CINXE.COM

Search results for: discrete event simulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: discrete event simulation</title> <meta name="description" content="Search results for: discrete event simulation"> <meta name="keywords" content="discrete event simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="discrete event simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="discrete event simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6587</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: discrete event simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6557</span> Planning of Construction Material Flow Using Hybrid Simulation Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Naraghi">A. M. Naraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gonzalez"> V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O%27Sullivan"> M. O&#039;Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Walker"> C. G. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poshdar"> M. Poshdar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ying"> F. Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmegid"> M. Abdelmegid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20supply-chain%20management" title="construction supply-chain management">construction supply-chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modeling" title=" simulation modeling"> simulation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support%20tools" title=" decision-support tools"> decision-support tools</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a> </p> <a href="https://publications.waset.org/abstracts/103280/planning-of-construction-material-flow-using-hybrid-simulation-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6556</span> Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sung%20Go">Jun Sung Go</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kang%20Park"> Jong Kang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scan%20chain" title="scan chain">scan chain</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20event%20transient" title=" single event transient"> single event transient</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20error" title=" soft error"> soft error</a>, <a href="https://publications.waset.org/abstracts/search?q=8051%20processor" title=" 8051 processor"> 8051 processor</a> </p> <a href="https://publications.waset.org/abstracts/60435/single-event-transient-tolerance-analysis-in-8051-microprocessor-using-scan-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6555</span> Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Tedesco">D. Tedesco</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Feletti"> G. Feletti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Trucco"> P. Trucco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20medical%20services" title=" emergency medical services"> emergency medical services</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast%20model" title=" forecast model"> forecast model</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20selection" title=" hospital selection"> hospital selection</a> </p> <a href="https://publications.waset.org/abstracts/152061/decision-support-system-for-hospital-selection-in-emergency-medical-services-a-discrete-event-simulation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6554</span> Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20S.%20Andreev">Alexander S. Andreev</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Peregudova"> Olga A. Peregudova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator%20dynamics" title="actuator dynamics">actuator dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20stepping" title=" back stepping"> back stepping</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20controller" title=" discrete-time controller"> discrete-time controller</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title=" wheeled mobile robot "> wheeled mobile robot </a> </p> <a href="https://publications.waset.org/abstracts/15632/discrete-tracking-control-of-nonholonomic-mobile-robots-backstepping-design-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6553</span> Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khachen%20Kongpakwattana">Khachen Kongpakwattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathorn%20Chaiyakunapruk"> Nathorn Chaiyakunapruk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-effectiveness%20analysis" title=" cost-effectiveness analysis"> cost-effectiveness analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title=" discrete event simulation"> discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20technology%20assessment" title=" health technology assessment"> health technology assessment</a> </p> <a href="https://publications.waset.org/abstracts/107180/application-of-discrete-event-simulation-in-health-technology-assessment-a-cost-effectiveness-analysis-of-alzheimers-disease-treatment-using-real-world-evidence-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6552</span> Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaofeng%20Li">Zhaofeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Kang%20Chow"> Jun Kang Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsing%20Wang"> Yu-Hsing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain-volumetric%20response" title=" stress-strain-volumetric response"> stress-strain-volumetric response</a> </p> <a href="https://publications.waset.org/abstracts/59289/artificial-neural-network-in-predicting-the-soil-response-in-the-discrete-element-method-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6551</span> Optimization of Fourth Order Discrete-Approximation Inclusions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elimhan%20N.%20Mahmudov">Elimhan N. Mahmudov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=difference" title="difference">difference</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fourth" title=" fourth"> fourth</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation" title=" approximation"> approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=transversality" title=" transversality"> transversality</a> </p> <a href="https://publications.waset.org/abstracts/25199/optimization-of-fourth-order-discrete-approximation-inclusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6550</span> Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Yahia">Khaled Yahia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motors%20%28IMs%29" title="induction motors (IMs)">induction motors (IMs)</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-turn%20short-circuits%20diagnosis" title=" inter-turn short-circuits diagnosis"> inter-turn short-circuits diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform%20%28DWT%29" title=" discrete wavelet transform (DWT)"> discrete wavelet transform (DWT)</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20park%E2%80%99s%20vector%20modulus%20%28CPVM%29" title=" current park’s vector modulus (CPVM) "> current park’s vector modulus (CPVM) </a> </p> <a href="https://publications.waset.org/abstracts/31450/fault-diagnosis-in-induction-motors-using-the-discrete-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6549</span> Fault Diagnosis in Induction Motors Using Discrete Wavelet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Yahia">K. Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Titaouine"> A. Titaouine</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghoggal"> A. Ghoggal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Zouzou"> S. E. Zouzou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Benchabane"> F. Benchabane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Induction%20Motors%20%28IMs%29" title="Induction Motors (IMs)">Induction Motors (IMs)</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-turn%20short-circuits%20diagnosis" title=" inter-turn short-circuits diagnosis"> inter-turn short-circuits diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Wavelet%20Transform%20%28DWT%29" title=" Discrete Wavelet Transform (DWT)"> Discrete Wavelet Transform (DWT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Current%20Park%E2%80%99s%20Vector%20Modulus%20%28CPVM%29" title=" Current Park’s Vector Modulus (CPVM)"> Current Park’s Vector Modulus (CPVM)</a> </p> <a href="https://publications.waset.org/abstracts/22046/fault-diagnosis-in-induction-motors-using-discrete-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6548</span> Complex Event Processing System Based on the Extended ECA Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Hee%20Han">Kwan Hee Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Woo%20Lee"> Jun Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Moon%20Bae"> Sung Moon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Twae%20Kyung%20Park"> Twae Kyung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ECA (Event-Condition-Action) languages are largely adopted for event processing since they are an intuitive and powerful paradigm for programming reactive systems. However, there are some limitations about ECA rules for processing of complex events such as coupling of event producer and consumer. The objective of this paper is to propose an ECA rule pattern to improve the current limitations of ECA rule, and to develop a prototype system. In this paper, conventional ECA rule is separated into 3 parts and each part is extended to meet the requirements of CEP. Finally, event processing logic is established by combining the relevant elements of 3 parts. The usability of proposed extended ECA rule is validated by a test scenario in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20event%20processing" title="complex event processing">complex event processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ECA%20rule" title=" ECA rule"> ECA rule</a>, <a href="https://publications.waset.org/abstracts/search?q=Event%20processing%20system" title=" Event processing system"> Event processing system</a>, <a href="https://publications.waset.org/abstracts/search?q=event-driven%20architecture" title=" event-driven architecture"> event-driven architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things "> internet of things </a> </p> <a href="https://publications.waset.org/abstracts/12595/complex-event-processing-system-based-on-the-extended-eca-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6547</span> Event Extraction, Analysis, and Event Linking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anam%20Alam">Anam Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Jamaluddin%20Kanji"> Rahim Jamaluddin Kanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20extraction" title="event extraction">event extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Wandora" title=" Wandora"> Wandora</a>, <a href="https://publications.waset.org/abstracts/search?q=nitro" title=" nitro"> nitro</a>, <a href="https://publications.waset.org/abstracts/search?q=SPSS" title=" SPSS"> SPSS</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20analysis" title=" event analysis"> event analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20method" title=" extraction method"> extraction method</a>, <a href="https://publications.waset.org/abstracts/search?q=AFG" title=" AFG"> AFG</a>, <a href="https://publications.waset.org/abstracts/search?q=Afghan%20War%20Diaries" title=" Afghan War Diaries"> Afghan War Diaries</a>, <a href="https://publications.waset.org/abstracts/search?q=MUC4" title=" MUC4"> MUC4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%20universities" title=" 4 universities"> 4 universities</a>, <a href="https://publications.waset.org/abstracts/search?q=dataset" title=" dataset"> dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=recall" title=" recall"> recall</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/17112/event-extraction-analysis-and-event-linking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6546</span> Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karina%20C.%20Azzolin">Karina C. Azzolin</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20E.%20Kosteski"> Luis E. Kosteski</a>, <a href="https://publications.waset.org/abstracts/search?q=Alisson%20S.%20Milani"> Alisson S. Milani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20C.%20Zydeck"> Raquel C. Zydeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20masonry" title="structural masonry">structural masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20chases" title=" wall chases"> wall chases</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20scale" title=" small scale"> small scale</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20discrete%20element%20method" title=" lattice discrete element method"> lattice discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/143660/failure-simulation-of-small-scale-walls-with-chases-using-the-lattic-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6545</span> Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Quy%20Le">Kim Quy Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Fei"> Duan Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zeng"> Jun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fabiola%20Leyva"> Maria Fabiola Leyva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-jet%20fusion" title=" multi-jet fusion"> multi-jet fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=molded%20fiber%20screen" title=" molded fiber screen"> molded fiber screen</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/157099/simulation-of-fiber-deposition-on-molded-fiber-screen-using-multi-sphere-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6544</span> Competing Risk Analyses in Survival Trials During COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Xu">Ping Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20T.%20Golm"> Gregory T. Golm</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanghan%20%28Frank%29%20Liu"> Guanghan (Frank) Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presence of competing events, traditional survival analysis may not be appropriate and can result in biased estimates, as it assumes independence between competing events and the event of interest. Instead, competing risk analysis should be considered to correctly estimate the survival probability of the event of interest and the hazard ratio between treatment groups. The COVID-19 pandemic has provided a potential source of competing risks in clinical trials, as participants in trials may experienceCOVID-related competing events before the occurrence of the event of interest, for instance, death due to COVID-19, which can affect the incidence rate of the event of interest. We have performed simulation studies to compare multiple competing risk analysis models, including the cumulative incidence function, the sub-distribution hazard function, and the cause-specific hazard function, to the traditional survival analysis model under various scenarios. We also provide a general recommendation on conducting competing risk analysis in randomized clinical trials during the era of the COVID-19 pandemic based on the extensive simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competing%20risk" title="competing risk">competing risk</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=randomized%20clinical%20trial" title=" randomized clinical trial"> randomized clinical trial</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title=" COVID-19 pandemic"> COVID-19 pandemic</a> </p> <a href="https://publications.waset.org/abstracts/145123/competing-risk-analyses-in-survival-trials-during-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6543</span> Stator Short-Circuits Fault Diagnosis in Induction Motors Using Extended Park’s Vector Approach through the Discrete Wavelet Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Yahia">K. Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghoggal"> A. Ghoggal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Titaouine"> A. Titaouine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Zouzou"> S. E. Zouzou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Benchabane"> F. Benchabane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Induction%20Motors%20%28IMs%29" title="Induction Motors (IMs)">Induction Motors (IMs)</a>, <a href="https://publications.waset.org/abstracts/search?q=Inter-turn%20Short-Circuits%20Diagnosis" title=" Inter-turn Short-Circuits Diagnosis"> Inter-turn Short-Circuits Diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Wavelet%20Transform%20%28DWT%29" title=" Discrete Wavelet Transform (DWT)"> Discrete Wavelet Transform (DWT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Current%20Park%E2%80%99s%20Vector%20Modulus%20%28CPVM%29" title=" Current Park’s Vector Modulus (CPVM)"> Current Park’s Vector Modulus (CPVM)</a> </p> <a href="https://publications.waset.org/abstracts/22006/stator-short-circuits-fault-diagnosis-in-induction-motors-using-extended-parks-vector-approach-through-the-discrete-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6542</span> Multichannel Object Detection with Event Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Iliasov">Rafael Iliasov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Golkar"> Alessandro Golkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20camera" title="event camera">event camera</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection%20with%20multimodal%20inputs" title=" object detection with multimodal inputs"> object detection with multimodal inputs</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20fusion" title=" multichannel fusion"> multichannel fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/190247/multichannel-object-detection-with-event-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6541</span> Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayada%20Attia%20Ibrahim">Mayada Attia Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroplating%20process" title="electroplating process">electroplating process</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20optimization" title=" performance optimization"> performance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20constraints" title=" theory of constraints"> theory of constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/145646/simulation-based-optimization-approach-for-an-electro-plating-production-process-based-on-theory-of-constraints-and-data-envelopment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6540</span> The Development, Validation, and Evaluation of the Code Blue Simulation Module in Improving the Code Blue Response Time among Nurses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Rajaah%20Binti%20Sayed%20Sultan">Siti Rajaah Binti Sayed Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Managing the code blue event is stressful for nurses, the patient, and the patient's families. The rapid response from the first and second responders in the code blue event will improve patient outcomes and prevent tissue hypoxia that leads to brain injury and other organ failures. Providing 1 minute for the cardiac massage and 2 minutes for defibrillation will significantly improve patient outcomes. As we know, the American Heart Association came out with guidelines for managing cardiac arrest patients. The hospital must provide competent staff to manage this situation. It can be achieved when the staff is well equipped with the skill, attitude, and knowledge to manage this situation with well-planned strategies, i.e., clear guidelines for managing the code blue event, competent staff, and functional equipment. The code blue simulation (CBS) was chosen in the training program for code blue management because it can mimic real scenarios. Having the code blue simulation module will allow the staff to appreciate what they will face during the code blue event, especially since it rarely happens in that area. This CBS module training will help the staff familiarize themselves with the activities that happened during actual events and be able to operate the equipment accordingly. Being challenged and independent in managing the code blue in the early phase gives the patient a better outcome. The CBS module will help the assessor and the hospital management team with the proper tools and guidelines for managing the code blue drill accordingly. As we know, prompt action will benefit the patient and their family. It also indirectly increases the confidence and job satisfaction among the nurses, increasing the standard of care, reducing the complication and hospital burden, and enhancing cost-effective care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20simulation%20module" title="code blue simulation module">code blue simulation module</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20code%20blue%20simulation%20module" title=" development of code blue simulation module"> development of code blue simulation module</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20response%20time" title=" code blue response time"> code blue response time</a>, <a href="https://publications.waset.org/abstracts/search?q=code%20blue%20drill" title=" code blue drill"> code blue drill</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiorespiratory%20arrest" title=" cardiorespiratory arrest"> cardiorespiratory arrest</a>, <a href="https://publications.waset.org/abstracts/search?q=managing%20code%20blue" title=" managing code blue"> managing code blue</a> </p> <a href="https://publications.waset.org/abstracts/183021/the-development-validation-and-evaluation-of-the-code-blue-simulation-module-in-improving-the-code-blue-response-time-among-nurses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6539</span> Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Jung%20Karki">Sameer Jung Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Saygili"> Gokhan Saygili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20footing" title=" isolated footing"> isolated footing</a>, <a href="https://publications.waset.org/abstracts/search?q=montecarlo%20simulation" title=" montecarlo simulation"> montecarlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/143681/probabilistic-analysis-of-bearing-capacity-of-isolated-footing-using-monte-carlo-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6538</span> Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiona%20Jensen">Fiona Jensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Barb%20Goodwin"> Barb Goodwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Kleiman"> Nancy Kleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhonda%20Usunier"> Rhonda Usunier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=collaboration" title=" collaboration"> collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=teams" title=" teams"> teams</a>, <a href="https://publications.waset.org/abstracts/search?q=interprofessional" title=" interprofessional"> interprofessional</a> </p> <a href="https://publications.waset.org/abstracts/110118/simulating-an-interprofessional-hospital-day-shift-a-student-interprofessional-ip-collaborative-learning-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6537</span> Multidimensional Integral and Discrete Opial–Type Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Andri%C4%87">Maja Andrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Josip%20Pe%C4%8Dari%C4%87"> Josip Pečarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last five decades, an enormous amount of work has been done on Opial’s integral inequality, dealing with new proofs, various generalizations, extensions and discrete analogs. The Opial inequality is recognized as a fundamental result in the analysis of qualitative properties of solution of differential equations. We use submultiplicative convex functions, appropriate representations of functions and inequalities involving means to obtain generalizations and extensions of certain known multidimensional integral and discrete Opial-type inequalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opial%27s%20inequality" title="Opial&#039;s inequality">Opial&#039;s inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=Jensen%27s%20inequality" title=" Jensen&#039;s inequality"> Jensen&#039;s inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20inequality" title=" integral inequality"> integral inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20inequality" title=" discrete inequality"> discrete inequality</a> </p> <a href="https://publications.waset.org/abstracts/41583/multidimensional-integral-and-discrete-opial-type-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6536</span> Simulating Elevated Rapid Transit System for Performance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuval%20Cohen"> Yuval Cohen</a>, <a href="https://publications.waset.org/abstracts/search?q=Erel%20Avineri"> Erel Avineri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major challenges of transportation in medium sized inner-cities (such as Tel-Aviv) is the last-mile solution. Personal rapid transit (PRT) seems like an applicable candidate for this, as it combines the benefits of personal (car) travel with the operational benefits of transit. However, the investment required for large area PRT grid is significant and there is a need to economically justify such investment by correctly evaluating the grid capacity. PRT main elements are small automated vehicles (sometimes referred to as podcars) operating on a network of specially built guideways. The research is looking at a specific concept of elevated PRT system. Literature review has revealed the drawbacks PRT modelling and simulation approaches, mainly due to the lack of consideration of technical and operational features of the system (such as headways, acceleration, safety issues); the detailed design of infrastructure (guideways, stations, and docks); the stochastic and sessional characteristics of demand; and safety regulations – all of them have a strong effect on the system performance. A highly detailed model of the system, developed in this research, is applying a discrete event simulation combined with an agent-based approach, to represent the system elements and the podecars movement logic. Applying a case study approach, the simulation model is used to study the capacity of the system, the expected throughput of the system, the utilization, and the level of service (journey time, waiting time, etc.). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity" title="capacity">capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity%20measurement" title=" productivity measurement"> productivity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=PRT" title=" PRT"> PRT</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/108682/simulating-elevated-rapid-transit-system-for-performance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6535</span> Bivariate Time-to-Event Analysis with Copula-Based Cox Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duhania%20O.%20Mahara">Duhania O. Mahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20W.%20Purnami"> Santi W. Purnami</a>, <a href="https://publications.waset.org/abstracts/search?q=Aulia%20N.%20Fitria"> Aulia N. Fitria</a>, <a href="https://publications.waset.org/abstracts/search?q=Merissa%20N.%20Z.%20Wirontono"> Merissa N. Z. Wirontono</a>, <a href="https://publications.waset.org/abstracts/search?q=Revina%20Musfiroh"> Revina Musfiroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shofi%20Andari"> Shofi Andari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagiran%20Sagiran"> Sagiran Sagiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Estiana%20Khoirunnisa"> Estiana Khoirunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20Widada"> Wahyudi Widada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For assessing interventions in numerous disease areas, the use of multiple time-to-event outcomes is common. An individual might experience two different events called bivariate time-to-event data, the events may be correlated because it come from the same subject and also influenced by individual characteristics. The bivariate time-to-event case can be applied by copula-based bivariate Cox survival model, using the Clayton and Frank copulas to analyze the dependence structure of each event and also the covariates effect. By applying this method to modeling the recurrent event infection of hemodialysis insertion on chronic kidney disease (CKD) patients, from the AIC and BIC values we find that the Clayton copula model was the best model with Kendall’s Tau is (τ=0,02). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20cox" title="bivariate cox">bivariate cox</a>, <a href="https://publications.waset.org/abstracts/search?q=bivariate%20event" title=" bivariate event"> bivariate event</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20function" title=" copula function"> copula function</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20copula" title=" survival copula"> survival copula</a> </p> <a href="https://publications.waset.org/abstracts/179386/bivariate-time-to-event-analysis-with-copula-based-cox-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6534</span> Investigation of Single Particle Breakage inside an Impact Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi%20Ardi">E. Ghasemi Ardi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Dong"> K. J. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Yu"> A. B. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Y.%20Yang"> R. Y. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20particle%20breakage" title="single particle breakage">single particle breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20dynamic" title=" particle dynamic"> particle dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20model" title=" population balance model"> population balance model</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/76339/investigation-of-single-particle-breakage-inside-an-impact-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6533</span> Direct Approach in Modeling Particle Breakage Using Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Ghasemi%20Ardi">Ebrahim Ghasemi Ardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ai%20Bing%20Yu"> Ai Bing Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Yu%20Yang"> Run Yu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current study is aimed to develop an available in-house discrete element method (DEM) code and link it with direct breakage event. So, it became possible to determine the particle breakage and then its fragments size distribution, simultaneous with DEM simulation. It directly applies the particle breakage inside the DEM computation algorithm and if any breakage happens the original particle is replaced with daughters. In this way, the calculation will be followed based on a new updated particles list which is very similar to the real grinding environment. To validate developed model, a grinding ball impacting an unconfined particle bed was simulated. Since considering an entire ball mill would be too computationally demanding, this method provided a simplified environment to test the model. Accordingly, a representative volume of the ball mill was simulated inside a box, which could emulate media (ball)–powder bed impacts in a ball mill and during particle bed impact tests. Mono, binary and ternary particle beds were simulated to determine the effects of granular composition on breakage kinetics. The results obtained from the DEM simulations showed a reduction in the specific breakage rate for coarse particles in binary mixtures. The origin of this phenomenon, commonly known as cushioning or decelerated breakage in dry milling processes, was explained by the DEM simulations. Fine particles in a particle bed increase mechanical energy loss, and reduce and distribute interparticle forces thereby inhibiting the breakage of the coarse component. On the other hand, the specific breakage rate of fine particles increased due to contacts associated with coarse particles. Such phenomenon, known as acceleration, was shown to be less significant, but should be considered in future attempts to accurately quantify non-linear breakage kinetics in the modeling of dry milling processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20bed" title="particle bed">particle bed</a>, <a href="https://publications.waset.org/abstracts/search?q=breakage%20models" title=" breakage models"> breakage models</a>, <a href="https://publications.waset.org/abstracts/search?q=breakage%20kinetic" title=" breakage kinetic"> breakage kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/79163/direct-approach-in-modeling-particle-breakage-using-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6532</span> Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%BD.%20Nikoli%C4%87">Ž. Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Smoljanovi%C4%87"> H. Smoljanović</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C5%BDivalji%C4%87"> N. Živaljić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20stone%20masonry%20structures" title="dry stone masonry structures">dry stone masonry structures</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load" title=" dynamic load"> dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-discrete%20element%20method" title=" finite-discrete element method"> finite-discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20load" title=" static load"> static load</a> </p> <a href="https://publications.waset.org/abstracts/47740/numerical-modelling-of-dry-stone-masonry-structures-based-on-finite-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6531</span> Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonzalez%20Camus">Jorge Gonzalez Camus</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Keyantuo"> Valentin Keyantuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahamadi%20Warma"> Mahamadi Warma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20fractional%20Laplacian" title="discrete fractional Laplacian">discrete fractional Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20representation%20of%20solutions" title=" explicit representation of solutions"> explicit representation of solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20heat%20and%20wave%20equations" title=" fractional heat and wave equations"> fractional heat and wave equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental" title=" fundamental"> fundamental</a> </p> <a href="https://publications.waset.org/abstracts/99922/fundamental-solutions-for-discrete-dynamical-systems-involving-the-fractional-laplacian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6530</span> Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Heydarnia">Omid Heydarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Allahverdizadeh"> Akbar Allahverdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Dadashzadeh"> Behnam Dadashzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Sayyed%20Noorani"> M. R. Sayyed Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title="underactuated system">underactuated system</a>, <a href="https://publications.waset.org/abstracts/search?q=biped%20robot" title=" biped robot"> biped robot</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20feedback%20linearization" title=" partial feedback linearization"> partial feedback linearization</a> </p> <a href="https://publications.waset.org/abstracts/53744/control-of-underactuated-biped-robots-using-event-based-fuzzy-partial-feedback-linearization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6529</span> A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%BClent%20Kantar">Bülent Kantar</a>, <a href="https://publications.waset.org/abstracts/search?q=Numan%20%C3%9Cnald%C4%B1"> Numan Ünaldı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=DSWT" title=" DSWT"> DSWT</a>, <a href="https://publications.waset.org/abstracts/search?q=copy%20right%20protection" title=" copy right protection"> copy right protection</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB" title=" RGB "> RGB </a> </p> <a href="https://publications.waset.org/abstracts/16927/a-hybrid-watermarking-scheme-using-discrete-and-discrete-stationary-wavelet-transformation-for-color-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6528</span> Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payel%20Das">Payel Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Gnaneshwar%20Nelakanti"> Gnaneshwar Nelakanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hammerstein%20integral%20equations" title="hammerstein integral equations">hammerstein integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20galerkin" title=" discrete galerkin"> discrete galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%0D%0Aquadrature" title=" numerical quadrature"> numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=superconvergence" title=" superconvergence"> superconvergence</a> </p> <a href="https://publications.waset.org/abstracts/22260/superconvergence-of-the-iterated-discrete-legendre-galerkin-method-for-fredholm-hammerstein-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=219">219</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=220">220</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10