the cluster perturbation theory. We show that the augmented diagonalization yields an improved accuracy in the description of the spectral function of the single-band Hubbard model and is a reliable approach for a full d-orbital manifold calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.5610v1-abstract-full').style.display = 'none'; document.getElementById('1207.5610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 115136 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1784">arXiv:1206.1784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.1784">pdf</a>, <a href="https://arxiv.org/format/1206.1784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9781848168121_0030">10.1142/9781848168121_0030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Equilibrium Bose-Einstein Condensation in a Dissipative Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Szymanska%2C+M+H">M. H. Szymanska</a>, <a href="/search/?searchtype=author&amp;query=Keeling%2C+J">J. Keeling</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1784v1-abstract-short" style="display: inline;"> Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and appl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1784v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1784v1-abstract-full" style="display: none;"> Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1784v1-abstract-full').style.display = 'none'; document.getElementById('1206.1784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, Unedited version of chapter to appear in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series). N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. Imperial College Press, London (in press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.0412">arXiv:1206.0412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.0412">pdf</a>, <a href="https://arxiv.org/format/1206.0412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.106402">10.1103/PhysRevLett.110.106402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Importance of many body effects in the kernel of hemoglobin for ligand binding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weber%2C+C">Cedric Weber</a>, <a href="/search/?searchtype=author&amp;query=O%27Regan%2C+D+D">David D. O&#39;Regan</a>, <a href="/search/?searchtype=author&amp;query=Hine%2C+N+D+M">Nicholas D. M. Hine</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Kotliar%2C+G">Gabriel Kotliar</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+M+C">Mike C. Payne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.0412v2-abstract-short" style="display: inline;"> We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human resp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0412v2-abstract-full').style.display = 'inline'; document.getElementById('1206.0412v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.0412v2-abstract-full" style="display: none;"> We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration. We find that variations in Hund&#39;s exchange coupling induce a reduction of the iron 3d density, with a concomitant increase of valence fluctuations. We discuss the comparison between our computed optical absorption spectra and experimental data, our picture accounting for the observation of optical transitions in the infrared regime, and how the Hund&#39;s coupling reduces, by a factor of five, the strong imbalance in the binding energies of heme with CO and O_2 ligands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.0412v2-abstract-full').style.display = 'none'; document.getElementById('1206.0412v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Supplementary material 12 pages, 5 figures. This version (v2) matches that accepted for Physical Review Letters on 31 January 2013</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 106402 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.1379">arXiv:1205.1379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.1379">pdf</a>, <a href="https://arxiv.org/ps/1205.1379">ps</a>, <a href="https://arxiv.org/format/1205.1379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/14/10/105008">10.1088/1367-2630/14/10/105008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical time propagation of quantum systems in radiation fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alvermann%2C+A">A. Alvermann</a>, <a href="/search/?searchtype=author&amp;query=Fehske%2C+H">H. Fehske</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.1379v2-abstract-short" style="display: inline;"> Atoms, molecules or excitonic quasiparticles, for which excitations are induced by external radiation fields and energy is dissipated through radiative decay, are examples of driven open quantum systems. We explain the use of commutator-free exponential time-propagators for the numerical solution of the associated Schr枚dinger or master equations with a time-dependent Hamilton operator. These time-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.1379v2-abstract-full').style.display = 'inline'; document.getElementById('1205.1379v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.1379v2-abstract-full" style="display: none;"> Atoms, molecules or excitonic quasiparticles, for which excitations are induced by external radiation fields and energy is dissipated through radiative decay, are examples of driven open quantum systems. We explain the use of commutator-free exponential time-propagators for the numerical solution of the associated Schr枚dinger or master equations with a time-dependent Hamilton operator. These time-propagators are based on the Magnus series but avoid the computation of commutators, which makes them suitable for the efficient propagation of systems with a large number of degrees of freedom. We present an optimized fourth order propagator and demonstrate its efficiency in comparison to the direct Runge-Kutta computation. As an illustrative example we consider the parametrically driven dissipative Dicke model, for which we calculate the periodic steady state and the optical emission spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.1379v2-abstract-full').style.display = 'none'; document.getElementById('1205.1379v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 14, 105008 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.3283">arXiv:1203.3283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.3283">pdf</a>, <a href="https://arxiv.org/ps/1203.3283">ps</a>, <a href="https://arxiv.org/format/1203.3283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.195130">10.1103/PhysRevB.96.195130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant magnetoelectric effect in pure manganite-manganite heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Paul%2C+S">Sanjukta Paul</a>, <a href="/search/?searchtype=author&amp;query=Pankaj%2C+R">Ravindra Pankaj</a>, <a href="/search/?searchtype=author&amp;query=Yarlagadda%2C+S">Sudhakar Yarlagadda</a>, <a href="/search/?searchtype=author&amp;query=Majumdar%2C+P">Pinaki Majumdar</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.3283v2-abstract-short" style="display: inline;"> Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form ${\rm (Insulator)/(LaMnO_3)_n/(CaMnO_3)_n/(Insulator)}$ show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from ${\rm LaMnO_3}$ to ${\rm CaMnO_3}$ due to repulsion. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.3283v2-abstract-full').style.display = 'inline'; document.getElementById('1203.3283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.3283v2-abstract-full" style="display: none;"> Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form ${\rm (Insulator)/(LaMnO_3)_n/(CaMnO_3)_n/(Insulator)}$ show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from ${\rm LaMnO_3}$ to ${\rm CaMnO_3}$ due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.3283v2-abstract-full').style.display = 'none'; document.getElementById('1203.3283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 195130 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.6626">arXiv:1202.6626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.6626">pdf</a>, <a href="https://arxiv.org/format/1202.6626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.109.043002">10.1103/PhysRevLett.109.043002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adiabatic state preparation of interacting two-level systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">R. T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Creatore%2C+C">C. Creatore</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Eastham%2C+P+R">P. R. Eastham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.6626v2-abstract-short" style="display: inline;"> We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean field lim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.6626v2-abstract-full').style.display = 'inline'; document.getElementById('1202.6626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.6626v2-abstract-full" style="display: none;"> We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.6626v2-abstract-full').style.display = 'none'; document.getElementById('1202.6626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 109, 043002 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1423">arXiv:1202.1423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1423">pdf</a>, <a href="https://arxiv.org/format/1202.1423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.256402">10.1103/PhysRevLett.108.256402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanadium dioxide : A Peierls-Mott insulator stable against disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Weber%2C+C">Cedric Weber</a>, <a href="/search/?searchtype=author&amp;query=O%27Regan%2C+D+D">David D. O&#39;Regan</a>, <a href="/search/?searchtype=author&amp;query=Hine%2C+N+D+M">Nicholas D. M. Hine</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+M+C">Mike C. Payne</a>, <a href="/search/?searchtype=author&amp;query=Kotliar%2C+G">Gabriel Kotliar</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1423v2-abstract-short" style="display: inline;"> Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this work, we develop and carry out state of the art linear scaling DFT calculations refined with non-local dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M$_1$ phase, and furthermore survives a moderate degre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1423v2-abstract-full').style.display = 'inline'; document.getElementById('1202.1423v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1423v2-abstract-full" style="display: none;"> Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this work, we develop and carry out state of the art linear scaling DFT calculations refined with non-local dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M$_1$ phase, and furthermore survives a moderate degree of disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1423v2-abstract-full').style.display = 'none'; document.getElementById('1202.1423v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Supplementary material 8 pages, 4 figures. This version (v2) matches that accepted for Physical Review Letters on 16th May 2012</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 256402 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5964">arXiv:1112.5964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.5964">pdf</a>, <a href="https://arxiv.org/format/1112.5964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.155442">10.1103/PhysRevB.86.155442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creation of entangled states in coupled quantum dots via adiabatic rapid passage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Creatore%2C+C">Celestino Creatore</a>, <a href="/search/?searchtype=author&amp;query=Brierley%2C+R+T">Richard T. Brierley</a>, <a href="/search/?searchtype=author&amp;query=Phillips%2C+R+T">Richard T. Phillips</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">Peter B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Eastham%2C+P+R">Paul R. Eastham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5964v2-abstract-short" style="display: inline;"> Quantum state preparation through external control is fundamental to established methods in quantum information processing and in studies of dynamics. In this respect, excitons in semiconductor quantum dots (QDs) are of particular interest since their coupling to light allows them to be driven into a specified state using the coherent interaction with a tuned optical field such as an external lase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5964v2-abstract-full').style.display = 'inline'; document.getElementById('1112.5964v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5964v2-abstract-full" style="display: none;"> Quantum state preparation through external control is fundamental to established methods in quantum information processing and in studies of dynamics. In this respect, excitons in semiconductor quantum dots (QDs) are of particular interest since their coupling to light allows them to be driven into a specified state using the coherent interaction with a tuned optical field such as an external laser pulse. We propose a protocol, based on adiabatic rapid passage, for the creation of entangled states in an ensemble of pairwise coupled two-level systems, such as an ensemble of QD molecules. We show by quantitative analysis using realistic parameters for semiconductor QDs that this method is feasible where other approaches are unavailable. Furthermore, this scheme can be generically transferred to some other physical systems including circuit QED, nuclear and electron spins in solid-state environments, and photonic coupled cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5964v2-abstract-full').style.display = 'none'; document.getElementById('1112.5964v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures. Added reference, minor changes. Discussion, results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 155442 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.6165">arXiv:1111.6165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.6165">pdf</a>, <a href="https://arxiv.org/format/1111.6165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.166802">10.1103/PhysRevLett.108.166802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal of a one-dimensional electron gas in the steps at the LaAlO$_3$-SrTiO$_3$ interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bristowe%2C+N+C">N. C. Bristowe</a>, <a href="/search/?searchtype=author&amp;query=Fix%2C+T">T. Fix</a>, <a href="/search/?searchtype=author&amp;query=Blamire%2C+M+G">M. G. Blamire</a>, <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B">P. B. Littlewood</a>, <a href="/search/?searchtype=author&amp;query=Artacho%2C+E">Emilio Artacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.6165v1-abstract-short" style="display: inline;"> The two-dimensional electron gas (2DEG) at the interface between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) has become one of the most fascinating and highly-debated oxide systems of recent times. Here we propose that a one-dimensional electron gas (1DEG) can be engineered at the step edges of the LAO/STO interface. These predictions are supported by first principles calculations and electrostatic modeli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6165v1-abstract-full').style.display = 'inline'; document.getElementById('1111.6165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.6165v1-abstract-full" style="display: none;"> The two-dimensional electron gas (2DEG) at the interface between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) has become one of the most fascinating and highly-debated oxide systems of recent times. Here we propose that a one-dimensional electron gas (1DEG) can be engineered at the step edges of the LAO/STO interface. These predictions are supported by first principles calculations and electrostatic modeling which elucidate the origin of the 1DEG as an electronic reconstruction to compensate a net surface charge in the step edge. The results suggest a novel route to increasing the functional density in these electronic interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.6165v1-abstract-full').style.display = 'none'; document.getElementById('1111.6165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Littlewood%2C+P+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10