CINXE.COM

Search results for: daylight

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: daylight</title> <meta name="description" content="Search results for: daylight"> <meta name="keywords" content="daylight"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="daylight" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="daylight"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 65</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: daylight</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Daylight Performance of a Single Unit in Distinct Arrangements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Tabassoom">Rifat Tabassoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently multistoried housing projects are accelerating in the capital of Bangladesh- Dhaka, to house its massive population. Insufficient background research leads to a building design trend where a single unit is designed and then multiplied all through the buildings. Therefore, although having identical designs, all the units cannot perform evenly considering daylight, which also alters their household activities. This paper aims to understand if a single unit can be an optimum solution regarding daylight for a selected housing project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a> </p> <a href="https://publications.waset.org/abstracts/150690/daylight-performance-of-a-single-unit-in-distinct-arrangements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Mayah">Eman Mayah</a>, <a href="https://publications.waset.org/abstracts/search?q=Raid%20Hanna"> Raid Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South fa&ccedil;ades. The study&rsquo;s approach presents an analysis of different fa&ccedil;ade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South fa&ccedil;ade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South fa&ccedil;ades, where orientation, obstructions and designed fa&ccedil;ade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North fa&ccedil;ade do not have a desirable quality of diffused northern light, due to the outside building&rsquo;s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight%20levels" title="daylight levels">daylight levels</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20building" title=" educational building"> educational building</a>, <a href="https://publications.waset.org/abstracts/search?q=Fa%C3%A7ade%20fenestration" title=" Façade fenestration"> Façade fenestration</a>, <a href="https://publications.waset.org/abstracts/search?q=overcast%20weather" title=" overcast weather"> overcast weather</a> </p> <a href="https://publications.waset.org/abstracts/108417/analyzing-facade-scenarios-and-daylight-levels-in-the-reid-building-a-reflective-case-study-on-the-designed-daylight-under-overcast-sky" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> A Comparative Assessment of Daylighting Metrics Assessing the Daylighting Performance of Three Shading Devices under Four Different Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewook%20Lee"> Jaewook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical louver system, and compare their performance behavior as the orientation of the window changes. The context is a classroom of a prototypical elementary school in South Korea. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientations changes. The UDI is the metric that leads to outcome most different than the other three metrics. Our conclusion is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the daylighting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title="daylight factor">daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20daylight%20illuminance" title=" hourly daylight illuminance"> hourly daylight illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20autonomy" title=" daylight autonomy"> daylight autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20daylight%20illuminance" title=" useful daylight illuminance"> useful daylight illuminance</a> </p> <a href="https://publications.waset.org/abstracts/70527/a-comparative-assessment-of-daylighting-metrics-assessing-the-daylighting-performance-of-three-shading-devices-under-four-different-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Optimizing the Window Geometry Using Fractals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Geetha%20Ramesh">K. Geetha Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramachandraiah"> A. Ramachandraiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting">daylighting</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title=" fractal geometry"> fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20window" title=" fractal window"> fractal window</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/64228/optimizing-the-window-geometry-using-fractals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> An Exploration of Lighting Quality on Sleep Quality of Children in Elementary Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristen%20%20Bub"> Kristen Bub</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewook%20Lee"> Jaewook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kate%20Kurry"> Kate Kurry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we explored the impact of light, particularly daylight on sleep time and quality of elementary school children. Sleep actigraphy was used to measure objectively sleep time and sleep efficiency. Our data show a good correlation between light levels and sleep. In some cases, differences of up to 36 minutes were found between students in low light levels and those in high light level classrooms. We recommend, therefore, that classroom design need to pay attention to the daily daylight exposures elementary school children are receiving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light" title="light">light</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight" title=" daylight"> daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=actigraphy" title=" actigraphy"> actigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20school" title=" elementary school"> elementary school</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/116236/an-exploration-of-lighting-quality-on-sleep-quality-of-children-in-elementary-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Mahdavinejad">Mohammadjavad Mahdavinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Yazdi"> Hadi Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m<sup>2</sup>(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations<span dir="RTL">.</span> In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=window" title=" window"> window</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a> </p> <a href="https://publications.waset.org/abstracts/77984/daylightophil-approach-towards-high-performance-architecture-for-hybrid-optimization-of-visual-comfort-and-daylight-factor-in-bsk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Measures for Daylight Quality and Classroom Design: Impacts on Visual Comfort and Performance in Hot Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Freewan">Ahmed A. Freewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research explored the quality of daylight and classroom visual environments and their impact on human performance and visual comfort in hot climates like Jordan. The research used multiple methods, including real experiments, simulation, focus groups and questionnaires. Therefore, seven different designs and visual environments have been implemented in south-facing classrooms with high WWR in recently constructed modern schools in Jordan. These visual environments have been created by applying various innovative shading systems in the seven classrooms to enable real interaction with the users of these spaces: students and teachers. The main aims of the research were to introduce distinct measures for daylight quality and to expand the scope of daylight studies in schools by connecting directly with students and teachers through focus groups or questionnaires. The main findings of this research showed the importance of studying uniformity not only across the entire classroom but also in different zones in relation to the windows and the front wall where the whiteboard is located, and the teacher stands. Moreover, it has been found that uniformity analysis in classrooms extends beyond just the horizontal plane, encompassing the relationship with the illuminance level on the front wall as well. Study the fenestration design impact on critical function requirements in addition to studying the dynamic of daylight over time, especially glare, uniformity and veiling reflection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity" title=" uniformity"> uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=WWR" title=" WWR"> WWR</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20shading%20systems" title=" innovative shading systems"> innovative shading systems</a> </p> <a href="https://publications.waset.org/abstracts/188988/measures-for-daylight-quality-and-classroom-design-impacts-on-visual-comfort-and-performance-in-hot-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Museums: The Roles of Lighting in Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20S.%20Oliveira">Fernanda S. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=museums" title=" museums"> museums</a>, <a href="https://publications.waset.org/abstracts/search?q=luminance" title=" luminance"> luminance</a>, <a href="https://publications.waset.org/abstracts/search?q=visitor" title=" visitor "> visitor </a> </p> <a href="https://publications.waset.org/abstracts/15202/museums-the-roles-of-lighting-in-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Matour">S. Matour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavinejad"> M. Mahdavinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fayaz"> R. Fayaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehran%20daylight%20availability" title="Tehran daylight availability">Tehran daylight availability</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20illuminance" title=" horizontal illuminance"> horizontal illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20illuminance" title=" vertical illuminance"> vertical illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuse%20illuminance" title=" diffuse illuminance"> diffuse illuminance</a> </p> <a href="https://publications.waset.org/abstracts/73872/horizontal-and-vertical-illuminance-correlations-in-a-case-study-for-shaded-south-facing-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zehra%20Aybike%20K%C4%B1l%C4%B1%C3%A7">Zehra Aybike Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpin%20K%C3%B6knel%20Yener"> Alpin Köknel Yener</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting ">daylighting </a>, <a href="https://publications.waset.org/abstracts/search?q=glazing%20type" title=" glazing type"> glazing type</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting%20energy%20efficiency" title=" lighting energy efficiency"> lighting energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20control%20strategy" title=" solar control strategy"> solar control strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort"> visual comfort</a> </p> <a href="https://publications.waset.org/abstracts/137618/an-approach-to-determine-proper-daylighting-design-solution-considering-visual-comfort-and-lighting-energy-efficiency-in-high-rise-residential-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Deldarabdolmaleki">Fatemeh Deldarabdolmaleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Fakri%20Zaky%20Bin%20Ja%27afar"> Mohamad Fakri Zaky Bin Ja&#039;afar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting">daylighting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20simulation" title=" energy simulation"> energy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20environment" title=" office environment"> office environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Venetian%20blind" title=" Venetian blind"> Venetian blind</a> </p> <a href="https://publications.waset.org/abstracts/63214/evaluating-daylight-performance-in-an-office-environment-in-malaysia-using-venetian-blind-system-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Experiencing Daylight in Architectural Spaces: A Case Study of Public Buildings in the Context of Karachi, Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safia%20Asif">Safia Asif</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadia%20Bano"> Saadia Bano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a world with rapidly depleting resources, using artificial lighting during daytime is an act of human ignorance. Imitated light is the major source of energy consumption in public buildings. Despite, the fact that substantial working hours of these buildings usually persist in natural daylight time; there is a trend of isolated, un-fenestrated and a-contextual interiors majorly dependent on active energy sources. On the contrary, if direct and un-controlled sunlight is allowed inside the building, it will create visual and thermal discomfort. Controlled daylighting with appropriate design mechanisms is one of the important aspects of achieving thermal and visual comfort. The natural sunlight can be utilized intelligently with the help of architectural thermal controlling mechanisms to achieve a healthy and productive environment. This paper is an attempt to investigate and analyze the importance of daylighting with reference to energy efficiency and thermal comfort. For this purpose, three public buildings including two educational institutions and one general post office are selected, as case-studies in the context of Karachi, Pakistan. Various parameters of visual and thermal comfort are analyzed which includes orientation, ceiling heights, overall building profile along with daylight controlling mechanisms in terms of penetration, distribution, protection, and control. In the later part of the research, a questionnaire survey is also conducted to evaluate the user experience in terms of adequate daylighting and thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylight" title="daylight">daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20buildings" title=" public buildings"> public buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20and%20thermal%20comfort" title=" visual and thermal comfort"> visual and thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/89360/experiencing-daylight-in-architectural-spaces-a-case-study-of-public-buildings-in-the-context-of-karachi-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Deriving Framework for Slum Rehabilitation through Environmental Perspective: Case of Mumbai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Bhosale">Ashwini Bhosale</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Patil"> Yogesh Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban areas are extremely complicated environmental settings, where health and well-being of an individual and population are governed by a large number of bio-physical, socio-economical, and inclusive aspects. Although poverty and slums are the prime issues under UN-HABITAT agenda of environmental sustainability, slums, the inevitable part of urban environment, have not accounted for inclusive city planning. Developing nations, where about 60 % of world slum population resides, are increasingly under pressure to uplift the urban poor, particularly slum dwellers. From a point of advantage, these new slum redevelopment projects have succeeded in providing legitimized and more permanent and stable shelter for the low income people, as well as individualized sanitation and water supply. However, they unfortunately follow the “one type fits all" approach and exhibit no response to the climatic design needs on Mumbai. The thesis focuses on the study of environmental perspectives in the context of Daylight, natural ventilation and social aspects in the design process of Slum-Rehabilitation schemes (SRS) – case of Mumbai. It attempts to investigate into Indian approaches about SRS and concludes upon strategies to be incorporated in SRS to improve the overall SRS environment. The main objectives of this work have been to identify and study the spatial configuration and possibilities of daylight and natural ventilation in Slum Rehabilitated buildings. The performance of the proposed method was evaluated by comparison with the daylight luminance simulated by lighting software, namely ECOTECT, and with measurements under real skies whereas for the ventilation study purpose, software named FLOW DESIGN was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20environment" title="urban environment">urban environment</a>, <a href="https://publications.waset.org/abstracts/search?q=slum-rehabilitation" title=" slum-rehabilitation"> slum-rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight" title=" daylight"> daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=natural-ventilation" title=" natural-ventilation"> natural-ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20consequences" title=" architectural consequences"> architectural consequences</a> </p> <a href="https://publications.waset.org/abstracts/58345/deriving-framework-for-slum-rehabilitation-through-environmental-perspective-case-of-mumbai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Current Medical and Natural Synchronization Methods in Small Ruminants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akoz">Mehmet Akoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kul"> Mustafa Kul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ewes and goats are seasonally polyestrus animals. Their reproductive activities are associated with the reduction or extending of daylight. Melatonin releasing from pineal gland regulates the sexual activities depending on daylight. In recent years, number of ewes decreased in our country. This situation dispatched to developing of some methods to increase productivity. Small ruminants can be synchronized with the natural and medical methods. known methods from natural light set with ram and goat participation. The most important natural methods of male influence, daylight is regulated and feed. On the other hand, progestagens, PGF2α, melatonin, and gonadotropins are commonly used for the purpose of estrus synchranization. But it is not effective PGF2α anestrous season The short-term and long-term progesterone treatment was effective to synchronize estrus in small ruminats during both breeding and anestrus seasons. Alternative choices of progesterone/progestagen have been controlled internal drug release (CIDR) devices, supplying natural progesterone, norgestomet implants, and orally active melengestrol acetate Melatonin anestrous season and should be applied during the transition period, but the season can be synchronized. Estrus synchronisation shortens anestrus season, decreases labor for mating/insemination and estrus pursuit, and induces multiple pregnancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ewes" title="ewes">ewes</a>, <a href="https://publications.waset.org/abstracts/search?q=goat" title=" goat"> goat</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=progestagen" title=" progestagen"> progestagen</a>, <a href="https://publications.waset.org/abstracts/search?q=PGF2%CE%B1" title=" PGF2α"> PGF2α</a> </p> <a href="https://publications.waset.org/abstracts/47893/current-medical-and-natural-synchronization-methods-in-small-ruminants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Urban Block Design&#039;s Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawar%20Salih">Kawar Salih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blocke%20orienation" title="blocke orienation">blocke orienation</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20consumption" title=" building energy consumption"> building energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20block%20design" title=" urban block design"> urban block design</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20regions" title=" semi-arid regions"> semi-arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=surfacet-to-volume%20ratio" title=" surfacet-to-volume ratio"> surfacet-to-volume ratio</a> </p> <a href="https://publications.waset.org/abstracts/71187/urban-block-designs-impact-on-the-indoor-daylight-quality-heating-and-cooling-loads-of-buildings-in-the-semi-arid-regions-duhok-city-in-kurdistan-region-iraq-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Deldarabdolmaleki">Fatemeh Deldarabdolmaleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Fakri%20Zaky%20Bin%20Ja%27afar"> Mohamad Fakri Zaky Bin Ja&#039;afar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting">daylighting</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20environment" title=" office environment"> office environment</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20simulation" title=" energy simulation"> energy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=venetian%20blind" title=" venetian blind"> venetian blind</a> </p> <a href="https://publications.waset.org/abstracts/67236/evaluating-daylight-performance-in-an-office-environment-in-malaysia-using-venetian-blind-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Comparison of Illuminance Levels in Old Omani and Portuguese Forts in Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatouk%20Khoukhi">Maatouk Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the reduction of the energy consumed by buildings to achieve mainly the thermal comfort for the occupants represent the main concern for architects and building designers. The common and traditional solution to achieve this target is the design of a highly insulated envelope and reduce the opening and the transparent elements such windows. However, this will lead to the artificial lighting system to consume more energy to compensate the lack of natural lighting coming through the glazed parts of the building envelope. Therefore, a good balance between sufficient daylight and control thermal heat through the building envelope should be considered for energy saving purpose. To achieve a better indoor environment the windows size and spacing including the interior finishing and the location of the partition must be assessed accurately. Daylighting is the controlled admission of natural light into space through windows and transparent elements of the building envelope which helps create a visually stimulating and productive environment for building occupants. The main concern is not to provide enough daylight to an occupied space, but how to achieve this without any undesirable side effect. Indeed, the glare is a major problem in glazed façade buildings, and this could be reduced by using tinted windows. The main target of this research is to investigate the daylight adequacy of functional needs in old Omani Forts and how they have been designed and built to avoid glare and overheating with the appropriate window-to-floor ratio. Because more windows do not automatically result in more daylighting but that is natural light has been controlled and distributed properly throughout the space. Spaces from different Omani and Portuguese Forts under the same climate conditions are considered in order to compare the daylight illuminance levels and examine the similarities and differences in visual attributes between them. The result of this study indicates that lighting preference is not universal and people from different geographical locations are adapted to certain illuminance levels. Therefore, the standards could not be generalized for the entire world. This would be useful to practitioners who are designing to effectively address the diversity of user’s lighting levels preferences in our globally connected society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=day%20lighting" title="day lighting">day lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=forts" title=" forts"> forts</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/87146/comparison-of-illuminance-levels-in-old-omani-and-portuguese-forts-in-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sudan">Madhu Sudan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as &ldquo;SODHA BERS COMPLEX (SBC)&rdquo; at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clear%20sky" title="clear sky">clear sky</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight%20factor" title=" daylight factor"> daylight factor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20window" title=" wall window"> wall window</a> </p> <a href="https://publications.waset.org/abstracts/36764/effect-of-orientation-of-the-wall-window-on-energy-saving-under-clear-sky-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Soltani%20Dehnavi">Elham Soltani Dehnavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupant%20experience" title="occupant experience">occupant experience</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20buildings" title=" office buildings"> office buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20depth" title=" space depth"> space depth</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort"> visual comfort</a> </p> <a href="https://publications.waset.org/abstracts/98313/thermal-and-visual-comfort-assessment-in-office-buildings-in-relation-to-space-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Akhtar">Amina Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rory%20O%27Connor"> Rory O&#039;Connor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=major%20trauma" title="major trauma">major trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=paediatric%20trauma" title=" paediatric trauma"> paediatric trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20accidents" title=" road traffic accidents"> road traffic accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=diurnal%20pattern" title=" diurnal pattern"> diurnal pattern</a> </p> <a href="https://publications.waset.org/abstracts/150409/the-diurnal-and-seasonal-relationships-of-pedestrian-injuries-secondary-to-motor-vehicles-in-young-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Kupatadze">Nino Kupatadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Shorena%20Tskhadadze"> Shorena Tskhadadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzevinar%20Bedinashvili"> Mzevinar Bedinashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bionanocompositions" title=" bionanocompositions"> bionanocompositions</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilver" title=" nanosilver"> nanosilver</a> </p> <a href="https://publications.waset.org/abstracts/67409/nanosilver-containing-biodegradable-bionanocomposites-for-antimicrobial-application-design-preparation-and-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Almadan">Ali Almadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Krishnan"> Anoop Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajita%20Rattani"> Ajita Rattani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=body-worn%20cameras" title=" body-worn cameras"> body-worn cameras</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20identification" title=" person identification"> person identification</a> </p> <a href="https://publications.waset.org/abstracts/127551/face-recognition-using-body-worn-camera-dataset-and-baseline-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Enhancing Efficiency of Building through Translucent Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Athar">Humaira Athar</a>, <a href="https://publications.waset.org/abstracts/search?q=Brajeshwar%20Singh"> Brajeshwar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20transmission" title=" light transmission"> light transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20optical%20fibers" title=" plastic optical fibers"> plastic optical fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=translucent%20concrete" title=" translucent concrete"> translucent concrete</a> </p> <a href="https://publications.waset.org/abstracts/104636/enhancing-efficiency-of-building-through-translucent-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Development of an Interface between BIM-model and an AI-based Control System for Building Facades with Integrated PV Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moser%20Stephan">Moser Stephan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasser%20Gerald"> Lukasser Gerald</a>, <a href="https://publications.waset.org/abstracts/search?q=Weitlaner%20Robert"> Weitlaner Robert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban structures will be used more intensively in the future through redensification or new planned districts with high building densities. Especially, to achieve positive energy balances like requested for Positive Energy Districts (PED) the single use of roofs is not sufficient for dense urban areas. However, the increasing share of window significantly reduces the facade area available for use in PV generation. Through the use of PV technology at other building components, such as external venetian blinds, onsite generation can be maximized and standard functionalities of this product can be positively extended. While offering advantages in terms of infrastructure, sustainability in the use of resources and efficiency, these systems require an increased optimization in planning and control strategies of buildings. External venetian blinds with PV technology require an intelligent control concept to meet the required demands such as maximum power generation, glare prevention, high daylight autonomy, avoidance of summer overheating but also use of passive solar gains in wintertime. Today, geometric representation of outdoor spaces and at the building level, three-dimensional geometric information is available for planning with Building Information Modeling (BIM). In a research project, a web application which is called HELLA DECART was developed to provide this data structure to extract the data required for the simulation from the BIM models and to make it usable for the calculations and coupled simulations. The investigated object is uploaded as an IFC file to this web application and includes the object as well as the neighboring buildings and possible remote shading. This tool uses a ray tracing method to determine possible glare from solar reflections of a neighboring building as well as near and far shadows per window on the object. Subsequently, an annual estimate of the sunlight per window is calculated by taking weather data into account. This optimized daylight assessment per window provides the ability to calculate an estimation of the potential power generation at the integrated PV on the venetian blind but also for the daylight and solar entry. As a next step, these results of the calculations as well as all necessary parameters for the thermal simulation can be provided. The overall aim of this workflow is to advance the coordination between the BIM model and coupled building simulation with the resulting shading and daylighting system with the artificial lighting system and maximum power generation in a control system. In the research project Powershade, an AI based control concept for PV integrated façade elements with coupled simulation results is investigated. The developed automated workflow concept in this paper is tested by using an office living lab at the HELLA company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIPV" title="BIPV">BIPV</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title=" building simulation"> building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20control%20strategy" title=" optimized control strategy"> optimized control strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20tool" title=" planning tool"> planning tool</a> </p> <a href="https://publications.waset.org/abstracts/148436/development-of-an-interface-between-bim-model-and-an-ai-based-control-system-for-building-facades-with-integrated-pv-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> San Francisco Public Utilities Commission Headquarters &quot;The Greenest Urban Building in the United States&quot;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charu%20Sharma">Charu Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> San Francisco Public Utilities Commission’s Headquarters was listed in the 2013-American Institute of Architects Committee of the Environment (AIA COTE) Top Ten Green Projects. This 13-story, 277,000-square-foot building, housing more than 900 of the agency’s employees was completed in June 2012. It was designed to achieve LEED Platinum Certification and boasts a plethora of green features to significantly reduce the use of energy and water consumption, and provide a healthy office work environment with high interior air quality and natural daylight. Key sustainability features include on-site clean energy generation through renewable photovoltaic and wind sources providing $118 million in energy cost savings over 75 years; 45 percent daylight harvesting; and the consumption of 55 percent less energy and a 32 percent less electricity demand from the main power grid. It uses 60 percent less water usage than an average 13-story office building as most of that water will be recycled for non-potable uses at the site, running through a system of underground tanks and artificial wetlands that cleans and clarifies whatever is flushed down toilets or washed down drains. This is one of the first buildings in the nation with treatment of gray and black water. The building utilizes an innovative structural system with post tensioned cores that will provide the highest asset preservation for the building. In addition, the building uses a “green” concrete mixture that releases less carbon gases. As a public utility commission this building has set a good example for resource conservation-the building is expected to be cheaper to operate and maintain as time goes on and will have saved rate-payers $500 million in energy and water savings. Within the anticipated 100-year lifespan of the building, our ratepayers will save approximately $3.7 billion through the combination of rental savings, energy efficiencies, and asset ownership. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20conservation" title=" resource conservation"> resource conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=asset%20ownership" title=" asset ownership"> asset ownership</a>, <a href="https://publications.waset.org/abstracts/search?q=rental%20savings" title=" rental savings"> rental savings</a> </p> <a href="https://publications.waset.org/abstracts/17548/san-francisco-public-utilities-commission-headquarters-the-greenest-urban-building-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Sustainability with Health: A Daylighting Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boubekri">Mohamed Boubekri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daylight in general and sunlight in particular are vital to life on earth, and it is not difficult to believe that their absence fosters conditions that promote disease. Through photosynthesis and other processes, sunlight provides photochemical ingredients necessary for our lives. There are fundamental biological, hormonal, and physiological functions coordinated by cycles that are crucial to life for cells, plants, animals, and humans. Many plants and animals, including humans, develop abnormal behaviors when sunlight is absent because their diurnal cycle is disturbed. Building​ codes disregard this aspect of daylighting when promulgating windows for buildings. This paper discusses the health aspects of daylighting design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daylighting" title="daylighting">daylighting</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=disorders" title=" disorders"> disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rythm" title=" circadian rythm"> circadian rythm</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/17381/sustainability-with-health-a-daylighting-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Detection of Aflatoxin B1 Producing Aspergillus flavus Genes from Maize Feed Using Loop-Mediated Isothermal Amplification (LAMP) Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sontana%20Mimapan">Sontana Mimapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Phattarawadee%20Wattanasuntorn"> Phattarawadee Wattanasuntorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Phanom%20Saijit"> Phanom Saijit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin contamination in maize, one of several agriculture crops grown for livestock feeding, is still a problem throughout the world mainly under hot and humid weather conditions like Thailand. In this study Aspergillus flavus (A. Flavus), the key fungus for aflatoxin production especially aflatoxin B1 (AFB1), isolated from naturally infected maize were identified and characterized according to colony morphology and PCR using ITS, Beta-tubulin and calmodulin genes. The strains were analysed for the presence of four aflatoxigenic biosynthesis genes in relation to their capability to produce AFB1, Ver1, Omt1, Nor1, and aflR. Aflatoxin production was then confirmed using immunoaffinity column technique. A loop-mediated isothermal amplification (LAMP) was applied as an innovative technique for rapid detection of target nucleic acid. The reaction condition was optimized at 65C for 60 min. and calcein flurescent reagent was added before amplification. The LAMP results showed clear differences between positive and negative reactions in end point analysis under daylight and UV light by the naked eye. In daylight, the samples with AFB1 producing A. Flavus genes developed a yellow to green color, but those without the genes retained the orange color. When excited with UV light, the positive samples become visible by bright green fluorescence. LAMP reactions were positive after addition of purified target DNA until dilutions of 10⁻⁶. The reaction products were then confirmed and visualized with 1% agarose gel electrophoresis. In this regards, 50 maize samples were collected from dairy farms and tested for the presence of four aflatoxigenic biosynthesis genes using LAMP technique. The results were positive in 18 samples (36%) but negative in 32 samples (64%). All of the samples were rechecked by PCR and the results were the same as LAMP, indicating 100% specificity. Additionally, when compared with the immunoaffinity column-based aflatoxin analysis, there was a significant correlation between LAMP results and aflatoxin analysis (r= 0.83, P < 0.05) which suggested that positive maize samples were likely to be a high- risk feed. In conclusion, the LAMP developed in this study can provide a simple and rapid approach for detecting AFB1 producing A. Flavus genes from maize and appeared to be a promising tool for the prediction of potential aflatoxigenic risk in livestock feedings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus%20genes" title=" Aspergillus flavus genes"> Aspergillus flavus genes</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=loop-mediated%20isothermal%20amplification" title=" loop-mediated isothermal amplification"> loop-mediated isothermal amplification</a> </p> <a href="https://publications.waset.org/abstracts/59075/detection-of-aflatoxin-b1-producing-aspergillus-flavus-genes-from-maize-feed-using-loop-mediated-isothermal-amplification-lamp-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Obstacle Detection and Path Tracking Application for Disables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliya%20Ashraf">Aliya Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehreen%20Sirshar"> Mehreen Sirshar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Akhtar"> Fatima Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Farwa%20Kazmi"> Farwa Kazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawaria%20Wazir"> Jawaria Wazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visually%20impaired" title="visually impaired">visually impaired</a>, <a href="https://publications.waset.org/abstracts/search?q=ODAPTA" title=" ODAPTA"> ODAPTA</a>, <a href="https://publications.waset.org/abstracts/search?q=Region%20of%20Interest%20%28ROI%29" title=" Region of Interest (ROI)"> Region of Interest (ROI)</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20fatigue" title=" driver fatigue"> driver fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=expression%20recognition" title=" expression recognition"> expression recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=CCD%20camera" title=" CCD camera"> CCD camera</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/19807/obstacle-detection-and-path-tracking-application-for-disables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Solar Architecture of Low-Energy Buildings for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Brinks">P. Brinks</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kornadt"> O. Kornadt</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Oly"> R. Oly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly, energy-saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20architecture" title="solar architecture">solar architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=Passive%20Solar%20Building%20Design" title=" Passive Solar Building Design"> Passive Solar Building Design</a>, <a href="https://publications.waset.org/abstracts/search?q=glazing" title=" glazing"> glazing</a>, <a href="https://publications.waset.org/abstracts/search?q=Low-Energy%20Buildings" title=" Low-Energy Buildings"> Low-Energy Buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20buildings" title=" industrial buildings"> industrial buildings</a> </p> <a href="https://publications.waset.org/abstracts/10674/solar-architecture-of-low-energy-buildings-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Parhizkar">T. Parhizkar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jafarian"> H. Jafarian</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Aramoun"> F. Aramoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Saboohi"> Y. Saboohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motorized%20shades" title="motorized shades">motorized shades</a>, <a href="https://publications.waset.org/abstracts/search?q=daylight" title=" daylight"> daylight</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=shade%20control" title=" shade control"> shade control</a>, <a href="https://publications.waset.org/abstracts/search?q=hourly%20simulation" title=" hourly simulation"> hourly simulation</a> </p> <a href="https://publications.waset.org/abstracts/81507/hybrid-dynamic-approach-to-optimize-the-impact-of-shading-design-and-control-on-electrical-energy-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daylight&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daylight&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daylight&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10