CINXE.COM

Search results for: organic compounds

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organic compounds</title> <meta name="description" content="Search results for: organic compounds"> <meta name="keywords" content="organic compounds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organic compounds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organic compounds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4328</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organic compounds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4328</span> Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masao%20Fujisawa">Masao Fujisawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirohito%20Ikeda"> Hirohito Ikeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Ohata"> Tomonori Ohata</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Yukawa"> Miho Yukawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatsumi%20Aki"> Hatsumi Aki</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kimura"> Takayoshi Kimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20energy" title=" dispersion energy"> dispersion energy</a> </p> <a href="https://publications.waset.org/abstracts/50573/evaluation-of-the-adsorption-adaptability-of-activated-carbon-using-dispersion-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4327</span> A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma%20Lanting">Ma Lanting</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eguilior"> S. Eguilior</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hurtado"> A. Hurtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Llamas%20Borrajo"> Juan F. Llamas Borrajo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title=" shale gas"> shale gas</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/54554/a-model-for-predicting-organic-compounds-concentration-change-in-water-associated-with-horizontal-hydraulic-fracturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4326</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4325</span> Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Gonzalez">Alexandre Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Benfodda"> Zohra Benfodda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20B%C3%A9nim%C3%A9lis"> David Bénimélis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Xavier%20Fontaine"> Jean-Xavier Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Molini%C3%A9"> Roland Molinié</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Meffre"> Patrick Meffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillandsia" title="tillandsia">tillandsia</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29" title=" headspace solid phase microextraction (HS-SPME)"> headspace solid phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry%20%28GC-MS%29" title=" gas chromatography-mass spectrometry (GC-MS)"> gas chromatography-mass spectrometry (GC-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=scentless%20flowers" title=" scentless flowers"> scentless flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds%20%28VOCs%29" title=" volatile organic compounds (VOCs)"> volatile organic compounds (VOCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA%20analysis" title=" PCA analysis"> PCA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmap" title=" heatmap"> heatmap</a> </p> <a href="https://publications.waset.org/abstracts/152016/analysis-of-the-volatile-organic-compounds-of-tillandsia-flowers-by-hs-spmegc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4324</span> Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El-Din%20Rezk">Alaa El-Din Rezk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title="humic acid">humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=log%20Koc" title=" log Koc"> log Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=pKa" title=" pKa"> pKa</a>, <a href="https://publications.waset.org/abstracts/search?q=SPME-GCMSD" title=" SPME-GCMSD"> SPME-GCMSD</a> </p> <a href="https://publications.waset.org/abstracts/43569/determination-and-qsar-modelling-of-partitioning-coefficients-for-some-xenobiotics-in-soils-and-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4323</span> Reverse Osmosis Application on Sewage Tertiary Treatment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisa%20K.%20Schoenell">Elisa K. Schoenell</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20De%20Oliveira"> Cristiano De Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20R.%20H.%20Dos%20Santos"> Luiz R. H. Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Giacobbo"> Alexandre Giacobbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9a%20M.%20Bernardes"> Andréa M. Bernardes</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Rodrigues"> Marco A. S. Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is an indispensable natural resource, which must be preserved to human activities as well the ecosystems. However, the sewage discharge has been contaminating water resources. Conventional treatment, such as physicochemical treatment followed by biological processes, has not been efficient to the complete degradation of persistent organic compounds, such as medicines and hormones. Therefore, the use of advanced technologies to sewage treatment has become urgent and necessary. The aim of this study was to apply Reverse Osmosis (RO) on sewage tertiary treatment from a Waste Water Treatment Plant (WWTP) in south Brazil. It was collected 200 L of sewage pre-treated by wetland with aquatic macrophytes. The sewage was treated in a RO pilot plant, using a polyamide membrane BW30-4040 model (DOW FILMTEC), with 7.2 m² membrane area. In order to avoid damage to the equipment, this system contains a pleated polyester filter with 5 µm pore size. It was applied 8 bar until achieve 5 times of concentration, obtaining 80% of recovery of permeate, with 10 L.min-1 of concentrate flow rate. Samples of sewage pre-treated on WWTP, permeate and concentrate generated on RO was analyzed for physicochemical parameters and by gas chromatography (GC) to qualitative analysis of organic compounds. The results proved that the sewage treated on WWTP does not comply with the limit of phosphorus and nitrogen of Brazilian legislation. Besides this, it was found many organic compounds in this sewage, such as benzene, which is carcinogenic. Analyzing permeate results, it was verified that the RO as sewage tertiary treatment was efficient to remove of physicochemical parameters, achieving 100% of iron, copper, zinc and phosphorus removal, 98% of color removal, 91% of BOD and 62% of ammoniacal nitrogen. RO was capable of removing organic compounds, however, it was verified the presence of some organic compounds on de RO permeate, showing that RO did not have the capacity of removal all organic compounds of sewage. It has to be considered that permeate showed lower intensity of peaks in chromatogram in comparison to the sewage of WWTP. It is important to note that the concentrate generate on RO needs a treatment before its disposal in environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title="organic compounds">organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20treatment" title=" sewage treatment"> sewage treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20treatment" title=" tertiary treatment"> tertiary treatment</a> </p> <a href="https://publications.waset.org/abstracts/81550/reverse-osmosis-application-on-sewage-tertiary-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4322</span> Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Rohana%20Mohd%20Yatim">Siti Rohana Mohd Yatim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku%20Halim%20Ku%20Hamid"> Ku Halim Ku Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamariah%20Noor%20Ismail"> Kamariah Noor Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulkifli%20Abdul%20Rashid"> Zulkifli Abdul Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title="volatile organic compounds">volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20process" title=" decomposition process"> decomposition process</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a> </p> <a href="https://publications.waset.org/abstracts/39703/volatile-organic-compounds-from-decomposition-of-local-food-waste-and-potential-health-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4321</span> Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadao%20Araki">Sadao Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Gondo"> Daisuke Gondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoshi%20Imasaka"> Satoshi Imasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title="hydrophobic">hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansen%20solubility%20parameter" title=" Hansen solubility parameter"> Hansen solubility parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a> </p> <a href="https://publications.waset.org/abstracts/35524/organic-permeation-properties-of-hydrophobic-silica-membranes-with-different-functional-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4320</span> Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bolobajev">J. Bolobajev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trapido"> M. Trapido</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Goi"> A. Goi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferric%20sludge%20recycling" title="ferric sludge recycling">ferric sludge recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferric%20iron%20reductant" title=" ferric iron reductant"> ferric iron reductant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant" title=" organic pollutant"> organic pollutant</a> </p> <a href="https://publications.waset.org/abstracts/39944/role-of-organic-wastewater-constituents-in-iron-redox-cycling-for-ferric-sludge-reuse-in-the-fenton-based-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4319</span> The Impact of Ultrasonic Field to Increase the Biodegradability of Leachate from The Landfill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwarciak-Kozlowska%20A.">Kwarciak-Kozlowska A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawik-Dembiczak%20L."> Slawik-Dembiczak L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Galwa-Widera%20M."> Galwa-Widera M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex and variable during operation of the landfill leachate composition prevents the use of a single universal method of their purification. Due to the presence of difficult biodegradable these substances in the wastewater, cleaning of them often requires the use of biological methods (activated sludge or anaerobic digestion), also often supporting by physicochemical processes. Currently, more attention is paid to the development of unconventional methods of disposal of sewage m.in ultleniania advanced methods including the use of ultrasonic waves. It was assumed that the ultrasonic waves induce change in the structure of organic compounds and contribute to the acceleration of biodegradability, including refractive substances in the leachate, so that will increase the effectiveness of their treatment in biological processes. We observed a marked increase in BOD leachate when subjected to the action of utradźwięowego. Ratio BOD / COD was 27% higher compared to the value of this ratio for leachate nienadźwiękawianych. It was found that the process of sonification leachate clearly influenced the formation and release of aliphatic compounds. These changes suggest a possible violation of the chemical structure of organic compounds in the leachate thereby give compounds of the chemical structure more susceptible to biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IR%20spectra" title="IR spectra">IR spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/17313/the-impact-of-ultrasonic-field-to-increase-the-biodegradability-of-leachate-from-the-landfill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4318</span> The Study of γ- Radiolysis of 1.2.4-Trichlorobenzene in Methanol Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Karimov">Samir Karimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elshad%20Abdullayev"> Elshad Abdullayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslum%20Gurbanov"> Muslum Gurbanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the γ-radiolysis products of hexachlorocyclohexane and hexachlorobenzene, the study of 1.4 g/L concentrated 1,2,4-trichlorobenzene (TCB) in methanol solution has been irradiated at 0-209.3 kGy dose of γ-radiation and the results have been studied via GC-MS. At maximum radiation dose of 209.3 kGy 91.38% of TCB has converted into different organic compounds, such as 1,4-, 1,3- and 1,2- dichlorobenzenes (DCB), chlorobenzene, toluene, benzene and other chlorinated and non-chlorinated compounds. The variation of compounds formed by γ-radiolysis depends on the nature of solvent and radiation dose. One of the frequently identified radiolysis products of TCB in different organic solvents - 1,4-DCB studied quantitatively with external standard. The concentration of DCB increases by increasing absorbed radiation dose to approximately 131.8 kGy, then at higher doses with its conversion into chlorobenzene, it decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-radiolysis" title="γ-radiolysis">γ-radiolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20pesticides" title=" chlorinated pesticides"> chlorinated pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=dechlorination" title=" dechlorination"> dechlorination</a> </p> <a href="https://publications.waset.org/abstracts/155160/the-study-of-gh-radiolysis-of-124-trichlorobenzene-in-methanol-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4317</span> Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polyoxometalate" title="Polyoxometalate">Polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=Keggin" title=" Keggin"> Keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic-inorganic%20salt" title=" Organic-inorganic salt"> Organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV"> TMV</a> </p> <a href="https://publications.waset.org/abstracts/21483/synthesis-of-an-organic-inorganic-salt-of-c2h5no2-2h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus-tmv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4316</span> Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title="polyoxometalate">polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=keggin" title=" keggin"> keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20salt" title=" organic-inorganic salt"> organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV "> TMV </a> </p> <a href="https://publications.waset.org/abstracts/21481/synthesis-of-an-organic-inorganic-salt-of-c2h5no22h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus-tmv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4315</span> Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title="polyoxometalate">polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=keggin" title=" keggin"> keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20salt" title=" organic-inorganic salt"> organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV"> TMV</a> </p> <a href="https://publications.waset.org/abstracts/21662/synthesis-of-an-organic-inorganic-salt-of-12-silicotungstate-c2h5no22h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4314</span> Microwave Accelerated Simultaneous Distillation –Extraction: Preparative Recovery of Volatiles from Food Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Mohamed">Ferhat Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhatem%20Mohamed%20Nadjib"> Boukhatem Mohamed Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemat%20Farid"> Chemat Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simultaneous distillation–extraction (SDE) is routinely used by analysts for sample preparation prior to gas chromatography analysis. In this work, a new process design and operation for microwave assisted simultaneous distillation – solvent extraction (MW-SDE) of volatile compounds was developed. Using the proposed method, isolation, extraction and concentration of volatile compounds can be carried out in a single step. To demonstrate its feasibility, MW-SDE was compared with the conventional technique, Simultaneous distillation–extraction (SDE), for gas chromatography-mass spectrometry (GC-MS) analysis of volatile compounds in a fresh orange juice and a dry spice “carvi seeds”. SDE method required long time (3 h) to isolate the volatile compounds, and large amount of organic solvent (200 mL of hexane) for further extraction, while MW-SDE needed little time (only 30 min) to prepare sample, and less amount of organic solvent (10 mL of hexane). These results show that MW-SDE–GC-MS is a simple, rapid and solvent-less method for determination of volatile compounds from aromatic plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=carvi%20seeds" title=" carvi seeds"> carvi seeds</a> </p> <a href="https://publications.waset.org/abstracts/30977/microwave-accelerated-simultaneous-distillation-extraction-preparative-recovery-of-volatiles-from-food-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4313</span> Adsorbent Removal of Oil Spills Using Bentonite Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Mohamed%20Elsaid%20Abdelrahman">Saad Mohamed Elsaid Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title="adsorbent">adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite%20clay" title=" bentonite clay"> bentonite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/163185/adsorbent-removal-of-oil-spills-using-bentonite-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4312</span> Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Krishnan">Smita Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Krittika%20Chandran"> Krittika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Mohan%20Sinnathambi"> Chandra Mohan Sinnathambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title="advanced oxidation process">advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical%20processes" title=" photochemical processes"> photochemical processes</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20contaminants" title=" organic contaminants"> organic contaminants</a> </p> <a href="https://publications.waset.org/abstracts/19348/review-of-suitable-advanced-oxidation-processes-for-degradation-of-organic-compounds-in-produced-water-during-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4311</span> Short-Term Effects of Environmentally Relevant Concentrations of Organic UV Filters on Signal Crayfish Pacifastacus Leniusculus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viktoriia%20Malinovska">Viktoriia Malinovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Iryna%20Kuklina"> Iryna Kuklina</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Grabicova"> Katerina Grabicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20Buric"> Milos Buric</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Kozak"> Pavel Kozak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal care products, including organic UV filters, are considered emerging contaminants and their toxic effects have been a concern for the last decades. Sunscreen compounds continually enter the surface waters via sewage water treatment due to incomplete removal and during human recreational and laundry activities. Despite the environmental occurrence of organic UV filters in the freshwater environment, little is known about their impacts on aquatic biota. In this study, environmentally relevant concentrations of 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4, 2.5 µg/L) and 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) were used to evaluate the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus during a short time period. The effects of these compounds were evident in experimental animals. Specimens exposed to both tested compounds exhibited significantly bigger changes in distance moved and time movement than controls. Significant differences in changes in mean heart rate were detected in both PBSA and BP-4 experimental groups compared to control groups. Such behavioral and physiological alterations demonstrate the ecological effects of selected sunscreen compounds during a short time period. Since the evidence of the impacts of sunscreen compounds is scarce, the knowledge of how organic UV filters influence aquatic organisms is of key importance for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20pollutants" title="aquatic pollutants">aquatic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwaters" title=" freshwaters"> freshwaters</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=invertebrate" title=" invertebrate"> invertebrate</a> </p> <a href="https://publications.waset.org/abstracts/158513/short-term-effects-of-environmentally-relevant-concentrations-of-organic-uv-filters-on-signal-crayfish-pacifastacus-leniusculus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4310</span> The Impact of Corn Grain Consolidation on the Emission of Volatile Organic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz">Marek Gancarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Gr%C4%85decka-Jakubowska"> Katarzyna Grądecka-Jakubowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Malaga-Tobo%C5%82a"> Urszula Malaga-Toboła</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kornas"> Rafał Kornas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20%C5%BBytek"> Aleksandra Żytek</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to determine the emission of volatile organic compounds (VOCs) from corn grain depending on the degree of consolidation of the bulk material, imitating the processes occurring in silos during material storage. An electronic nose and a gas chromatograph were used for VOC analysis. Corn grain was densified under pressure of 40 and 80 kPa. Control samples of corn grain were not compacted and had bulk density. The analyzes were carried out at 14% and 17% humidity (w.b. – wet basis). The measurement system enabled quantitative and qualitative analyzes of volatile compounds and their emission intensity during the 10-day storage period. The study determined the profile of volatile compounds as a function of storage time and grain density level. The test results showed that the highest emission of volatile compounds was recorded in the first four days of storage of corn grain. VOC emissions, as well as grain moisture and volume, can be helpful in determining the quality of material stored in silos and its subsequent suitability for consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a> </p> <a href="https://publications.waset.org/abstracts/181130/the-impact-of-corn-grain-consolidation-on-the-emission-of-volatile-organic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4309</span> Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Mutelet">F. Mutelet</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cesari"> L. Cesari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interaction%20organic%20solvent-ionic%20liquid" title="interaction organic solvent-ionic liquid">interaction organic solvent-ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation%20model" title=" solvation model"> solvation model</a>, <a href="https://publications.waset.org/abstracts/search?q=COSMO-RS" title=" COSMO-RS"> COSMO-RS</a> </p> <a href="https://publications.waset.org/abstracts/106228/study-of-bistrifluoromethylsulfonylimide-based-ionic-liquids-by-gas-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4308</span> Lexical Classification of Compounds in Berom: A Semantic Description of N-V Nominal Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pam%20Bitrus%20Marcus">Pam Bitrus Marcus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compounds in Berom, a Niger-Congo language that is spoken in parts of central Nigeria, have been understudied, and the semantics of N-V nominal compounds have not been sufficiently delineated. This study describes the lexical classification of compounds in Berom and, specifically, examines the semantics of nominal compounds with N-V constituents. The study relied on a data set of 200 compounds that were drawn from Bere Naha (a newsletter publication in Berom). Contrary to the nominalization process in defining the lexical class of compounds in languages, the study revealed that verbal and adjectival classes of compounds are also attested in Berom and N-V nominal compounds have an agentive or locative interpretation that is not solely determined by the meaning of the constituents of the compound but by the context of the usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=berom" title="berom">berom</a>, <a href="https://publications.waset.org/abstracts/search?q=berom%20compounds" title=" berom compounds"> berom compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=nominal%20compound" title=" nominal compound"> nominal compound</a>, <a href="https://publications.waset.org/abstracts/search?q=N-V%20compounds" title=" N-V compounds"> N-V compounds</a> </p> <a href="https://publications.waset.org/abstracts/171026/lexical-classification-of-compounds-in-berom-a-semantic-description-of-n-v-nominal-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4307</span> Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Sharifan">Hamidreza Sharifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Audra%20Morse"> Audra Morse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20sampler" title="passive sampler">passive sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20contaminants" title=" water contaminants"> water contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=PES-transfer%20rate" title=" PES-transfer rate"> PES-transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminant%20concentrations" title=" contaminant concentrations"> contaminant concentrations</a> </p> <a href="https://publications.waset.org/abstracts/43320/transfer-rate-of-organic-water-contaminants-through-a-passive-sampler-membrane-of-polyethersulfone-pes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4306</span> Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Espindola">Cecilia Espindola</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Palacios"> Juan Carlos Palacios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-butyl-3-methylimidazolium%20bromide" title="1-butyl-3-methylimidazolium bromide">1-butyl-3-methylimidazolium bromide</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=free-solvent" title=" free-solvent"> free-solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20spectroscopy" title=" IR spectroscopy"> IR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/108195/ionic-liquid-1-butyl-3-methylimidazolium-bromide-as-reaction-medium-for-the-synthesis-of-flavanones-under-solvent-free-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4305</span> Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Viespe">Cristian Viespe</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Miu"> Dana Miu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20acoustic%20wave%20sensor" title="surface acoustic wave sensor">surface acoustic wave sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a> </p> <a href="https://publications.waset.org/abstracts/100929/volatile-organic-compounds-detection-by-surface-acoustic-wave-sensors-with-nanoparticles-embedded-in-polymer-sensitive-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4304</span> In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oranso%20T.%20Mahlangi">Oranso T. Mahlangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekie%20B.%20Mamba"> Bhekie B. Mamba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20organic%20compounds" title="trace organic compounds">trace organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reclamation" title=" wastewater reclamation"> wastewater reclamation</a> </p> <a href="https://publications.waset.org/abstracts/147068/in-situ-fabrication-of-zno-pes-membranes-for-treatment-of-pharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4303</span> Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Yadav">Sushma Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Saroha"> Anil K. Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20based%20pt%20catalyst" title="alumina based pt catalyst">alumina based pt catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD%2FCOD%20ratio" title=" BOD/COD ratio"> BOD/COD ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20wet%20air%20oxidation" title=" catalytic wet air oxidation"> catalytic wet air oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal%20efficiency" title=" COD removal efficiency"> COD removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20organic%20raffinate" title=" industrial organic raffinate"> industrial organic raffinate</a> </p> <a href="https://publications.waset.org/abstracts/35192/catalytic-wet-air-oxidation-as-a-pretreatment-option-for-biodegradability-enhancement-of-industrial-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4302</span> Toxicological Validation during the Development of New Catalytic Systems Using Air/Liquid Interface Cell Exposure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Zallouha">M. Al Zallouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Landkocz"> Y. Landkocz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brunet"> J. Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Cousin"> R. Cousin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Halket"> J. M. Halket</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Genty"> E. Genty</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Martin"> P. J. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Verdin"> A. Verdin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Courcot"> D. Courcot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Siffert"> S. Siffert</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shirali"> P. Shirali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Billet"> S. Billet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry. Amongst VOCs, Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) emitted into the atmosphere have a major and direct impact on human health. It is, therefore, necessary to minimize emissions directly at source. Catalytic oxidation is an industrial technique which provides remediation efficiency in the treatment of these organic compounds. However, during operation, the catalysts can release some compounds, called byproducts, more toxic than the original VOCs. The catalytic oxidation of a gas stream containing 1000ppm of toluene on Pd/α-Al2O3 can release a few ppm of benzene, according to the operating temperature of the catalyst. The development of new catalysts must, therefore, include chemical and toxicological validation phases. In this project, A549 human lung cells were exposed in air/liquid interface (Vitrocell®) to gas mixtures derived from the oxidation of toluene with a catalyst of Pd/α-Al2O3. Both exposure concentrations (i.e. 10 and 100% of catalytic emission) resulted in increased gene expression of Xenobiotics Metabolising Enzymes (XME) (CYP2E1 CYP2S1, CYP1A1, CYP1B1, EPHX1, and NQO1). Some of these XMEs are known to be induced by polycyclic organic compounds conventionally not searched during the development of catalysts for VOCs degradation. The increase in gene expression suggests the presence of undetected compounds whose toxicity must be assessed before the adoption of new catalyst. This enhances the relevance of toxicological validation of such systems before scaling-up and marketing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BTEX%20toxicity" title="BTEX toxicity">BTEX toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=air%2Fliquid%20interface%20cell%20exposure" title=" air/liquid interface cell exposure"> air/liquid interface cell exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitrocell%C2%AE" title=" Vitrocell®"> Vitrocell®</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20oxidation" title=" catalytic oxidation"> catalytic oxidation</a> </p> <a href="https://publications.waset.org/abstracts/18384/toxicological-validation-during-the-development-of-new-catalytic-systems-using-airliquid-interface-cell-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4301</span> Indoor Air Pollution of the Flexographic Printing Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20S.%20Kiurski">Jelena S. Kiurski</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20S.%20Keci%C4%87"> Vesna S. Kecić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sne%C5%BEana%20M.%20Aksentijevi%C4%87"> Snežana M. Aksentijević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed <em>in situ</em>, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter <em>F</em> than <em>F<sub>critical</sub></em> for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexographic%20printing" title="flexographic printing">flexographic printing</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression%20analysis" title=" multiple regression analysis"> multiple regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20emission" title=" pollution emission"> pollution emission</a> </p> <a href="https://publications.waset.org/abstracts/44336/indoor-air-pollution-of-the-flexographic-printing-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4300</span> Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Hyung%20Park">Soo Hyung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Beom%20Kim"> Seong Beom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wontae%20Lee"> Wontae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Chul%20Joo"> Jin Chul Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmin%20Lee"> Jungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsoo%20Choi"> Jongsoo Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20vibration" title="electromagnetic vibration">electromagnetic vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20microextraction%20%28SPME%29" title=" solid-phase microextraction (SPME)"> solid-phase microextraction (SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20equilibrium%20time" title=" sorption equilibrium time"> sorption equilibrium time</a> </p> <a href="https://publications.waset.org/abstracts/74476/electromagnetically-vibrated-solid-phase-microextraction-for-organic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4299</span> Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Yilmaz">Pelin Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gizemnur%20Yildiz%20Uysal"> Gizemnur Yildiz Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Demirhan"> Elcin Demirhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Belma%20Ozbek"> Belma Ozbek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20carica%20Linn%20leaves" title="Ficus carica Linn leaves">Ficus carica Linn leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20component" title=" volatile organic component"> volatile organic component</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20extraction" title=" microwave extraction"> microwave extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=isobergapten" title=" isobergapten"> isobergapten</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/179125/determination-of-the-volatile-organic-compounds-antioxidant-and-antimicrobial-properties-of-microwave-assisted-green-extracted-ficus-carica-linn-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=144">144</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=145">145</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organic%20compounds&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10