CINXE.COM

(PDF) 3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter | Fakhreddine Ababsa - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="85jbRlOZMfTxdAF7BjO4R7CDBlO04BSFXMwDIccQFcorFDAg4ipw5VYkbqcFbB/yBUr/fCm1qeRNuJvPxE9ibw==" /> <meta name="citation_title" content="3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter" /> <meta name="citation_publication_date" content="2020/01/01" /> <meta name="citation_journal_title" content="Sensors" /> <meta name="citation_author" content="Fakhreddine Ababsa" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter" /> <meta name="twitter:title" content="3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter" /> <meta name="twitter:description" content="The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images" /> <meta name="twitter:image" content="https://0.academia-photos.com/263837202/115339392/104625007/s200_fakhreddine.ababsa.png" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter" /> <meta property="og:title" content="3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images" /> <meta property="article:author" content="https://gadz.academia.edu/FakhreddineAbabsa" /> <meta name="description" content="The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images" /> <title>(PDF) 3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter | Fakhreddine Ababsa - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733911312000); window.Aedu.timeDifference = new Date().getTime() - 1733911312000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images acquired from conventional perspective cameras, while omnidirectional images have seldom been used and published research works in this field remains limited. In this study, the Riemannian varieties was considered in order to compute the gradient on spherical images and generate a robust descriptor used along with an SVM classifier for human detection. Original likelihood functions associated with the particle filter are proposed, using both geodesic distances and overlapping regions between the silhouette detected in the images and the projected 3D human model. Our approach was experimentally evaluated on real data and showed favorable results compared to machine learning based techniques about the 3D pose accuracy. Thus, the Root Mean Squa...","author":[{"@context":"https://schema.org","@type":"Person","name":"Fakhreddine Ababsa"}],"contributor":[],"dateCreated":"2023-12-16","datePublished":"2020-01-01","headline":"3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter","image":"https://attachments.academia-assets.com/109098705/thumbnails/1.jpg","inLanguage":"en","keywords":["Computer Science","Artificial Intelligence","Analytical Chemistry","Computer Vision","Medicine","Sensors","Human Tracking","Particle Filter","Electrical And Electronic Engineering","Silhouette","Omnidirectional Camera","Mean Squared Error"],"publication":"Sensors","publisher":{"@context":"https://schema.org","@type":"Organization","name":"MDPI AG"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"gadz"}],"thumbnailUrl":"https://attachments.academia-assets.com/109098705/thumbnails/1.jpg","url":"https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "68b1ba9c328b998dfb87acf09c6e409aceebf1a23705119c143336f30a4c97a4", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="mc0wI1rJA5CZTaSW8XTOwAOFBLeDXi4IWuhbpD+HBt9BQdtF63pCgT4dy0ryK2l1tkz9mB4Lk2lLnMNKPNhxeg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="U7xNGsodmqn8jZUeo6zkBelvbU0BB7jqdVq/cNmmCOmLMKZ8e67buFvd+sKg80OwXKaUYpxSBYtkLiee2vl/TA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-85e1f6e5aefed21344b25292b138fad229d4259fa0bd3341a6b90fec2f5f6977.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 263837202; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F111609803%2F3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F111609803%2F3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":109098705,"identifier":"Attachment_109098705","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":111609803,"created_at":"2023-12-16T23:55:55.811-08:00","from_world_paper_id":245980100,"updated_at":"2023-12-17T00:23:03.998-08:00","_data":{"abstract":"The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images acquired from conventional perspective cameras, while omnidirectional images have seldom been used and published research works in this field remains limited. In this study, the Riemannian varieties was considered in order to compute the gradient on spherical images and generate a robust descriptor used along with an SVM classifier for human detection. Original likelihood functions associated with the particle filter are proposed, using both geodesic distances and overlapping regions between the silhouette detected in the images and the projected 3D human model. Our approach was experimentally evaluated on real data and showed favorable results compared to machine learning based techniques about the 3D pose accuracy. Thus, the Root Mean Squa...","publisher":"MDPI AG","publication_date":"2020,,","publication_name":"Sensors"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [263837202]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:109098705,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/109098705/mini_magick20231217-1-nixufq.png?1702800210" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="263837202" href="https://gadz.academia.edu/FakhreddineAbabsa"><img alt="Profile image of Fakhreddine Ababsa" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/263837202/115339392/104625007/s65_fakhreddine.ababsa.png" />Fakhreddine Ababsa</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2020, Sensors</p></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the literature on RGB images acquired from conventional perspective cameras, while omnidirectional images have seldom been used and published research works in this field remains limited. In this study, the Riemannian varieties was considered in order to compute the gradient on spherical images and generate a robust descriptor used along with an SVM classifier for human detection. Original likelihood functions associated with the particle filter are proposed, using both geodesic distances and overlapping regions between the silhouette detected in the images and the projected 3D human model. Our approach was experimentally evaluated on real data and showed favorable results compared to machine learning based techniques about the 3D pose accuracy. Thus, the Root Mean Squa...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:109098705,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:109098705,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="109098705" data-landing_url="https://www.academia.edu/111609803/3D_Human_Pose_Estimation_with_a_Catadioptric_Sensor_in_Unconstrained_Environments_Using_an_Annealed_Particle_Filter" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="111609806" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111609806/3D_Human_Tracking_with_Catadioptric_Omnidirectional_Camera">3D Human Tracking with Catadioptric Omnidirectional Camera</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="263837202" href="https://gadz.academia.edu/FakhreddineAbabsa">Fakhreddine Ababsa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 2019 on International Conference on Multimedia Retrieval, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper deals with the problem of 3D human tracking in catadioptric images using particle-filtering framework. While traditional perspective images are well exploited, only a few methods have been developed for catadioptric vision, for the human detection or tracking problems. We propose to extend the 3D pose estimation in the case of perspective cameras to catadioptric sensors. In this paper, we develop an original likelihood functions based, on the one hand, on the geodetic distance in the spherical space SO 3 and, on the other hand, on the mapping between the human silhouette in the images and the projected 3D model. These likelihood functions combined with a particle filter, whose propagation model is adapted to the spherical space, allow accurate 3D human tracking in omnidirectional images. Both visual and quantitative analysis of the experimental results demonstrate the effectiveness of our approach</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Human Tracking with Catadioptric Omnidirectional Camera&quot;,&quot;attachmentId&quot;:109098770,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/111609806/3D_Human_Tracking_with_Catadioptric_Omnidirectional_Camera&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/111609806/3D_Human_Tracking_with_Catadioptric_Omnidirectional_Camera"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="9437635" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9437635/3D_Tracking_by_Catadioptric_Vision_Based_on_Particle_Filters">3D Tracking by Catadioptric Vision Based on Particle Filters</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="21975350" href="https://tecnico.academia.edu/AlexandreBernardino">Alexandre Bernardino</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper presents a robust tracking system for autonomous robots equipped with omnidirectional cameras. The proposed method uses a 3D shape and color-based object model. This allows to tackle difficulties that arise when the tracked object is placed above the ground plane floor. Tracking under these conditions has two major difficulties: first, observation with omnidirectional sensors largely deforms the target’s shape; second, the object of interest embedded in a dynamic scenario may suffer from occlusion, overlap and ambiguities. To surmount these difficulties, we use a 3D particle filter to represent the target’s state space: position and velocity with respect to the robot. To compute the likelihood of each particle the following features are taken into account: i) image color; ii) mismatch between target’s color and background color. We test the accuracy of the algorithm in a RoboCup Middle Size League scenario, both with static and moving targets.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Tracking by Catadioptric Vision Based on Particle Filters&quot;,&quot;attachmentId&quot;:47780678,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/9437635/3D_Tracking_by_Catadioptric_Vision_Based_on_Particle_Filters&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/9437635/3D_Tracking_by_Catadioptric_Vision_Based_on_Particle_Filters"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="87470540" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87470540/Rao_Blackwellized_Particle_Filter_for_Human_Appearance_and_Position_Tracking">Rao-Blackwellized Particle Filter for Human Appearance and Position Tracking</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32829794" href="https://independent.academia.edu/CarlosOrrite">Carlos Orrite</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lecture Notes in Computer Science</p><p class="ds-related-work--abstract ds2-5-body-sm">In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Rao-Blackwellized Particle Filter for Human Appearance and Position Tracking&quot;,&quot;attachmentId&quot;:91669670,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87470540/Rao_Blackwellized_Particle_Filter_for_Human_Appearance_and_Position_Tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87470540/Rao_Blackwellized_Particle_Filter_for_Human_Appearance_and_Position_Tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="10827050" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/10827050/A_Study_on_Smoothing_for_Particle_Filtered_3D_Human_Body_Tracking">A Study on Smoothing for Particle-Filtered 3D Human Body Tracking</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26321104" href="https://curtin.academia.edu/GeoffWest">Geoff West</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Computer Vision, 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">Stochastic models have become the dominant means of approaching the problem of articulated 3D human body tracking, where approximate inference is employed to tractably estimate the high-dimensional (∼30D) posture space. Of these approximate inference techniques, particle filtering is the most commonly used approach. However filtering only takes into account past observations-almost no body tracking research employs smoothing to improve the filtered inference estimate, despite the fact that smoothing considers both past and future evidence and so should be more accurate. In an effort to objectively determine the worth of existing smoothing algorithms when applied to human body tracking, this paper investigates three approximate smoothed-inference techniques: particle-filtered backwards smoothing, variational approximation and Gibbs sampling. Results are quantitatively evaluated on both the HU-MANEVA dataset as well as a scene containing occluding clutter. Surprisingly, it is found that existing smoothing techniques are unable to provide much improvement on the filtered estimate, and possible reasons as to why are explored and discussed.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Study on Smoothing for Particle-Filtered 3D Human Body Tracking&quot;,&quot;attachmentId&quot;:47094647,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/10827050/A_Study_on_Smoothing_for_Particle_Filtered_3D_Human_Body_Tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/10827050/A_Study_on_Smoothing_for_Particle_Filtered_3D_Human_Body_Tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="18184796" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18184796/On_the_use_of_perspective_catadioptric_sensors_for_3D_model_based_tracking_with_particle_filters">On the use of perspective catadioptric sensors for 3D model-based tracking with particle filters</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="21975350" href="https://tecnico.academia.edu/AlexandreBernardino">Alexandre Bernardino</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">We present a model-based 3D tracking system, using wide angle perspective catadioptric sensors. These sensors acquire 360 o views of the environment and the projection from 3D world points to the image plane is approximated by a perspective model. This is a major advantage in structured environments because straight lines on specific surfaces are not deformed by the sensor, allowing the application of standard computer vision algorithms. Objects off the surface are distorted according to a complex projection model, but can be approximated by a simple wide angle perspective mapping. This is exploited here to develop a robust tracking system for autonomous robots using a 3D shape and color-based object model. The use of particle filters allows tracking to be done with 3D realistic motion models and tackling object occlusion, overlap and ambiguities. We show that the use of the perspective model is advantageous over more standard catadioptric projection models, since it renders a very good approximation to the true model, being simpler and more efficient to use, in particular with 3D particle filtering methods.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;On the use of perspective catadioptric sensors for 3D model-based tracking with particle filters&quot;,&quot;attachmentId&quot;:39921275,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/18184796/On_the_use_of_perspective_catadioptric_sensors_for_3D_model_based_tracking_with_particle_filters&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/18184796/On_the_use_of_perspective_catadioptric_sensors_for_3D_model_based_tracking_with_particle_filters"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="5892333" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5892333/Efficient_posture_estimation_using_the_particle_filter">Efficient posture estimation using the particle filter</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="8725126" href="https://hiroshima-cu.academia.edu/NobuoSuematsu">Nobuo Suematsu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Congress Series, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">We address the following problem: estimate the posture vector sequence from a monocular image feature vector sequence. Its solution can be used to realize visual interfaces between humans and intelligent machines. We take the state space approach, that is, the posture estimation is formulated as the state estimation. We propose a cyclic motion model (CMM) whose state variable is the phase of a motion, and estimate the postures using a particle filter. In addition, we extend CMM so that the posture estimation is possible from image sequences with camera angle change. D 2006 Published by Elsevier B.V.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Efficient posture estimation using the particle filter&quot;,&quot;attachmentId&quot;:49097905,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/5892333/Efficient_posture_estimation_using_the_particle_filter&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/5892333/Efficient_posture_estimation_using_the_particle_filter"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="87470567" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87470567/1_Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by">1 Tracking Human Position and Lower Body Parts Using Kalman and Particle Filters Constrained by</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32829794" href="https://independent.academia.edu/CarlosOrrite">Carlos Orrite</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><p class="ds-related-work--abstract ds2-5-body-sm">Abstract—In this paper, a novel framework for visual tracking of human body parts is introduced. The presented approach demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera using a limb tracking system based on a 2D articulated model and a double tracking strategy. Its key contribution is that the 2D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented. Index Terms—human pose, particle filter, biomechanics, 2D articulated model, bipedal motion, video surveillance.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;1 Tracking Human Position and Lower Body Parts Using Kalman and Particle Filters Constrained by&quot;,&quot;attachmentId&quot;:91669684,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87470567/1_Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87470567/1_Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="191864" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/191864/Tracking_Human_Body_Parts_Using_Particle_Filters_Constrained_by_Human_Biomechanics">Tracking Human Body Parts Using Particle Filters Constrained by Human Biomechanics</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33952498" href="https://qub.academia.edu/Jes%C3%BAsMart%C3%ADnezdelRinc%C3%B3n">Jesús Martínez del Rincón</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67407" href="https://kingston.academia.edu/JeanChristopheNebel">Jean-Christophe Nebel</a></div><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, a novel framework for visual tracking of human body parts is introduced. The presented approach demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera using a limb tracking system based on a 2D articulated model. It is constrained only by biomechanical knowledge about human bipedal motion, instead on relying on constraints linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on HumanEva I &amp; II datasets demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Tracking Human Body Parts Using Particle Filters Constrained by Human Biomechanics&quot;,&quot;attachmentId&quot;:394806,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/191864/Tracking_Human_Body_Parts_Using_Particle_Filters_Constrained_by_Human_Biomechanics&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/191864/Tracking_Human_Body_Parts_Using_Particle_Filters_Constrained_by_Human_Biomechanics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="20098895" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20098895/APPEARANCE_BASED_PERSON_TRACKING_AND_3D_POSE_ESTIMATION_OF_UPPER_BODY_AND_HEAD">APPEARANCE-BASED PERSON TRACKING AND 3D POSE ESTIMATION OF UPPER-BODY AND HEAD</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41124901" href="https://independent.academia.edu/CWeinrich">Christoph Weinrich</a></div><p class="ds-related-work--abstract ds2-5-body-sm">In the field of human-robot interaction (HRI), recognition of humans in a robot&#39;s surroundings is a crucial task. Besides the localization, the estimation of a person&#39;s 3D pose based on monocular camera images is a challenging problem on a mobile platform. For this purpose, an appearancebased approach, using a 3D model of the human upper body, has been developed end experimentally investigated. For a real time tracking, the state of the person is estimated by a particle filter tracker, which uses different observation models for evaluating pose hypotheses. The 6D body pose is modeled by 4 parameters for the torso position and orientation as well as 2 for the head pan and tilt. In order to achieve real time operation, a smooth fit value function simplifies the particle filter&#39;s convergence. Futhermore, a sparse feature based model eliminates the need for computationally expensive geometric transformations of the image, as required by conventional Active Appearance Models (AAM). The initialization problem of the pose tracker is overcome by integrating a Histograms of Oriented Gradients (HOG) detector.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;APPEARANCE-BASED PERSON TRACKING AND 3D POSE ESTIMATION OF UPPER-BODY AND HEAD&quot;,&quot;attachmentId&quot;:41173209,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/20098895/APPEARANCE_BASED_PERSON_TRACKING_AND_3D_POSE_ESTIMATION_OF_UPPER_BODY_AND_HEAD&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20098895/APPEARANCE_BASED_PERSON_TRACKING_AND_3D_POSE_ESTIMATION_OF_UPPER_BODY_AND_HEAD"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="349177" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/349177/Tracking_Human_Position_and_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics">Tracking Human Position and Body Parts Using Kalman and Particle Filters Constrained by Human Biomechanics</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67407" href="https://kingston.academia.edu/JeanChristopheNebel">Jean-Christophe Nebel</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32829794" href="https://independent.academia.edu/CarlosOrrite">Carlos Orrite</a></div><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, a novel framework for visual tracking of human body parts is introduced. The presented approach demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera using a limb tracking system based on a 2D articulated model and a double tracking strategy. Its key contribution is that the 2D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Tracking Human Position and Body Parts Using Kalman and Particle Filters Constrained by Human Biomechanics&quot;,&quot;attachmentId&quot;:6978395,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/349177/Tracking_Human_Position_and_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/349177/Tracking_Human_Position_and_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:109098705,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:109098705,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_109098705" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="68531206" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68531206/3D_Tracking_Using_Multi_view_Based_Particle_Filters">3D Tracking Using Multi-view Based Particle Filters</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40435995" href="https://independent.academia.edu/LuisSalgado33">Luis Salgado</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Tracking Using Multi-view Based Particle Filters&quot;,&quot;attachmentId&quot;:78973267,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/68531206/3D_Tracking_Using_Multi_view_Based_Particle_Filters&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68531206/3D_Tracking_Using_Multi_view_Based_Particle_Filters"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="111969979" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111969979/A_Perspective_Approach_Toward_Monocular_Particle_based_People_Tracking">A Perspective Approach Toward Monocular Particle-based People Tracking</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="84287201" href="https://independent.academia.edu/GudrunKlinker">Gudrun Klinker</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Perspective Approach Toward Monocular Particle-based People Tracking&quot;,&quot;attachmentId&quot;:109347472,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/111969979/A_Perspective_Approach_Toward_Monocular_Particle_based_People_Tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/111969979/A_Perspective_Approach_Toward_Monocular_Particle_based_People_Tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="49183615" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49183615/A_quantitative_evaluation_of_video_based_3D_person_tracking">A quantitative evaluation of video-based 3D person tracking</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="166455041" href="https://independent.academia.edu/AlexandruBalan28">Alexandru Balan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A quantitative evaluation of video-based 3D person tracking&quot;,&quot;attachmentId&quot;:67567956,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/49183615/A_quantitative_evaluation_of_video_based_3D_person_tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/49183615/A_quantitative_evaluation_of_video_based_3D_person_tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="575721" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/575721/Viewpoint_invariant_exemplar_based_3D_human_tracking">Viewpoint invariant exemplar-based 3D human tracking</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5692" href="https://surrey.academia.edu/RichardBowden">Richard Bowden</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Computer Vision and Image …, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Viewpoint invariant exemplar-based 3D human tracking&quot;,&quot;attachmentId&quot;:2966066,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/575721/Viewpoint_invariant_exemplar_based_3D_human_tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/575721/Viewpoint_invariant_exemplar_based_3D_human_tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="52337917" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/52337917/Human_Tracking_using_Particle_Filter">Human Tracking using Particle Filter</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146425461" href="https://nmit-in.academia.edu/JharnaMajumdar">Jharna Majumdar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Computer Applications, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Human Tracking using Particle Filter&quot;,&quot;attachmentId&quot;:69649073,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/52337917/Human_Tracking_using_Particle_Filter&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/52337917/Human_Tracking_using_Particle_Filter"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="13350173" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13350173/Stochastic_tracking_of_3D_human_figures_using_2D_image_motion">Stochastic tracking of 3D human figures using 2D image motion</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32587331" href="https://espol.academia.edu/MichaelBlack">Michael Black</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Stochastic tracking of 3D human figures using 2D image motion&quot;,&quot;attachmentId&quot;:45440181,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/13350173/Stochastic_tracking_of_3D_human_figures_using_2D_image_motion&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/13350173/Stochastic_tracking_of_3D_human_figures_using_2D_image_motion"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="8647833" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8647833/People_detection_and_tracking_with_multiple_stereo_cameras_using_particle_filters">People detection and tracking with multiple stereo cameras using particle filters</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="18031585" href="https://independent.academia.edu/FranciscoJos%C3%A9MadridCuevas">Francisco José Madrid Cuevas</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Visual Communication and Image Representation, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;People detection and tracking with multiple stereo cameras using particle filters&quot;,&quot;attachmentId&quot;:48031837,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/8647833/People_detection_and_tracking_with_multiple_stereo_cameras_using_particle_filters&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8647833/People_detection_and_tracking_with_multiple_stereo_cameras_using_particle_filters"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="14957189" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14957189/Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics">Tracking Human Position and Lower Body Parts Using Kalman and Particle Filters Constrained by Human Biomechanics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33952498" href="https://qub.academia.edu/Jes%C3%BAsMart%C3%ADnezdelRinc%C3%B3n">Jesús Martínez del Rincón</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67407" href="https://kingston.academia.edu/JeanChristopheNebel">Jean-Christophe Nebel</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Tracking Human Position and Lower Body Parts Using Kalman and Particle Filters Constrained by Human Biomechanics&quot;,&quot;attachmentId&quot;:43701898,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/14957189/Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14957189/Tracking_Human_Position_and_Lower_Body_Parts_Using_Kalman_and_Particle_Filters_Constrained_by_Human_Biomechanics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="17066231" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17066231/Particle_filter_with_analytical_inference_for_human_body_tracking">Particle filter with analytical inference for human body tracking</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24908035" href="https://knu.academia.edu/SoonKiJung">Soon Ki Jung</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Workshop on Motion and Video Computing, 2002. Proceedings., 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Particle filter with analytical inference for human body tracking&quot;,&quot;attachmentId&quot;:39324868,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/17066231/Particle_filter_with_analytical_inference_for_human_body_tracking&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/17066231/Particle_filter_with_analytical_inference_for_human_body_tracking"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="67113639" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67113639/Robust_3D_visual_tracking_using_particle_filtering_on_the_special_Euclidean_group_A_combined_approach_of_keypoint_and_edge_features">Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="174871380" href="https://fjsll.academia.edu/HChristensen">Henrik Christensen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The International Journal of Robotics Research, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features&quot;,&quot;attachmentId&quot;:78053565,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/67113639/Robust_3D_visual_tracking_using_particle_filtering_on_the_special_Euclidean_group_A_combined_approach_of_keypoint_and_edge_features&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/67113639/Robust_3D_visual_tracking_using_particle_filtering_on_the_special_Euclidean_group_A_combined_approach_of_keypoint_and_edge_features"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="111969581" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111969581/Real_time_monocular_people_tracking_by_sequential_Monte_Carlo_filtering">Real-time monocular people tracking by sequential Monte-Carlo filtering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="84287201" href="https://independent.academia.edu/GudrunKlinker">Gudrun Klinker</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 6th International Conference on Computer Vision / Computer Graphics Collaboration Techniques and Applications, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Real-time monocular people tracking by sequential Monte-Carlo filtering&quot;,&quot;attachmentId&quot;:109347205,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/111969581/Real_time_monocular_people_tracking_by_sequential_Monte_Carlo_filtering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/111969581/Real_time_monocular_people_tracking_by_sequential_Monte_Carlo_filtering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="575713" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/575713/Non_linear_statistical_models_for_the_3D_reconstruction_of_human_pose_and_motion_from_monocular_image_sequences">Non-linear statistical models for the 3D reconstruction of human pose and motion from monocular image sequences</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5692" href="https://surrey.academia.edu/RichardBowden">Richard Bowden</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Image and Vision Computing, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Non-linear statistical models for the 3D reconstruction of human pose and motion from monocular image sequences&quot;,&quot;attachmentId&quot;:2966014,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/575713/Non_linear_statistical_models_for_the_3D_reconstruction_of_human_pose_and_motion_from_monocular_image_sequences&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/575713/Non_linear_statistical_models_for_the_3D_reconstruction_of_human_pose_and_motion_from_monocular_image_sequences"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="15160479" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15160479/Isomap_Tracking_with_Particle_Filtering">Isomap Tracking with Particle Filtering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34207878" href="https://independent.academia.edu/StanleyBirchfield">Stanley Birchfield</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007 IEEE International Conference on Image Processing, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Isomap Tracking with Particle Filtering&quot;,&quot;attachmentId&quot;:43519485,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/15160479/Isomap_Tracking_with_Particle_Filtering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15160479/Isomap_Tracking_with_Particle_Filtering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="12063226" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/12063226/People_Tracking_and_Posture_Recognition_for_Human_Robot_Interaction">People Tracking and Posture Recognition for Human-Robot Interaction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30081175" href="https://cnr-it.academia.edu/IgnazioInfantino">Ignazio Infantino</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;People Tracking and Posture Recognition for Human-Robot Interaction&quot;,&quot;attachmentId&quot;:46390588,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/12063226/People_Tracking_and_Posture_Recognition_for_Human_Robot_Interaction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/12063226/People_Tracking_and_Posture_Recognition_for_Human_Robot_Interaction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="2739112" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2739112/Detecting_humans_via_their_pose">Detecting humans via their pose</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="59090" href="https://ucmerced.academia.edu/MingHsuanYang">Ming-Hsuan Yang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Detecting humans via their pose&quot;,&quot;attachmentId&quot;:30714492,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/2739112/Detecting_humans_via_their_pose&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2739112/Detecting_humans_via_their_pose"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="111609793" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/111609793/3D_Human_Tracking_in_a_Top_View_Using_Depth_Information_Recorded_by_the_Xtion_Pro_Live_Camera">3D Human Tracking in a Top View Using Depth Information Recorded by the Xtion Pro-Live Camera</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="263837202" href="https://gadz.academia.edu/FakhreddineAbabsa">Fakhreddine Ababsa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Lecture Notes in Computer Science, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Human Tracking in a Top View Using Depth Information Recorded by the Xtion Pro-Live Camera&quot;,&quot;attachmentId&quot;:109098738,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/111609793/3D_Human_Tracking_in_a_Top_View_Using_Depth_Information_Recorded_by_the_Xtion_Pro_Live_Camera&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/111609793/3D_Human_Tracking_in_a_Top_View_Using_Depth_Information_Recorded_by_the_Xtion_Pro_Live_Camera"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="524" href="https://www.academia.edu/Documents/in/Analytical_Chemistry">Analytical Chemistry</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="26327" href="https://www.academia.edu/Documents/in/Medicine">Medicine</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="55405" href="https://www.academia.edu/Documents/in/Sensors">Sensors</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="100874" href="https://www.academia.edu/Documents/in/Human_Tracking">Human Tracking</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="261121" href="https://www.academia.edu/Documents/in/Particle_Filter">Particle Filter</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1237788" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering">Electrical And Electronic Engine...</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1648187" href="https://www.academia.edu/Documents/in/Silhouette">Silhouette</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2755698" href="https://www.academia.edu/Documents/in/Omnidirectional_Camera">Omnidirectional Camera</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3209333" href="https://www.academia.edu/Documents/in/Mean_Squared_Error">Mean Squared Error</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10