CINXE.COM

Search results for: surfactant concentration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surfactant concentration</title> <meta name="description" content="Search results for: surfactant concentration"> <meta name="keywords" content="surfactant concentration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surfactant concentration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surfactant concentration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5145</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surfactant concentration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5145</span> Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoqian%20Cheng">Xiaoqian Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Kleppe"> Jon Kleppe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20Torsaeter"> Ole Torsaeter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractured%20reservoirs" title="fractured reservoirs">fractured reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20adsorption" title=" surfactant adsorption"> surfactant adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration" title=" surfactant concentration"> surfactant concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20EOR" title=" surfactant EOR"> surfactant EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20viscosity" title=" surfactant viscosity"> surfactant viscosity</a> </p> <a href="https://publications.waset.org/abstracts/87373/simulation-study-on-effects-of-surfactant-properties-on-surfactant-enhanced-oil-recovery-from-fractured-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5144</span> Investigate the Effects of Anionic Surfactant on THF Hydrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20A.%20Al-Garyani">Salah A. Al-Garyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Swesi"> Yousef Swesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrates can be hazardous to upstream operations. On the other hand, the high gas storage capacity of hydrate may be utilized for natural gas storage and transport. Research on the promotion of hydrate formation, as related to natural gas storage and transport, has received relatively little attention. The primary objective of this study is to gain a better understanding of the effects of ionic surfactants, particularly their molecular structures and concentration, on the formation of tetrahydrofuran (THF) hydrate, which is often used as a model hydrate former for screening hydrate promoters or inhibitors. The surfactants studied were sodium n-dodecyl sulfate (SDS), sodium n-hexadecyl sulfate (SHS). Our results show that, at concentrations below the solubility limit, the induction time decreases with increasing surfactant concentration. At concentrations near or above the solubility, however, the surfactant concentration no longer has any effect on the induction time. These observations suggest that the effect of surfactant on THF hydrate formation is associated with surfactant monomers, not the formation of micelle as previously reported. The lowest induction time (141.25 ± 21 s, n = 4) was observed in a solution containing 7.5 mM SDS. The induction time decreases by a factor of three at concentrations near or above the solubility, compared to that without surfactant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tetrahydrofuran" title="tetrahydrofuran">tetrahydrofuran</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20time" title=" induction time"> induction time</a>, <a href="https://publications.waset.org/abstracts/search?q=monomers" title=" monomers"> monomers</a>, <a href="https://publications.waset.org/abstracts/search?q=micelle" title=" micelle"> micelle</a> </p> <a href="https://publications.waset.org/abstracts/2282/investigate-the-effects-of-anionic-surfactant-on-thf-hydrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5143</span> Studies on Interaction between Anionic Polymer Sodium Carboxymethylcellulose with Cationic Gemini Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil">M. Kamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahber%20Husain%20Khan"> Rahber Husain Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the Interaction of anionic polymer, sodium carboxymethylcellulose (NaCMC), with cationic gemini surfactants 2,2[(oxybis(ethane-1,2-diyl))bis(oxy)]bis(N-hexadecyl1-N,N-[di(E2)/tri(E3)]methyl1-2-oxoethanaminium)chloride (16-E2-16 and 16-E3-16) and conventional surfactant (CTAC) in aqueous solutions have been studied by surface tension measurement of binary mixtures (0.0- 0.5 wt% NaCMC and 1 mM gemini surfactant/10 mM CTAC solution). Surface tension measurements were used to determine critical aggregation concentration (CAC) and critical micelle concentration (CMC). The maximum surface excess concentration (Ґmax) at the air-water interface was evaluated by the Gibbs adsorption equation. The minimum area per surfactant molecule was evaluated, which indicates the surfactant-polymer Interaction in a mixed system. The effect of changing surfactant chain length on CAC and CMC values of mixed polymer-surfactant systems was examined. From the results, it was found that the gemini surfactant interacts strongly with NaCMC as compared to its corresponding monomeric counterpart CTAC. In these systems, electrostatic interactions predominate. The lowering of surface tension with an increase in the concentration of surfactants is higher in the case of gemini surfactants almost 10-15 times. The measurements indicated that the Interaction between NaCMC-CTAC resulted in complex formation. The volume of coacervate increases with an increase in CTAC concentration; however, above 0.1 wt. % concentration coacervate vanishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%20polymer" title="anionic polymer">anionic polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=gemni%20surfactants" title=" gemni surfactants"> gemni surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=tensiometer" title=" tensiometer"> tensiometer</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/163366/studies-on-interaction-between-anionic-polymer-sodium-carboxymethylcellulose-with-cationic-gemini-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5142</span> Removal of Diesel by Soil Washing Technologies Using a Non-Ionic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Guatemala">Carolina Guatemala</a>, <a href="https://publications.waset.org/abstracts/search?q=Josefina%20Barrera"> Josefina Barrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large number of soils highly polluted with recalcitrant hydrocarbons and the limitation of the current bioremediation methods continue being the drawback for an efficient recuperation of these under safe conditions. In this regard, soil washing by degradable surfactants is an alternative option knowing the capacity of surfactants to desorb oily organic compounds. The aim of this study was the establishment of the washing conditions of a soil polluted with diesel, using a nonionic surfactant. A soil polluted with diesel was used. This was collected near to a polluted railway station zone. The soil was dried at room temperature and sieved to a mesh size 10 for its physicochemical and biological characterization. Washing of the polluted soil was performed with surfactant solutions in a 1:5 ratio (5g of soil per 25 mL of the surfactant solution). This was carried out at 28±1 °C and 150 rpm for 72 hours. The factors tested were the Tween 80 surfactant concentration (1, 2, 5 and 10%) and the treatment time. Residual diesel concentration was determined every 24 h. The soil was of a sandy loam texture with a low concentration of organic matter (3.68%) and conductivity (0.016 dS.m- 1). The soil had a pH of 7.63 which was slightly alkaline and a Total Petroleum Hydrocarbon content (TPH) of 11,600 ± 1058.38 mg/kg. The high TPH content could explain the low microbial count of 1.1105 determined as UFC per gram of dried soil. Within the range of the surfactant concentration tested for washing the polluted soil under study, TPH removal increased proportionally with the surfactant concentration. 5080.8 ± 422.2 ppm (43.8 ± 3.64 %) was the maximal concentration of TPH removed after 72 h of contact with surfactant pollution at 10%. Despite the high percentage of hydrocarbons removed, it is assumed that a higher concentration of these could be removed if the washing process is extended or is carried out by stages. Soil washing through the use of surfactants as a desorbing agent was found to be a viable and effective technology for the rapid recovery of soils highly polluted with recalcitrant hydrocarbons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel" title="diesel">diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20washing" title=" soil washing"> soil washing</a>, <a href="https://publications.waset.org/abstracts/search?q=tween%2080" title=" tween 80"> tween 80</a> </p> <a href="https://publications.waset.org/abstracts/99376/removal-of-diesel-by-soil-washing-technologies-using-a-non-ionic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5141</span> Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidit%20Mohan">Vidit Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20P.%20Ramesh"> Ashwin P. Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Toshniwal"> Anirudh Toshniwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20surfactant%20alternate%20gas%20%28ASAG%29" title="alkali surfactant alternate gas (ASAG)">alkali surfactant alternate gas (ASAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20alternate%20gas%20%28SAG%29" title=" surfactant alternate gas (SAG)"> surfactant alternate gas (SAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20investigation" title=" laboratory investigation"> laboratory investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20process" title=" EOR process"> EOR process</a> </p> <a href="https://publications.waset.org/abstracts/21646/laboratory-investigation-of-alkali-surfactant-alternate-gas-asag-injection-a-novel-eor-process-for-a-light-oil-sandstone-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5140</span> Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghouas%20Halima">Ghouas Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Haddou%20Boumedienne"> Haddou Boumedienne</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Peal%20Cancelier"> Jean Peal Cancelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristophe%20Gourdon"> Cristophe Gourdon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ssaka%20Collines"> Ssaka Collines</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20point" title=" cloud point"> cloud point</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20ionic%20surfactant" title=" non ionic surfactant"> non ionic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=bezanyl%20green" title=" bezanyl green"> bezanyl green</a> </p> <a href="https://publications.waset.org/abstracts/156214/removal-of-an-acid-dye-from-water-using-cloud-point-extraction-and-investigation-of-surfactant-regeneration-by-ph-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5139</span> Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Joseph%20Gbadeyan">Oluwatoyin Joseph Gbadeyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarp%20Adali"> Sarp Adali</a>, <a href="https://publications.waset.org/abstracts/search?q=Bright%20%20Glen"> Bright Glen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Sithole"> Bruce Sithole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20lauryl%20surfactant" title="sodium lauryl surfactant">sodium lauryl surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties "> mechanical properties </a>, <a href="https://publications.waset.org/abstracts/search?q=achatina%20fulica%20snail%20shel" title=" achatina fulica snail shel"> achatina fulica snail shel</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate%20nanopowder" title=" calcium carbonate nanopowder"> calcium carbonate nanopowder</a> </p> <a href="https://publications.waset.org/abstracts/117128/optimization-of-sodium-lauryl-surfactant-concentration-for-nanoparticle-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5138</span> Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Asgari">M. Asgari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Heydari"> N. Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shojai%20Kaveh"> N. Shojai Kaveh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Ashrafizadeh"> S. N. Ashrafizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=imbibition" title=" imbibition"> imbibition</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/85421/comparative-studies-on-spontaneous-imbibition-of-surfactantalkaline-solution-in-carbonate-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5137</span> Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Chih%20Kuo">Yung-Chih Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Hsin%20Wang"> I-Hsin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catanionic%20solid%20lipid%20nanoparticle" title="catanionic solid lipid nanoparticle">catanionic solid lipid nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=etoposide" title=" etoposide"> etoposide</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title=" glioblastoma multiforme"> glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=lactoferrin" title=" lactoferrin"> lactoferrin</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20germ%20agglutinin" title=" wheat germ agglutinin"> wheat germ agglutinin</a> </p> <a href="https://publications.waset.org/abstracts/69376/effect-of-wheat-germ-agglutinin-and-lactoferrin-grafted-catanionic-solid-lipid-nanoparticles-on-targeting-delivery-of-etoposide-to-glioblastoma-multiforme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5136</span> Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riddhiman%20Sherlekar">Riddhiman Sherlekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umang%20Paladia"> Umang Paladia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachit%20Desai"> Rachit Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yash%20Patel"> Yash Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-surfactant" title="co-surfactant">co-surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-emulsion" title=" micro-emulsion"> micro-emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20flooding" title=" surfactant flooding"> surfactant flooding</a> </p> <a href="https://publications.waset.org/abstracts/53201/detailed-analysis-of-mechanism-of-crude-oil-and-surfactant-emulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5135</span> Loss in Efficacy of Viscoelastic Ionic Liquid Surfactants under High Salinity during Surfactant Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20K.%20Nandwani">Shilpa K. Nandwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20Chakraborty"> Mousumi Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Gupta"> Smita Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When selecting surfactants for surfactant flooding during enhanced oil recovery, the most important criteria is that the surfactant system should reduce the interfacial tension between water and oil to ultralow values. In the present study, a mixture of ionic liquid surfactant and commercially available binding agent sodium tosylate has been used as a surfactant mixture. Presence of wormlike micelles indicates the possibility of achieving ultralow interfacial tension. Surface tension measurements of the mixed surfactant system have been studied. The emulsion size distribution of the mixed surfactant system at varying salinities has been studied. It has been found that at high salinities the viscoelastic surfactant system loses their efficacy and degenerate. Hence the given system may find application in low salinity reservoirs, providing good mobility to the flood during tertiary oil recovery process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquis" title="ionic liquis">ionic liquis</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a>, <a href="https://publications.waset.org/abstracts/search?q=Na-tosylate" title=" Na-tosylate"> Na-tosylate</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20surfactants" title=" viscoelastic surfactants"> viscoelastic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/88938/loss-in-efficacy-of-viscoelastic-ionic-liquid-surfactants-under-high-salinity-during-surfactant-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5134</span> Evaluation of Mango Seed Extract as Surfactant for Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzaddin%20Rashid%20Hussein">Ezzaddin Rashid Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability of mango seed extract (MSE) using a surfactant to improve oil recovery (EOR). This research examines MSE-based surfactant solutions and compares them to more traditional synthetic surfactants in terms of phase behaviour and interfacial tension. The phase behaviour and interfacial tension of five samples of surfactant solutions with different concentrations were measured. Samples 1 (2.0 g) and 1 (1.5 g) performed closest to the critical micelle concentration (CMC) and displayed the greatest decrease in surface tension, according to the results. In addition, the measurement of IFT, contact angle, and pH, as well as comparison with prior research, highlights the potential environmental benefits of MSMEs as an eco-friendly alternative. It is recommended that additional research be conducted to assess their stability and behaviour under reservoir conditions. Overall, mango seed extract demonstrates promise as a natural and sustainable surfactant for enhancing oil recovery, paving the way for eco-friendly enhanced oil recovery techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title="oil and gas">oil and gas</a>, <a href="https://publications.waset.org/abstracts/search?q=mango%20seed%20powder" title=" mango seed powder"> mango seed powder</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension%20IFT" title=" interfacial tension IFT"> interfacial tension IFT</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts%20angle" title=" contacts angle"> contacts angle</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20behavior" title=" phase behavior"> phase behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/170803/evaluation-of-mango-seed-extract-as-surfactant-for-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5133</span> Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Gerayeli">Amir Gerayeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Moradi"> Babak Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline-surfactant-polymer" title="alkaline-surfactant-polymer">alkaline-surfactant-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20surface%20tension" title=" reduced surface tension"> reduced surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20enhanced%20oil%20recovery" title=" tertiary enhanced oil recovery"> tertiary enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability%20change" title=" wettability change"> wettability change</a> </p> <a href="https://publications.waset.org/abstracts/81297/improving-enhanced-oil-recovery-by-using-alkaline-surfactant-polymer-injection-and-nanotechnology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5132</span> Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Deyab">M. A. Deyab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sands%20slurry" title=" oil sands slurry"> oil sands slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title=" erosion-corrosion"> erosion-corrosion</a> </p> <a href="https://publications.waset.org/abstracts/83418/inhibiting-effects-of-zwitterionic-surfactant-on-the-erosion-corrosion-of-api-x52-steel-in-oil-sands-slurry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5131</span> A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Atefi">Ehsan Atefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Grigware"> Michael Grigware</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=respiratory%20failure" title="respiratory failure">respiratory failure</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20deficiency" title=" surfactant deficiency"> surfactant deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20replacement" title=" surfactant replacement"> surfactant replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/157123/a-data-driven-platform-for-studying-the-liquid-plug-splitting-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5130</span> Combination Approach Using Experiments and Optimal Experimental Design to Optimize Chemical Concentration in Alkali-Surfactant-Polymer Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Tai%20Pham">H. Tai Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Bae%20Wisup"> Bae Wisup</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungmin%20Jung"> Sungmin Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Efriza"> Ivan Efriza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Widyaningsih"> Ratna Widyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Un%20Min"> Byung Un Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The middle-phase-microemulsion in Alkaline-Surfactant-Polymer (ASP) solution and oil play important roles in the success of an ASP flooding process. The high quality microemulsion phase has ultralow interfacial tensions and it can increase oil recovery. The research used optimal experimental design and response-surface-methodology to predict the optimum concentration of chemicals in ASP solution for maximum microemulsion quality. Secondly, this optimal ASP formulation was implemented in core flooding test to investigate the effective injection volume. As the results, the optimum concentration of surfactants in the ASP solution is 0.57 wt.% and the highest effective injection volume is 19.33% pore volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimize" title="optimize">optimize</a>, <a href="https://publications.waset.org/abstracts/search?q=ASP" title=" ASP"> ASP</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization%20ratio" title=" solubilization ratio"> solubilization ratio</a> </p> <a href="https://publications.waset.org/abstracts/55285/combination-approach-using-experiments-and-optimal-experimental-design-to-optimize-chemical-concentration-in-alkali-surfactant-polymer-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5129</span> Extraction of Aromatic Hydrocarbons from Lub Oil Using Sursurfactant as Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izza%20Hidaya">Izza Hidaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Korichi%20Mourad"> Korichi Mourad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent extraction is an affective method for reduction of aromatic content of lube oil. Frequently with phenol, furfural, NMP(N-methyl pyrrolidone). The solvent power and selectivity can be further increased by using surfactant as additive which facilitate phase separation and to increase raffinate yield. The aromatics in lube oil were extracted at different temperatures (ranging from 333.15 to 343.15K) and different concentration of surfactant (ranging from 0.01 to 0.1% wt).The extraction temperature and the amount of sulfate lauryl éther de sodium In phenoll were investigated systematically in order to determine their optimum values. The amounts of aromatic, paraffinic and naphthenic compounds were determined using ASTM standards by measuring refractive index (RI), viscosity, molecular weight and sulfur content. It was found that using 0,01%wt. surfactant at 343.15K yields the optimum extraction conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricating%20oil" title=" lubricating oil"> lubricating oil</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatics" title=" aromatics"> aromatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/19800/extraction-of-aromatic-hydrocarbons-from-lub-oil-using-sursurfactant-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5128</span> Effect of Surfactant Concentration on Dissolution of Hydrodynamically Trapped Sparingly Soluble Oil Micro Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Mustafa">Adil Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Erten"> Ahmet Erten</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kiraz"> Alper Kiraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Melikhan%20Tanyeri"> Melikhan Tanyeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Work presented here is based on a novel experimental technique used to hydrodynamically trap oil microdroplets inside a microfluidic chip at the junction of microchannels known as stagnation point. Hydrodynamic trapping has been recently used to trap and manipulate a number of particles starting from microbeads to DNA and single cells. Benzyl Benzoate (BB) is used as droplet material. The microdroplets are trapped individually at stagnation point and their dissolution was observed. Experiments are performed for two concentrations (10mM or 10µM) of AOT surfactant (Docusate Sodium Salt) and two flow rates for each case. Moreover, experimental data is compared with Zhang-Yang-Mao (ZYM) model which studies dissolution of liquid microdroplets in the presence of a host fluid experiencing extensional creeping flow. Industrial processes like polymer blending systems in which heat or mass transport occurs experience extensional flow and an insight into these phenomena is of significant importance to many industrial processes. The experimental technique exploited here gives an insight into the dissolution of liquid microdroplets under extensional flow regime. The comparison of our experimental results with ZYM model reveals that dissolution of microdroplets at lower surfactant concentration (10µM) fits the ZYM model at saturation concentration (Cs) value reported in literature (Cs = 15×10⁻³Kg\m³) while for higher surfactant concentration (10mM) which is also above the critical micelle concentration (CMC) of surfactant (5mM) the data fits ZYM model at (Cs = 45×10⁻³Kg\m³) which is 3X times the value reported in literature. The difference in Cs value from the literature shows enhancement in dissolution rate of sparingly soluble BB microdroplets at surfactant concentrations higher than CMC. Enhancement in the dissolution of sparingly soluble materials is of great importance in pharmaceutical industry. Enhancement in the dissolution of sparingly soluble drugs is a key research area for drug design industry. The experimental method is also advantageous because it is robust and has no mechanical contact with droplets under study are freely suspended in the fluid as compared existing methods used for testing dissolution of drugs. The experiments also give an insight into CMC measurement for surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extensional%20flow" title="extensional flow">extensional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20trapping" title=" hydrodynamic trapping"> hydrodynamic trapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang-Yang-Mao" title=" Zhang-Yang-Mao"> Zhang-Yang-Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a> </p> <a href="https://publications.waset.org/abstracts/57180/effect-of-surfactant-concentration-on-dissolution-of-hydrodynamically-trapped-sparingly-soluble-oil-micro-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5127</span> Effect of Ultrasound on the Hydrolysis of Soy Oil Catalyzed by 1,3-Specific Lipase Abstract </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Abd%20Awadallak">Jamal Abd Awadallak</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Olinek%20Reinehr"> Thiago Olinek Reinehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Raizer"> Eduardo Raizer</a>, <a href="https://publications.waset.org/abstracts/search?q=Deise%20Molinari"> Deise Molinari</a>, <a href="https://publications.waset.org/abstracts/search?q=Edson%20Antonio"> Edson Antonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20da%20Silva%20da%20Silva"> Camila da Silva da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrolysis of soy oil catalyzed by 1,3-specific enzyme (Lecitase Ultra) in a well-stirred bioreactor was studied. Two forms of applications of the ultrasound were evaluated aiming to increase reaction rates, wherein the use of probe ultrasound associated with the use of surfactant to pre-emulsify the substrate showed the best results. Two different reaction periods were found: the first where the ultrasound has great influence on reaction rates, and the second where ultrasound influence is minimal. Studies on the time of pre-emulsification, surfactant concentration and enzyme concentration showed that the initial rate of hydrolysis depends on the interfacial area between the oil phase and the aqueous phase containing the enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20enzyme" title="specific enzyme">specific enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrolysis" title=" Hydrolysis"> Hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lecitase%20ultra" title=" lecitase ultra"> lecitase ultra</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/20337/effect-of-ultrasound-on-the-hydrolysis-of-soy-oil-catalyzed-by-13-specific-lipase-abstract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5126</span> Spectrofluorometric Studies on the Interactions of Bovine Serum Albumin with Dimeric Cationic Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srishti%20Sinha">Srishti Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Tikariha"> Deepti Tikariha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kallol%20K.%20Ghosh"> Kallol K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades protein-surfactant interactions have been a subject of extensive studies as they are of great importance in wide variety of industries, biological, pharmaceutical and cosmetic systems. Protein-surfactant interactions have been explored the effect of surfactants on structure of protein in the form of solubilization and denaturing or renaturing of protein. Globular proteins are frequently used as functional ingredients in healthcare and pharmaceutical products, due to their ability to catalyze biochemical reactions, to be adsorbed on the surface of some substance and to bind other moieties and form molecular aggregates. One of the most widely used globular protein is bovine serum albumin (BSA), since it has a well-known primary structure and been associated with the binding of many different categories of molecules, such as dyes, drugs and toxic chemicals. Protein−surfactant interactions are usually dependent on the surfactant features. Most of the research has been focused on single-chain surfactants. More recently, the binding between proteins and dimeric surfactants has been discussed. In present study interactions of one dimeric surfactant Butanediyl-1,4-bis (dimethylhexadecylammonium bromide) (16-4-16, 2Br-) and the corresponding single-chain surfactant cetyl trimethylammonium bromide (CTAB) with bovine serum albumin (BSA) have been investigated by surface tension and spectrofluoremetric methods. It has been found that the bindings of all gemini surfactant to BSA were cooperatively driven by electrostatic and hydrophobic interactions. The gemini surfactant carrying more charges and hydrophobic tails, showed stronger interactions with BSA than the single-chain surfactant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20serum%20albumin" title="bovine serum albumin">bovine serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactants" title=" gemini surfactants"> gemini surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interactions" title=" hydrophobic interactions"> hydrophobic interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20surfactant%20interaction" title=" protein surfactant interaction"> protein surfactant interaction</a> </p> <a href="https://publications.waset.org/abstracts/35047/spectrofluorometric-studies-on-the-interactions-of-bovine-serum-albumin-with-dimeric-cationic-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5125</span> Bio-Surfactant Production and Its Application in Microbial EOR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rajesh%20Kanna">A. Rajesh Kanna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Suresh%20Kumar"> G. Suresh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathyanaryana%20N.%20Gummadi"> Sathyanaryana N. Gummadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-surfactant" title="bio-surfactant">bio-surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20column" title=" sand column"> sand column</a> </p> <a href="https://publications.waset.org/abstracts/15115/bio-surfactant-production-and-its-application-in-microbial-eor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5124</span> The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Ahmad">Ishaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomin%20Li"> Zhaomin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chengwen"> Liu Chengwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Yan%20Li"> Song Yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihan%20Gu"> Zihan Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Shaopeng"> Li Shaopeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20husk%20ash%20nanoparticle" title="black rice husk ash nanoparticle">black rice husk ash nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20life" title=" foam life"> foam life</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20scanning" title=" foam scanning"> foam scanning</a> </p> <a href="https://publications.waset.org/abstracts/159872/the-impact-of-black-rice-ash-nanoparticles-on-foam-stability-through-foam-scanning-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5123</span> Effect of Non-Ionic Surfactants on in vitro Release of Ketorolactromethamine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Aggarwal">Ajay Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Saroha"> Kamal Saroha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Nanda"> Sanju Nanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Niosomes or non-ionic surfactant vesicles are microscopic lamellar structures formed on admixture of non-ionic surfactant of the alkyl or dialkyl polyglycerol ether class and cholesterol with subsequent hydration in aqueous media. They are vesicular systems similar to liposomes that can be used as carriers of amphiphilic and lipophilic drugs. Entrapment efficiency was found to be higher in case of niosome prepared with span60 than niosome prepared with tween. The amount of release was found to be in order of Span20>Tween60>Tween20>Span60. As the concentration of surfactant is increased in vitro release was increased due to high entrapment. The stability study of optimized batch revealed that particle size was increased after 3months on increasing the temperature. On the other hand entrapment efficiency was decreased on increasing the temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=niosomes" title="niosomes">niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=vesicles" title=" vesicles"> vesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=span" title=" span"> span</a>, <a href="https://publications.waset.org/abstracts/search?q=tween" title=" tween"> tween</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20release" title=" in vitro release"> in vitro release</a> </p> <a href="https://publications.waset.org/abstracts/41358/effect-of-non-ionic-surfactants-on-in-vitro-release-of-ketorolactromethamine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5122</span> Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Ahmad">Ishaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomin%20Li"> Zhaomin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chengwen"> Liu Chengwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20yan%20Li"> Song yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Lei"> Wang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhoujie%20Wang"> Zhoujie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Lei"> Zheng Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20husk%20ash%20nanoparticle" title="black rice husk ash nanoparticle">black rice husk ash nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82%20foam" title=" N₂ foam"> N₂ foam</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20pack" title=" sand pack"> sand pack</a> </p> <a href="https://publications.waset.org/abstracts/156241/improvisation-of-n2-foam-with-black-rice-husk-ash-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5121</span> Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonal%20Gupta">Sonal Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakhi%20Bansal"> Rakhi Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Ali"> Javed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Reema%20Gabrani"> Reema Gabrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Dang"> Shweta Dang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title="cell viability">cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=microemulsion" title=" microemulsion"> microemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT" title=" MTT"> MTT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoemulsion" title=" nanoemulsion"> nanoemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a> </p> <a href="https://publications.waset.org/abstracts/14115/effect-of-surfactant-level-of-microemulsions-and-nanoemulsions-on-cell-viability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5120</span> Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpa%20Petchsomrit">Arpa Petchsomrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Namfa%20Sermkaew"> Namfa Sermkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruedeekorn%20Wiwattanapatapee"> Ruedeekorn Wiwattanapatapee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20drug%20delivery" title=" floating drug delivery"> floating drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20entrapped%20bead" title=" oil entrapped bead"> oil entrapped bead</a> </p> <a href="https://publications.waset.org/abstracts/3633/effect-of-alginate-and-surfactant-on-physical-properties-of-oil-entrapped-alginate-bead-formulation-of-curcumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5119</span> Adsorption Kinetics and Equilibria at an Air-Liquid Interface of Biosurfactant and Synthetic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagheer%20A.%20Onaizi">Sagheer A. Onaizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of anionic biosurfactant (surfactin) and anionic synthetic surfactant (sodium dodecylbenzenesulphonate, abbreviated as SDOBS) from phosphate buffer containing high concentrations of co- and counter-ions to the air-buffer interface has been investigated. The self-assembly of the two surfactants at the interface has been monitored through dynamic surface tension measurements. The equilibrium surface pressure-surfactant concentration data in the premicellar region were regressed using Gibbs adsorption equation. The predicted surface saturations for SDOBS and surfactin are and, respectively. The occupied area per an SDOBS molecule at the interface saturation condition is while that occupied by a surfactin molecule is. The surface saturations reported in this work for both surfactants are in a very good agreement with those obtained using expensive techniques such as neutron reflectometry, suggesting that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=air-liquid%20interface" title=" air-liquid interface"> air-liquid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a> </p> <a href="https://publications.waset.org/abstracts/17087/adsorption-kinetics-and-equilibria-at-an-air-liquid-interface-of-biosurfactant-and-synthetic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5118</span> Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Bouguerra">Nizar Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khabou"> Ahmed Khabou</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Poncet"> Sébastien Poncet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Elkoun"> Saïd Elkoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work focuses on the preparation and the stabilization of Al<sub>2</sub>O<sub>3</sub>-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al<sub>2</sub>O<sub>3</sub>-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20hot%20wire" title=" transient hot wire"> transient hot wire</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a> </p> <a href="https://publications.waset.org/abstracts/59675/thermal-conductivity-of-al2o3water-based-nanofluids-revisiting-the-influences-of-ph-and-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5117</span> Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen">B. Guezzen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed"> B. Medjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA<sup>+</sup>) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 &deg;C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organo-bentonite" title=" organo-bentonite"> organo-bentonite</a> </p> <a href="https://publications.waset.org/abstracts/74711/sorption-of-congo-red-from-aqueous-solution-by-surfactant-modified-bentonite-kinetic-and-factorial-design-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5116</span> Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Mendoza%20Ram%C3%ADrez">C. Mendoza Ramírez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gamb%C3%BAs%20Ordaz"> M. Gambús Ordaz</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mercado%20Ojeda."> R. Mercado Ojeda.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%E2%80%93nonionic%20surfactants" title="anionic–nonionic surfactants">anionic–nonionic surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20rock" title=" clay rock"> clay rock</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=4-region%20isotherm%20model" title=" 4-region isotherm model"> 4-region isotherm model</a>, <a href="https://publications.waset.org/abstracts/search?q=cation%20exchange%20capacity" title=" cation exchange capacity"> cation exchange capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a> </p> <a href="https://publications.waset.org/abstracts/172905/influence-of-the-adsorption-of-anionic-nonionic-surfactantssilica-nanoparticles-mixture-on-clay-rock-minerals-in-chemical-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=171">171</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=172">172</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactant%20concentration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10