CINXE.COM
Search results for: rigid disc
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rigid disc</title> <meta name="description" content="Search results for: rigid disc"> <meta name="keywords" content="rigid disc"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rigid disc" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rigid disc"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 740</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rigid disc</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Thermal Effects of Disc Brake Rotor Design for Automotive Brake Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shahril">K. Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ridzuan"> M. Ridzuan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sabri"> M. Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disc rotor is solid, ventilated or drilled. The ventilated type disc rotor consists of a wider disc with cooling fins cast through the middle to ensure good cooling. The disc brakes use pads that are pressed axially against a rotor or disc. Solid and ventilated disc design are same which it free with any form, unless inside the ventilated disc has several ventilation holes. Different with drilled disc has some construction on the surface which is has six lines of drill hole penetrate the disc and a little bit deep twelve curves. From the thermal analysis that was conducted by using ANSYS Software, temperature distribution and heat transfer rate on the disc were obtained on each design. Temperature occurred on the drilled disc was lowest than ventilated and solid disc, it is 66% better than ventilated while ventilated is 21% good than solid disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disc%20brakes" title="disc brakes">disc brakes</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20disc" title=" drilled disc"> drilled disc</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20software" title=" ANSYS software"> ANSYS software</a> </p> <a href="https://publications.waset.org/abstracts/3338/thermal-effects-of-disc-brake-rotor-design-for-automotive-brake-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehdizadeh">D. Mehdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimian"> M. Rahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eskandari-Ghadi"> M. Eskandari-Ghadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transversely%20isotropic" title="transversely isotropic">transversely isotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20disc" title=" rigid disc"> rigid disc</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20integral%20equations" title=" dual integral equations"> dual integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=tri-material%20full-space" title=" tri-material full-space"> tri-material full-space</a> </p> <a href="https://publications.waset.org/abstracts/5469/displacement-solution-for-a-static-vertical-rigid-movement-of-an-interior-circular-disc-in-a-transversely-isotropic-tri-material-full-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Thick Disc Molecular Gas Fraction in NGC 6946</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Nath%20Patra">Narendra Nath Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consists of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cube and spectral width profile. We find that the simulated spectral width profiles distinguishably differs for different assumed thick disc molecular gas fraction. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 +/- 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find 60% of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ~ 35% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20kinematics%20and%20dynamic" title="galaxies: kinematics and dynamic">galaxies: kinematics and dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20spiral" title=" galaxies: spiral"> galaxies: spiral</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20structure" title=" galaxies: structure "> galaxies: structure </a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%3A%20molecules" title=" ISM: molecules"> ISM: molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20data" title=" molecular data"> molecular data</a> </p> <a href="https://publications.waset.org/abstracts/123278/thick-disc-molecular-gas-fraction-in-ngc-6946" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pislaru"> C. Pislaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20modelling" title="wear modelling">wear modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Archard%20Model" title=" Archard Model"> Archard Model</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20Model" title=" ASTM Model"> ASTM Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Neural%20Networks%20Model" title=" Neural Networks Model"> Neural Networks Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-on-disc%20Test" title=" Pin-on-disc Test"> Pin-on-disc Test</a>, <a href="https://publications.waset.org/abstracts/search?q=Talysurf" title=" Talysurf"> Talysurf</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20microscope" title=" digital microscope"> digital microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona" title=" Alicona "> Alicona </a> </p> <a href="https://publications.waset.org/abstracts/17801/wear-measuring-and-wear-modelling-based-on-archard-astm-and-neural-network-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Gupta">V. K. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejeet%20Singh"> Tejeet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20composite" title=" functionally graded composite"> functionally graded composite</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disc" title=" rotating disc"> rotating disc</a> </p> <a href="https://publications.waset.org/abstracts/23772/effect-of-anisotropy-on-steady-creep-in-a-whisker-reinforced-functionally-graded-composite-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20T.%20Sedebo">Getachew T. Sedebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20V.%20Joubert"> Stephan V. Joubert</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Y.%20Shatalov"> Michael Y. Shatalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%E2%80%99s%20effect" title="Bryan’s effect">Bryan’s effect</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20vibrations" title=" bending vibrations"> bending vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20gyroscope" title=" disc gyroscope"> disc gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20conditions" title=" tuning conditions"> tuning conditions</a> </p> <a href="https://publications.waset.org/abstracts/52286/the-dynamics-of-a-3d-vibrating-and-rotating-disc-gyroscope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikraz"> Hamid Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title="rigid pavement">rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenpave" title=" Kenpave"> Kenpave</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenslab" title=" Kenslab"> Kenslab</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44103/a-study-on-numerical-modelling-of-rigid-pavement-temperature-and-thickness-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwangmin%20Joo">Kwangmin Joo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Disc%20space%20narrowing" title="Disc space narrowing">Disc space narrowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Degenerative%20disc%20disorders" title=" Degenerative disc disorders"> Degenerative disc disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20learning%20based%20segmentation" title=" Deep learning based segmentation"> Deep learning based segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Clustering%20technique" title=" Clustering technique"> Clustering technique</a> </p> <a href="https://publications.waset.org/abstracts/128673/automatic-classification-for-the-degree-of-disc-narrowing-from-x-ray-images-using-cnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Epidemiological Profile of Patients with Painful Degenerative Lumbar Disc Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghoul%20Rachid%20Brahim">Ghoul Rachid Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Degenerative disc disease is a process of premature and accelerated deterioration of the intervertebral disc; it is of multifactorial origin and is responsible for chronic low back pain. Objectives: Determine an epidemiological profile of patients with painful lumbar degenerative disc disease. Patients and methods: We performed a prospective study of 104 patients operated on for degenerative painful lumbar disc disease over a period of 25 months. The parameters analyzed were: age, sex, Body Mass Index (BMI), comorbidities, family history of low back pain, and difficulty with professional activity. Results: The average age was 43.3 years, with a clear predominance of men: 72 men for 32 women, the average BMI was 26.80Kg / m2, and 63.5% of the patients were overweight. The occurrence of disc degeneration in pathological conditions was noted in 14.4% of cases. The notion of familial low back pain was found in 49% of cases. The majority of patients perform more or less arduous work (51%) in the cases. Conclusion: In our series, degenerative painful lumbar disc disease predominates in the male subject, active obese who performs more or less painful work, in whom we find a family history of low back pain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degenerative%20disc%20disease" title="degenerative disc disease">degenerative disc disease</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20pain" title=" low back pain"> low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=disque%20intervertebrale" title=" disque intervertebrale"> disque intervertebrale</a> </p> <a href="https://publications.waset.org/abstracts/155472/epidemiological-profile-of-patients-with-painful-degenerative-lumbar-disc-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> A Prospective Study on the Efficacy of Mesenchymal Stem Cells in Intervertebral Disc Regeneration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhu%20Thangaraju">Prabhu Thangaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Deepak"> Manoj Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sivakumar"> A. Sivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of inter vertebral disc along with spinal fusion has many disadvantages such as causing stress fractures. If it is possible regenerate the spine it would be possible avoid the complications of the surgery and achieve better results. Our study involves the use of mesenchymal stem cells in regenerating the discs. Our study involved 10 patients who presented with degenerative disc disease between 2008-2011 in our hospital. After adequate pre-operative check prepared mesenchymal stem cells were injected into the disc spaces. These patients were subjected to conservative therapy for a minimum of six weeks before they were accepted into the study. They were followed up regularly for a minimum of 2years with serial radiographs and MRI. 8 out of the 10 patients had completed reduction in the pain. The T2 weighted MRI images in 9 out of the 10 patients showed a bright signal compared the previous Images which indicated that there was improvement in the hydration levels. From the case study of 10 patients who were subjected to mesenchymal cell therapy in our hospital, we can conclude that the use of mesenchymal cells in treatment of intervertebral disc degeneration in a safe and effective option. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20spine" title=" the spine"> the spine</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20degeneration" title=" disc degeneration "> disc degeneration </a> </p> <a href="https://publications.waset.org/abstracts/16025/a-prospective-study-on-the-efficacy-of-mesenchymal-stem-cells-in-intervertebral-disc-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> The Effect of Simultaneous Application of Laser Beam and Magnet in Treatment of Intervertebral Disc Herniation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Moghtaderi">Alireza Moghtaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negin%20Khakpour"> Negin Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disc Herniation is a common complication in the society and it is one of the main reasons for referring to physical medicine and rehabilitation clinics. Despite of various methods proposed for treatingthis disease, still there is disagreement on success of these methods especially in non-surgical methods, and thus current study aims at determining effect of laser beam and magnet on treatment of Intervertebral Disc Herniation. During a clinical trial study, 80 patients with Intervertebral Disc Herniation underwent a combined package of treatment including magnet, laser beam, PRP and Prolotherapy during 6 months. Average age of patients was 51.25 ± 10.7 with range of 25 – 71 years. 30 men (37.5%) and 50 women (62.5%) took part in the study. average weight of patients was 64.3 ± 7.2 with range of 49 – 79 kg. highest level of Disc Herniation was L5 – S1 with frequency of 17 cases (21.3%). Disc Herniation was severe in 30 cases before treatment, but it reduced to 3 casesafter treatment. This study indicates effect of combined treatment using non-invasive laser beam and magnet therapy on disco genic diseases and mechanical pains of spine is highly effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hallux" title="hallux">hallux</a>, <a href="https://publications.waset.org/abstracts/search?q=valgus" title=" valgus"> valgus</a>, <a href="https://publications.waset.org/abstracts/search?q=botulinum%20toxin%20a" title=" botulinum toxin a"> botulinum toxin a</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/149944/the-effect-of-simultaneous-application-of-laser-beam-and-magnet-in-treatment-of-intervertebral-disc-herniation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Study on Moisture-Induced-Damage of Semi-Rigid Base under Hydrodynamic Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baofeng%20Pan">Baofeng Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the high strength and large carrying capacity, the semi-rigid base is widely used in modern road engineering. However, hydrodynamic pressure, which is one of the main factors to cause early damage of semi-rigid base, cannot be avoided in the nature environment when pavement is subjected to some loadings such as the passing vehicles. In order to investigating how moisture-induced-damage of semi-rigid base influenced by hydrodynamic pressure, a new and effective experimental research method is provided in this paper. The results show that: (a) The washing action of high hydrodynamic pressure is the direct cause of strength reducing of road semi-rigid base. (b) The damage of high hydrodynamic pressure mainly occurs at the beginning of the scoring test and with the increasing of testing time the influence reduces. (c) Under the same hydrodynamic pressure, the longer the specimen health age, the stronger ability to resist moisture induced damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-rigid%20base" title="semi-rigid base">semi-rigid base</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20pressure" title=" hydrodynamic pressure"> hydrodynamic pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture-induced-damage" title=" moisture-induced-damage"> moisture-induced-damage</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20research" title=" experimental research"> experimental research</a> </p> <a href="https://publications.waset.org/abstracts/29849/study-on-moisture-induced-damage-of-semi-rigid-base-under-hydrodynamic-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Dimension Free Rigid Point Set Registration in Linear Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianqin%20Qu">Jianqin Qu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covariant%20point" title="covariant point">covariant point</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20matching" title=" point matching"> point matching</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension%20free" title=" dimension free"> dimension free</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20registration" title=" rigid registration"> rigid registration</a> </p> <a href="https://publications.waset.org/abstracts/98395/dimension-free-rigid-point-set-registration-in-linear-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norazlin%20Mohamad">Norazlin Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Adli%20Bukry"> Saiful Adli Bukry</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Zahari"> Zarina Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidzir%20Manaf"> Haidzir Manaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi%20Sawalludin"> Hanafi Sawalludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20instability" title="ankle instability">ankle instability</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic" title=" kinematic"> kinematic</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activation" title=" muscle activation"> muscle activation</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20distribution" title=" force distribution"> force distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Tape" title=" Rigid Tape"> Rigid Tape</a>, <a href="https://publications.waset.org/abstracts/search?q=KT%20tape" title=" KT tape"> KT tape</a> </p> <a href="https://publications.waset.org/abstracts/11715/force-distribution-and-muscles-activation-for-ankle-instability-patients-with-rigid-and-kinesiotape-while-standing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bendoukha">Mohamed Bendoukha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mosbah"> Mustapha Mosbah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title="intervertebral disc">intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=degenerative%20nuclesion" title=" degenerative nuclesion"> degenerative nuclesion</a>, <a href="https://publications.waset.org/abstracts/search?q=L4-L5" title=" L4-L5"> L4-L5</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20of%20motion%20finite%20element%20model" title=" range of motion finite element model"> range of motion finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelasticy" title=" hyperelasticy"> hyperelasticy</a> </p> <a href="https://publications.waset.org/abstracts/89019/comparative-analysis-of-hybrid-dynamic-stabilization-and-fusion-for-degenerative-disease-of-the-lumbosacral-spine-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Sadhukhan">Sandip Sadhukhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Sarkar"> Arpita Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Debprasad%20Sinha"> Debprasad Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Kumar%20Ghorai"> Goutam Kumar Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Sarkar"> Gautam Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashis%20K.%20Dhara"> Ashis K. Dhara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention-based%20fully%20convolutional%20network" title="attention-based fully convolutional network">attention-based fully convolutional network</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20disc%20detection%20and%20segmentation" title=" optic disc detection and segmentation"> optic disc detection and segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20fundus%20image" title=" retinal fundus image"> retinal fundus image</a>, <a href="https://publications.waset.org/abstracts/search?q=screening%20of%20ocular%20diseases" title=" screening of ocular diseases"> screening of ocular diseases</a> </p> <a href="https://publications.waset.org/abstracts/112293/attention-based-fully-convolutional-neural-network-for-simultaneous-detection-and-segmentation-of-optic-disc-in-retinal-fundus-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Siddheshwar">P. G. Siddheshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Veena"> B. N. Veena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enclosures" title="enclosures">enclosures</a>, <a href="https://publications.waset.org/abstracts/search?q=free-free" title=" free-free"> free-free</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid-rigid" title=" rigid-rigid"> rigid-rigid</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid-free%20boundaries" title=" rigid-free boundaries"> rigid-free boundaries</a>, <a href="https://publications.waset.org/abstracts/search?q=Ginzburg-Landau%20model" title=" Ginzburg-Landau model"> Ginzburg-Landau model</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenz%20model" title=" Lorenz model"> Lorenz model</a> </p> <a href="https://publications.waset.org/abstracts/69865/unsteady-rayleigh-benard-convection-of-nanoliquids-in-enclosures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Evaluation of Patients’ Quality of Life After Lumbar Disc Surgery and Movement Limitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Jalili">Shirin Jalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Ghasemi"> Ramin Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lumbar microdiscectomy is the most commonly performed spinal surgery strategy; it is regularly performed to lighten the indications and signs of sciatica within the lower back and leg caused by a lumbar disc herniation. This surgery aims to progress leg pain, reestablish function, and enable a return to ordinary day-by-day exercises. Rates of lumbar disc surgery show critical geographic varieties recommending changing treatment criteria among working specialists. Few population-based considers have investigated the hazard of reoperation after disc surgery, and regional or inter specialty varieties within the reoperations are obscure. The conventional approach to recouping from lumbar microdiscectomy has been to restrain bending, lifting, or turning for a least 6 weeks in arrange to anticipate the disc from herniating once more. Traditionally, patients were exhorted to limit post-operative action, which was accepted to decrease the hazard of disc herniation and progressive insecurity. In modern hone, numerous specialists don't limit understanding of postoperative action due to the discernment this practice is pointless. There's a need of thinks about highlighting the result by distinctive scores or parameters after surgery for repetitive circle herniations of the lumbar spine at the starting herniation location. This study will evaluate the quality of life after surgical treatment of recurrent herniations with distinctive standardized approved result instruments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-operative%20activity" title="post-operative activity">post-operative activity</a>, <a href="https://publications.waset.org/abstracts/search?q=disc" title=" disc"> disc</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=movements" title=" movements"> movements</a> </p> <a href="https://publications.waset.org/abstracts/152645/evaluation-of-patients-quality-of-life-after-lumbar-disc-surgery-and-movement-limitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weerinda%20%20Appamana">Weerinda Appamana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirapong%20Keawkoon"> Jirapong Keawkoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamonporn%20Pacthong"> Yamonporn Pacthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirathiti%20Chitsanguansuk"> Jirathiti Chitsanguansuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyong%20Sookklay"> Yanyong Sookklay </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinning%20disc%20reactor" title="spinning disc reactor">spinning disc reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20efficiency" title=" yield efficiency"> yield efficiency</a> </p> <a href="https://publications.waset.org/abstracts/92625/transesterification-of-refined-palm-oil-to-biodiesel-in-a-continuous-spinning-disc-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Place of Surgery in the Treatment of Painful Lumbar Degenerative Disc Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghoul%20Rachid%20Brahim">Ghoul Rachid Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Back pain is a real public health problem with a significant socio-economic impact. It is the consequence of a degeneration of the lumbar intervertebral disc (IVD). This often asymptomatic pathology is compatible with an active life. As soon as it becomes symptomatic, conservative treatment is recommended in the majority of cases. The physical or functional disability is resistant to well-monitored conservative treatment, which justifies a surgical alternative which imposes a well-studied reflection on the objectives to be achieved. Objective: Evaluate the indication and short and medium term contribution of surgery in the management of painful degenerative lumbar disc disease. To prove the effectiveness of surgical treatment in the management of painful lumbar degenerative disc disease. Materials and methods: This is a prospective descriptive mono-centric study without comparison group, comprising a series of 104 patients suffering from lumbar painful degenerative disc disease treated surgically. Retrospective analysis of data collected prospectively. Comparison between pre and postoperative clinical status, by pain self-assessment scores and on the impact on pre and postoperative quality of life (3, 6 to 12 months). Results: This study showed that patients who received surgical treatment had great improvements in symptoms, function and several health-related quality of life in the first year after surgery. Conclusions: The surgery had a significantly positive impact on patients' pain, disability and quality of life. Overall, 97% of the patients were satisfied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degenerative%20disc%20disease" title="degenerative disc disease">degenerative disc disease</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=several%20health-related%20quality" title=" several health-related quality"> several health-related quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20painful" title=" lumbar painful"> lumbar painful</a> </p> <a href="https://publications.waset.org/abstracts/155465/place-of-surgery-in-the-treatment-of-painful-lumbar-degenerative-disc-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> Peeling Behavior of Thin Elastic Films Bonded to Rigid Substrate of Random Surface Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinu%20Garg">Ravinu Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20V.%20Datla"> Naresh V. Datla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the fracture mechanics of peeling of thin films perfectly bonded to a rigid substrate of any random surface topology using an analytical formulation. A generalized theoretical model has been developed to determine the peel strength of thin elastic films. It is demonstrated that an improvement in the peel strength can be achieved by modifying the surface characteristics of the rigid substrate. Characterization study has been performed to analyze the effect of different parameters on effective peel force from the rigid surface. Different surface profiles such as circular and sinusoidal has been considered to demonstrate the bonding characteristics of film-substrate interface. Condition for the instability in the debonding of the film is analyzed, where the localized self-debonding arises depending upon the film and surface characteristics. This study is towards improved adhesion strength of thin films to rigid substrate using different textured surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debonding" title="debonding">debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=peel%20test" title=" peel test"> peel test</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20adhesion" title=" thin film adhesion"> thin film adhesion</a> </p> <a href="https://publications.waset.org/abstracts/47012/peeling-behavior-of-thin-elastic-films-bonded-to-rigid-substrate-of-random-surface-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Motiwale">Shruti Motiwale</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianlin%20Zhou"> Xianlin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Reuben%20H.%20Kraft"> Reuben H. Kraft</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervical%20spine" title="cervical spine">cervical spine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biomechanics" title=" computational biomechanics"> computational biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20evolution" title=" damage evolution"> damage evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a> </p> <a href="https://publications.waset.org/abstracts/42698/a-non-linear-damage-model-for-the-annulus-of-the-intervertebral-disc-under-cyclic-loading-including-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> Antibiotic Resistance of Enterococci Isolated from Raw Cow Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margita%20%C4%8Canigov%C3%A1">Margita Čanigová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Ra%C4%8Dkov%C3%A1"> Jana Račková</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Kro%C4%8Dko"> Miroslav Kročko</a>, <a href="https://publications.waset.org/abstracts/search?q=Viera%20Duckov%C3%A1"> Viera Ducková</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADra%20K%C5%88azovick%C3%A1"> Vladimíra Kňazovická</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to test the milk samples in terms of enterococci presence and their counts. Tested samples were as follows: raw cow milk, raw cow milk stored at 10°C for 16 hours and milk pasteurised at 72°C for 15 seconds. The typical colonies were isolated randomly and identified by classical biochemical test - EN-COCCUS test (Lachema, CR) and by PCR. Isolated strains were tested in terms of antibiotic resistance by well diffusion method. Examined antibiotics were: vancomycin (30 μg/disc), gentamicin (120 μg/disc), erythromycin (15 μg/disc), teicoplanine (30 μg/disc), ampicillin (10 μg/disc) and tetracycline (30 μg/disc). Average value of enterococci counts in raw milk cistern samples (n=30) was 8.25 ± 1.37 ×103 CFU/cm3. Storage tank milk samples (n=30) showed an increase (P > 0.05) and average value was 9.16 ± 1.49 × 103 CFU/cm3. Occurrence of enterococci in pasteurized milk (n=30) was sporadic and their counts were mostly below 10 CFU/cm3. Overall, 96 enterococci strains were isolated. In samples of raw cow milk and stored raw cow milk, Enterococcus faecalis was a dominant species (58.1% and 71.7%, respectively), followed by E. faecium (16.3% and 0%, respectively). Enterococcus mundtii, E. casseliflavus, E. durans and E. gallinarum were isolated, too. Resistances to ampicillin, erythromycin, gentamicin, tetracycline and vancomycin were found in 7.29%, 3.13%, 4.00%, 13.54% and 10.42% of isolated enterococci strains, respectively. Resistance to teicoplanine was not found in any isolated strain. All Vancomycin-Resistant Enterococci (VRE) belonged to E. faecalis. Obtained results confirmed that raw milk is a potential risk of enterococci resistant to antibiotics transmission into the food chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococci" title=" enterococci"> enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/5156/antibiotic-resistance-of-enterococci-isolated-from-raw-cow-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Redundancy Component Matrix and Structural Robustness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinjian%20Kou">Xinjian Kou</a>, <a href="https://publications.waset.org/abstracts/search?q=Linlin%20Li"> Linlin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongju%20Zhou"> Yongju Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimian%20Song"> Jimian Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Structural%20Robustness" title="Structural Robustness">Structural Robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=Structural%20Reliability" title=" Structural Reliability"> Structural Reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Redundancy%20Component" title=" Redundancy Component"> Redundancy Component</a>, <a href="https://publications.waset.org/abstracts/search?q=Redundancy%20Matrix" title=" Redundancy Matrix"> Redundancy Matrix</a> </p> <a href="https://publications.waset.org/abstracts/66420/redundancy-component-matrix-and-structural-robustness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ale%20M.%20O.">Ale M. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuwa%20S.%20I."> Manuwa S. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukunle%20O.%20J."> Olukunle O. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewetumo%20T."> Ewetumo T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cassava%20planter" title="Cassava planter">Cassava planter</a>, <a href="https://publications.waset.org/abstracts/search?q=planting" title=" planting"> planting</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20speed" title=" forward speed"> forward speed</a>, <a href="https://publications.waset.org/abstracts/search?q=draught" title=" draught"> draught</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20type" title=" wheel type"> wheel type</a> </p> <a href="https://publications.waset.org/abstracts/156326/forward-speed-and-draught-requirement-of-a-semi-automatic-cassava-planter-under-different-wheel-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">715</span> Optimisation of Metrological Inspection of a Developmental Aeroengine Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suneel%20Kumar">Suneel Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanda%20Kumar%20J.%20Sreelal%20Sreedhar"> Nanda Kumar J. Sreelal Sreedhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchibrata%20Sen"> Suchibrata Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Muralidharan"> V. Muralidharan</a>, <a href="https://publications.waset.org/abstracts/search?q="></a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fan technology is very critical and crucial for any aero engine technology. The fan disc forms a critical part of the fan module. It is an airworthiness requirement to have a metrological qualified quality disc. The current study uses a tactile probing and scanning on an articulated measuring machine (AMM), a bridge type coordinate measuring machine (CMM) and Metrology software for intermediate and final dimensional and geometrical verification during the prototype development of the disc manufactured through forging and machining process. The circumferential dovetails manufactured through the milling process are evaluated based on the evaluated and analysed metrological process. To perform metrological optimization a change of philosophy is needed making quality measurements available as fast as possible to improve process knowledge and accelerate the process but with accuracy, precise and traceable measurements. The offline CMM programming for inspection and optimisation of the CMM inspection plan are crucial portions of the study and discussed. The dimensional measurement plan as per the ASME B 89.7.2 standard to reach an optimised CMM measurement plan and strategy are an important requirement. The probing strategy, stylus configuration, and approximation strategy effects on the measurements of circumferential dovetail measurements of the developmental prototype disc are discussed. The results were discussed in the form of enhancement of the R &R (repeatability and reproducibility) values with uncertainty levels within the desired limits. The findings from the measurement strategy adopted for disc dovetail evaluation and inspection time optimisation are discussed with the help of various analyses and graphical outputs obtained from the verification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measuring%20machine" title="coordinate measuring machine">coordinate measuring machine</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM" title=" CMM"> CMM</a>, <a href="https://publications.waset.org/abstracts/search?q=aero%20engine" title=" aero engine"> aero engine</a>, <a href="https://publications.waset.org/abstracts/search?q=articulated%20measuring%20machine" title=" articulated measuring machine"> articulated measuring machine</a>, <a href="https://publications.waset.org/abstracts/search?q=fan%20disc" title=" fan disc"> fan disc</a> </p> <a href="https://publications.waset.org/abstracts/124084/optimisation-of-metrological-inspection-of-a-developmental-aeroengine-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minto%20Rattan">Minto Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Bose"> Tania Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic" title=" isotropic"> isotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a> </p> <a href="https://publications.waset.org/abstracts/59198/effect-of-linear-thermal-gradient-on-steady-state-creep-behavior-of-isotropic-rotating-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Unal">Yavuz Unal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat"> Kemal Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erdinc%20Kocer"> H. Erdinc Kocer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lumbar%20disc%20abnormality" title="lumbar disc abnormality">lumbar disc abnormality</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20MRI" title=" lumbar MRI"> lumbar MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20models" title=" hybrid models"> hybrid models</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20features" title=" hybrid features"> hybrid features</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering%20based%20feature%20weighting" title=" k-means clustering based feature weighting"> k-means clustering based feature weighting</a> </p> <a href="https://publications.waset.org/abstracts/24486/a-decision-support-system-to-detect-the-lumbar-disc-disease-on-the-basis-of-clinical-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Sanjel">Arun Sanjel</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Speegle"> Greg Speegle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=program%20synthesis" title="program synthesis">program synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20computing" title=" distributed computing"> distributed computing</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20testing" title=" unit testing"> unit testing</a>, <a href="https://publications.waset.org/abstracts/search?q=DISC" title=" DISC"> DISC</a> </p> <a href="https://publications.waset.org/abstracts/158356/roop-translating-sequential-code-fragments-to-distributed-code-fragments-using-deep-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dafna%20Knani">Dafna Knani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarit%20S.%20Sivan"> Sarit S. Sivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title="molecular dynamics">molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=proteoglycans" title=" proteoglycans"> proteoglycans</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20mixing" title=" enthalpy of mixing"> enthalpy of mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a> </p> <a href="https://publications.waset.org/abstracts/163566/simulation-of-gag-analogue-biomimetics-for-intervertebral-disc-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rigid%20disc&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>