CINXE.COM
Search results for: recombinant human bone morphogenetic protein
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recombinant human bone morphogenetic protein</title> <meta name="description" content="Search results for: recombinant human bone morphogenetic protein"> <meta name="keywords" content="recombinant human bone morphogenetic protein"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recombinant human bone morphogenetic protein" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recombinant human bone morphogenetic protein"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10929</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recombinant human bone morphogenetic protein</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10929</span> Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling-Ling%20E.">Ling-Ling E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Chen%20Liu"> Hong-Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Wang"> Dong-Sheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Su"> Fang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Wu"> Xia Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Ping%20Shi"> Zhan-Ping Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lv"> Yan Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Zhu%20Wang"> Jia-Zhu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxyapatite%2Fcollagen%2Fpoly%20%28L-lactide%29" title="nano-hydroxyapatite/collagen/poly (L-lactide)">nano-hydroxyapatite/collagen/poly (L-lactide)</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cell" title=" dental pulp stem cell"> dental pulp stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein" title=" recombinant human bone morphogenetic protein"> recombinant human bone morphogenetic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20bone" title=" alveolar bone"> alveolar bone</a> </p> <a href="https://publications.waset.org/abstracts/21179/reconstruction-of-alveolar-bone-defects-using-bone-morphogenetic-protein-2-mediated-rabbit-dental-pulp-stem-cells-seeded-on-nano-hydroxyapatitecollagenpolyl-lactide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10928</span> The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20Jiang">Austin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20M.%20Salmon"> Richard M. Salmon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20W.%20Morrell"> Nicholas W. Morrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li"> Wei Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20morphogenetic%20protein%2010%20%28BMP10%29" title="bone morphogenetic protein 10 (BMP10)">bone morphogenetic protein 10 (BMP10)</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cell" title=" endothelial cell"> endothelial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20transduction" title=" signal transduction"> signal transduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transforming%20growth%20factor%20beta%20%28TGF-B%29" title=" transforming growth factor beta (TGF-B)"> transforming growth factor beta (TGF-B)</a> </p> <a href="https://publications.waset.org/abstracts/46841/the-prodomain-bound-form-of-bone-morphogenetic-protein-10-is-biologically-active-on-endothelial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10927</span> Effects of Egg Yolk Peptide on the Retardation of Bone Growth Induced by Low-Calcium Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem">Kang-Hyun Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim"> Hye Kyung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eggs have long been an important contributor to the nutritional quality of the human, and recognized as a very valuable source of proteins for human nutrition. Egg yolk is composed of various important chemical substances for human health. Growth means not only the increase of body weight but also the elongation of height and the enlargement of each organ's anatomical and morphological size. A calcium shortage causes the growth retardation on the body growth. In this study, we examined the therapeutic effects of egg yolk peptide (EYP) on the retardation of the longitudinal bone growth induced by low-calcium diet (0.05%) in adolescent rats. Low calcium diets were administrated for 15 days. During the last five days, calcium and/or vitamin D and/or EYP were administrated. The body weights, longitudinal bone growth rates, the heights of growth plates, and bone morphogenetic protein (BMP)-2 and insulin-like growth factor (IGF)-1 expressions were measured using histochemical analysis. Low calcium diets caused the significant reduction in body weight gains and the longitudinal bone growth. The heights of growth plates and the expressions of BMP-2 and IGF-1 showed the impairment of body growth as well. Calcium and/or vitamin D administration could not significantly increase the longitudinal bone growth. However, calcium, vitamin D, and EYP administration significantly increased the bone growth, the growth plate height, and BMP-2 and IGF-1 expressions. These results suggest that EYP enhances the longitudinal bone growth in the calcium and/or vitamin D deficiency and it could be a promising agent for the treatment of children suffering from malnutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20yolk%20peptide" title="egg yolk peptide">egg yolk peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=low-calcium%20diet" title=" low-calcium diet"> low-calcium diet</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20bone%20growth" title=" longitudinal bone growth"> longitudinal bone growth</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenetic%20protein-2" title=" morphogenetic protein-2"> morphogenetic protein-2</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin-like%20growth%20factor-1" title=" insulin-like growth factor-1"> insulin-like growth factor-1</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20D" title=" vitamin D"> vitamin D</a> </p> <a href="https://publications.waset.org/abstracts/11287/effects-of-egg-yolk-peptide-on-the-retardation-of-bone-growth-induced-by-low-calcium-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10926</span> Production of Human BMP-7 with Recombinant E. coli and B. subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee">Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polypeptide representing the mature part of human BMP-7 was cloned and efficiently expressed in Escherichia coli and Bacillus subtilis, which had a clear band for hBMP-7, a homodimeric protein with an apparent molecular weight of 15.4 kDa. Recombinant E.coli produced 111 pg hBMP-7/mg of protein hBMP-7 through IPTG induction. Recombinant B. subtilis also produced 350 pg hBMP-7/ml of culture medium. The hBMP-7 was purified in 2 steps using an FPLC system with an ion exchange column and a gel filtration column. The hBMP-7 produced in this work also stimulated the alkaline phosphatase (ALP) activity in a dose-dependent manner, i.e. 2.5- and 8.9-fold at 100 and 300 ng hBMP-7/ml, respectively, and showed intact biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20subtilis" title="B. subtilis">B. subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hBMP-7" title=" hBMP-7"> hBMP-7</a> </p> <a href="https://publications.waset.org/abstracts/35799/production-of-human-bmp-7-with-recombinant-e-coli-and-b-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10925</span> Effect of Deer Antler Extract on Osteogenic Gene Expression and Longitudinal Bone Growth of Adolescent Male Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem">Kang-Hyun Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim"> Hye Kyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deer antler, traditionally used as a tonic and valuable drug in oriental medicine, has been considered to possess bone-strengthening activity. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study was performed to examine the effects of different parts of deer antler extract (DH) on osteogenic gene expressions in MG-63 cells and longitudinal bone growth in adolescent male rats. The expressions of osteogenic genes, collagen, alkaline phosphatase, osteocalcin, and osteopontin, were measured by quantitative real-time PCR. Longitudinal bone growth was measured in 3-week-old male Sprague-Dawley rats using fluorescence microscopy. To examine the effects on the growth plate metabolism, the total height of growth plate and bone morphogenetic protein-2 (BMP-2) were measured. Collagen and osteocalcin mRNA expressions were increased by all three parts of the DH treatment while osteopontin gene expression was not affected by any of the DH treatment. Alkaline phosphatase gene expression was increased by upper and mid part of DH while base part of DH fails to affect alkaline phosphatase gene expression. The upper and mid parts of the DH treatment enhanced longitudinal bone growth and total height of growth plate. The induction of BMP-2 protein expression in growth plate assessed by immunostaining was also promoted by upper and mid parts of the DH treatment. These results suggest that DH, especially upper and mid parts, stimulate osteogenic gene expressions and have the effect on bone growth in adolescent rats and might be used for the growth delayed adolescent and inherent growth failure patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20morphogenetic%20protein-2" title="bone morphogenetic protein-2">bone morphogenetic protein-2</a>, <a href="https://publications.waset.org/abstracts/search?q=deer%20antler" title=" deer antler"> deer antler</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20bone%20growth" title=" longitudinal bone growth"> longitudinal bone growth</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20genes" title=" osteogenic genes"> osteogenic genes</a> </p> <a href="https://publications.waset.org/abstracts/24281/effect-of-deer-antler-extract-on-osteogenic-gene-expression-and-longitudinal-bone-growth-of-adolescent-male-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10924</span> Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ane%20Escobar">Ane Escobar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Angelom%C3%A9"> Paula Angelomé</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Delcea"> Mihaela Delcea</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Grzelczak"> Marek Grzelczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Enrique%20Moya"> Sergio Enrique Moya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20morphogenetic%20protein-2" title=" bone morphogenetic protein-2"> bone morphogenetic protein-2</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=gentamicin" title=" gentamicin"> gentamicin</a>, <a href="https://publications.waset.org/abstracts/search?q=implants" title=" implants"> implants</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20titania%20films" title=" mesoporous titania films"> mesoporous titania films</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblasts" title=" osteoblasts"> osteoblasts</a> </p> <a href="https://publications.waset.org/abstracts/80998/mesoporous-titania-thin-films-for-gentamicin-delivery-and-bone-morphogenetic-protein-2-immobilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10923</span> Production of Recombinant VP2 Protein of Canine Parvovirus Type 2c Using Baculovirus Expression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Song">Jae Young Song</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Ohk%20Ouh"> In-Ohk Ouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyeon%20Park"> Seyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Sul%20Kang"> Byeong Sul Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Dong%20Cho"> Soo Dong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Canine parvovirus (CPV) is a major pathogen of diarrhea disease in dogs. CPV type 2 has three of antigenic variants such as 2a, 2b, and 2c. CPV constructs a small non-enveloped, icosahedral capsid that contains single-stranded DNA. It has capsids that two largely overlapping virion proteins (VP), VP1 (82 kDa), and VP2 (65 kDa). Baculoviruses are insect pathogens that regulate insect populations in nature and are being successfully used to control insect pests. The proteins produced in the baculovirus-expression system are used for instance for functional studies, vaccine preparations, or diagnostics. The vaccines produced by baculovirus-expression system showed elicitation of antibodies. The recombinant baculovirus infected SF9 cells showed broken shape. The recombinant VP2 proteins from cell pellet or supernatant were confirmed by western blotting. The result showed that the recombinant VP2 protein bands were appeared at 65 kDa molecular weight in both cell pellet and supernatant of infected SF9 cell. These results indicated that the recombinant baculovirus infected SF9 cell express the recombinant VP2 protein successfully. In addition, the expressed recombinant VP2 protein is secreted from cell to supernatant. The baculovirus expression system can be used to produce the VP2 protein of CPV 2c. In addition, the secretion property of the expression of VP2 protein may decrease the cost of production, because it can be skipped the cell breaking step. The produced VP2 protein could be used for vaccine and the agent of diagnostic tests. This study provides the foundation of the production of CPV 2c vaccine and the diagnostic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20parvovirus%202c" title=" canine parvovirus 2c"> canine parvovirus 2c</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/93353/production-of-recombinant-vp2-protein-of-canine-parvovirus-type-2c-using-baculovirus-expression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10922</span> Production of Recombinant VP2 Protein of Canine Parvovirus 2a Using Baculovirus Expression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Dong%20Cho">Soo Dong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Ohk%20Ouh"> In-Ohk Ouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Sul%20Kang"> Byeong Sul Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyeon%20Park"> Seyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Song"> Jae Young Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An VP2 gene from the current prevalent CPV (Canine Parvovirus) strain (new CPV-2a) in the Republic of Korea was expressed in a baculovirus expression system. Genomic DNA was extracted from the isolate strain CPV-2a. The recombinant baculovirus, containing the coding sequences of VP2 with the histidine tag at the N-terminus, were generated by using the Bac-to-Bac system. For production of the recombinant VP2 proteins, SF9 cells were transfection into 6 wells. Propagation of recombinant baculoviruses and expression of the VP2 protein were performed in the Sf9 cell line maintained. The proteins were detected to Western blot anlaysis. CPV-2a VP2 was detected by Western blotting the monoclonal antibodies recognized 6x His and the band had a molecular weight of 65 KDa. We demonstrated that recombinant CPV-2a VP2 expression in baculovirus. The recombinant CPV-2a VP2 may able to development of specific diagnostic test and vaccination of against CPV2. This study provides a foundation for application of CPV2 on the development of new CPV2 subunit vaccine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20parvovirus%202a" title=" canine parvovirus 2a"> canine parvovirus 2a</a>, <a href="https://publications.waset.org/abstracts/search?q=Dog" title=" Dog"> Dog</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/93351/production-of-recombinant-vp2-protein-of-canine-parvovirus-2a-using-baculovirus-expression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10921</span> The Role of Il-6-Mediated NS5ATP9 Expression in Autophagy of Liver Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongping%20Lu">Hongping Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelbinur%20%20Tursun"> Kelbinur Tursun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaru%20Li"> Yaru Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang"> Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunai%20Liu"> Shunai Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Han"> Ming Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To investigate whether NS5ATP9 is involved in IL-6 mediated autophagy and the relationship between IL-6 and NS5ATP9 in liver cancer cells. Methods: 1. Detect the mRNA and protein levels of Beclin 1 after HepG2 cells were treated with or without recombinant human IL-6 protein. 2. Measure and compare of the changes of autophagy-related genes with their respective control, after IL-6 was silenced or neutralized with monoclonal antibody against human IL-6. 3. HepG2 cells were incubated with 50 ng/ml of IL-6 in the presence or absence of PDTC. The expression of NS5ATP9 was analyzed by Western blot after 48 h. 4. After NS5ATP9-silenced HepG2 cells had been treated with 50 ng/ml recombinant IL-6 protein, we detected the Beclin 1 and LC3B (LC3Ⅱ/Ⅰ) expression. 5. HepG2 cells were transfected with pNS5ATP9, si-NS5ATP9, and their respective control. Total RNA was isolated from cells and analyzed for IL-6. 6. Silence or neutralization of IL-6 in HepG2 cells which has been transfected with NS5ATP9. Beclin 1 and LC3 protein levels were analyzed by Western blot. Result: 1. After HepG2 were treated with recombinant human IL-6 protein, the expression of endogenous Beclin 1 was up-regulated at mRNA and protein level, and the conversion of endogenous LC3-I to LC3-II was also increased. These results indicated that IL-6 could induce autophagy. 2. When HepG2 cells were treated with IL-6 siRNA or monoclonal antibody against human IL-6, the expression of autophagy-related genes were decreased. 3. Exogenous human IL-6 recombinant protein up-regulated NS5ATP9 via NF-κB activation. 4. The expression of Beclin 1 and LC3B was down-regulated after IL-6 treated NS5ATP9-silenced HepG2 cells. 5. NS5ATP9 could reverse regulates IL-6 expression in HepG2 cells. 6. Silence or neutralization of IL-6 attenuates NS5ATP9-induced autophagy slightly. Conclusion: Our results implied that in HCC patients, maybe the higher level of IL-6 in the serum promoted the expression of NS5ATP9 and induced autophagy in cancer cells. And the over-expression of NS5ATP9 which induced by IL-6, in turn, increased IL-6 expression, further, promotes the IL-6/NS5ATP9-mediated autophagy and affects the progression of tumor. Therefore, NS5ATP9 silence might be a potential target for HCC therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatocellular%20carcinoma" title=" Hepatocellular carcinoma"> Hepatocellular carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-6" title=" IL-6"> IL-6</a>, <a href="https://publications.waset.org/abstracts/search?q=microenvironment" title=" microenvironment"> microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=NS5ATP9" title=" NS5ATP9"> NS5ATP9</a> </p> <a href="https://publications.waset.org/abstracts/58075/the-role-of-il-6-mediated-ns5atp9-expression-in-autophagy-of-liver-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10920</span> Production and Purification of Salmonella Typhimurium MisL Autotransporter Protein in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20Taskale%20Karatug">Neslihan Taskale Karatug</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akcelik"> Mustafa Akcelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some literature data show that misL protein play a role on host immune response formed against Salmonella Typhimurium. The aim of the present study is to learn the role of the protein in S. Typhimurium pathogenicity. To describe certain functions of the protein, primarily recombinant misL protein was produced and purified. PCR was performed using a primer set targeted to passenger domain of the misL gene on S. Typhimurium LT2 genome. Amplicon and pet28a vector were enzymatically cleaved with EcoRI and NheI. The digested DNA materials were purified with High Pure PCR Product Purification Kit. The ligation reaction was achieved with the pure products. After preparation of competent Escherichia coli Dh5α, ligation mix was transformed into the cell by electroporation. To confirm the existence of insert gene, recombinant plasmid DNA of Dh5α was isolated with high pure plasmid DNA kit. Proved the correctness of recombinant plasmid was electroporated to BL21. The cell was induced by IPTG. After induction, the presence of recombinant protein was checked by SDS-PAGE. The recombinant misL protein was purified using HisPur Ni-NTA spin colon. The pure protein was shown by SDS-PAGE and western blot immünoassay. The concentration of the protein was measured BCA Protein Assay kit. In the wake of ligation with digested products (2 kb misL and 5.4 kb pet28a) visualised on gel size of the band was about 7.4 kb and was named as pNT01. The pNT01 recombinant plasmid was transformed into Dh5α and colonies were chosen in selective medium. Plasmid DNA isolation from them was carried out. PCR was achieved on the pNT01 to check misL and 2 kb band was observed on the agarose gel. After electroporation of the plasmid and induction of the cell, 68 kDa misL protein was seen. Subsequent to the purification of the protein, only a band was observed on SDS-PAGE. Association of the pure protein with anti-his antibody was verified by the western blot assay. The concentration of the pure misL protein was determined as 345 μg/mL. Production of polyclonal antibody will be achieved by using the obtained pure recombinant misL protein as next step. The role of the protein will come out on the immune system together some assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloning" title="cloning">cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20purification" title=" recombinant protein purification"> recombinant protein purification</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20Typhimurium" title=" Salmonella Typhimurium"> Salmonella Typhimurium</a> </p> <a href="https://publications.waset.org/abstracts/22958/production-and-purification-of-salmonella-typhimurium-misl-autotransporter-protein-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10919</span> Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saskya%20E.%20Carrera%20P.">Saskya E. Carrera P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Hankamer"> Ben Hankamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Oey"> Melanie Oey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlamydomonas%20reinhardtii" title="chlamydomonas reinhardtii">chlamydomonas reinhardtii</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophic" title=" mixotrophic"> mixotrophic</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a> </p> <a href="https://publications.waset.org/abstracts/84908/optimising-light-conditions-for-recombinant-protein-production-in-the-microalgal-chlamydomonas-reinhardtii-chloroplast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10918</span> Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mi-Hye%20Hwang">Mi-Hye Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Son"> Young Min Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Kichan%20Lee"> Kichan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Hun%20Hyun"> Bang-Hun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Yeal%20Jung">Byeong Yeal Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=botulism" title="botulism">botulism</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=toxin" title=" toxin"> toxin</a> </p> <a href="https://publications.waset.org/abstracts/80612/safety-and-efficacy-of-recombinant-clostridium-botulinum-types-b-vaccine-candidate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10917</span> Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Kiran%20Shahzadi">Syeda Kiran Shahzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Mahmood"> Nasir Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdul%20Qadir"> Muhammad Abdul Qadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20refolding" title="protein refolding">protein refolding</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20activities" title=" antiproliferative activities"> antiproliferative activities</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20interferon%20alpha-2b" title=" human interferon alpha-2b"> human interferon alpha-2b</a>, <a href="https://publications.waset.org/abstracts/search?q=pegylation" title=" pegylation"> pegylation</a>, <a href="https://publications.waset.org/abstracts/search?q=mPEG-propionaldehyde" title=" mPEG-propionaldehyde"> mPEG-propionaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20directed%20mutagenesis" title=" site directed mutagenesis"> site directed mutagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20expression" title=" E. coli expression"> E. coli expression</a> </p> <a href="https://publications.waset.org/abstracts/83956/cloning-expression-and-n-terminal-pegylation-of-human-interferon-alpha-2b-analogs-and-their-cytotoxic-evaluation-against-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10916</span> Targetting T6SS of Klebsiella pneumoniae for Assessment of Immune Response in Mice for Therapeutic Lead Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sweta%20Pandey">Sweta Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Samridhi%20Dhyani"> Samridhi Dhyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Chaudhuri"> Susmita Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae bacteria is a global threat to human health due to an increase in multi-drug resistance among strains. The hypervirulent strains of Klebsiella pneumoniae is a major trouble due to their association with life-threatening infections in a healthy population. One of the major virulence factors of hyper virulent strains of Klebsiella pneumoniae is the T6SS (Type six secretary system) which is majorly involved in microbial antagonism and causes interaction with the host eukaryotic cells during infections. T6SS mediates some of the crucial factors for establishing infection by the bacteria, such as cell adherence, invasion, and subsequent in vivo colonisation. The antibacterial activity and the cell invasion property of the T6SS system is a major requirement for the establishment of K. pneumoniae infections within the gut. The T6SS can be an appropriate target for developing therapeutics. The T6SS consists of an inner tube comprising hexamers of Hcp (Haemolysin -regulated protein) protein, and at the top of this tube sits VgrG (Valine glycine repeat protein G); the tip of the machinery consists of PAAR domain containing proteins which act as a delivery system for bacterial effectors. For this study, immune response to recombinant VgrG protein was generated to establish this protein as a potential immunogen for the development of therapeutic leads. The immunogenicity of the selected protein was determined by predicting the B cell epitopes by the BCEP analysis tool. The gene sequence for multiple domains of VgrG protein (phage_base_V, T6SS_Vgr, DUF2345) was selected and cloned in pMAL vector in E. coli. The construct was subcloned and expressed as a fusion protein of 203 residue protein with mannose binding protein tag (MBP) to enhance solubility and purification of this protein. The purified recombinant VgrG fusion protein was used for mice immunisation. The antiserum showed reactivity with the recombinant VgrG in ELISA and western blot. The immunised mice were challenged with K. pneumoniae bacteria and showed bacterial clearance in immunised mice. The recombinant VgrG protein can further be used for studying downstream signalling of VgrG protein in mice during infection and for therapeutic MAb development to eradicate K. pneumoniae infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title="immune response">immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumoniae" title=" Klebsiella pneumoniae"> Klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-drug%20resistance" title=" multi-drug resistance"> multi-drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20expression" title=" recombinant protein expression"> recombinant protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=T6SS" title=" T6SS"> T6SS</a>, <a href="https://publications.waset.org/abstracts/search?q=VgrG" title=" VgrG"> VgrG</a> </p> <a href="https://publications.waset.org/abstracts/153029/targetting-t6ss-of-klebsiella-pneumoniae-for-assessment-of-immune-response-in-mice-for-therapeutic-lead-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10915</span> Expression of Human Papillomavirus Type 18 L1 Virus-Like Particles in Methylotropic Yeast, Pichia Pastoris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Rassi">Hossein Rassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Moradi%20Fard"> Marjan Moradi Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Niko"> Samaneh Niko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human papillomavirus type 16 and 18 are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, HPV type 18 accounts for about 34 % of all HPV infections in Iran and the most promising vaccine against HPV infection is based on the L1 major capsid protein. The L1 protein of HPV18 has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are non-infectious, highly immunogenic and allowing their use in vaccine production. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system used to produce high levels of heterologous proteins. In this study we expressed HPV18 L1 VLPs in P. pastoris. The gene encoding the major capsid protein L1 of the high-risk HPV type 18 was isolated from Iranian patient by PCR and inserted into pTG19-T vector to obtain the recombinant expression vector pTG19-HPV18-L1. Then, the pTG19-HPV18-L1 was transformed into E. coli strain DH5α and the recombinant protein HPV18 L1 was expressed under IPTG induction in soluble form. The HPV18 L1 gene was excised from recombinant plasmid with XhoI and EcoRI enzymes and ligated into the yeast expression vector pPICZα linearized with the same enzymes, and transformed into P. pastoris. Induction and expression of HPV18 L1 protein was demonstrated by BMGY/BMMY and RT PCR. The parameters for induced cultivation for strain in P. pastoris KM71 with HPV16L1 were investigated in shaking flask cultures. After induced cultivation BMMY (pH 7.0) medium supplemented with methanol to a final concentration of 1.0% every 24 h at 37 degrees C for 96 h, the recombinant produced 78.6 mg/L of L1 protein. This work offers the possibility for the production of prophylactic vaccine for cervical carcinoma by P. pastoris for HPV-18 L1 gene. The VLP-based HPV vaccines can prevent persistent HPV18 infections and cervical cancer in Iran. The HPV-18 L1 gene was expressed successfully in E.coli, which provides necessary basis for preparing HPV-18 L1 vaccine in human. Also, HPV type 6 L1 proteins expressed in Pichia pastoris will facilitate the HPV vaccine development and structure-function study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pichia%20pastoris" title="Pichia pastoris">Pichia pastoris</a>, <a href="https://publications.waset.org/abstracts/search?q=L1%20virus-like%20particles" title=" L1 virus-like particles"> L1 virus-like particles</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20papillomavirus%20type%2018" title=" human papillomavirus type 18"> human papillomavirus type 18</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/27942/expression-of-human-papillomavirus-type-18-l1-virus-like-particles-in-methylotropic-yeast-pichia-pastoris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10914</span> Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashima%20Sharma">Ashima Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20serum%20albumin" title="recombinant human serum albumin">recombinant human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=biosimilar" title=" biosimilar"> biosimilar</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone%20assisted%20protein%20folding" title=" chaperone assisted protein folding"> chaperone assisted protein folding</a> </p> <a href="https://publications.waset.org/abstracts/89334/enhanced-functional-production-of-a-crucial-biomolecule-human-serum-albumin-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10913</span> Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Lotfieblisofla">Sadegh Lotfieblisofla</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Khodabakhshi"> Arash Khodabakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by <em>Agrobacterium tumefaciens</em> strain LBA<sub>4404</sub>. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tPA" title="tPA">tPA</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant" title=" recombinant"> recombinant</a>, <a href="https://publications.waset.org/abstracts/search?q=transgenic" title=" transgenic"> transgenic</a>, <a href="https://publications.waset.org/abstracts/search?q=tobacco" title=" tobacco"> tobacco</a> </p> <a href="https://publications.waset.org/abstracts/100395/expression-of-tissue-plasminogen-activator-in-transgenic-tobacco-plants-by-signal-peptides-targeting-for-delivery-to-apoplast-endoplasmic-reticulum-and-cytosol-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10912</span> New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamzeh%20Alipour">Hamzeh Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Bagheri"> Masoumeh Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Raz"> Abbasali Raz</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Dadgar%20Pakdel"> Javad Dadgar Pakdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Azizi"> Kourosh Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboozar%20Soltani"> Aboozar Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Djaefar%20Moemenbellah-Fard">Mohammad Djaefar Moemenbellah-Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowfly" title="blowfly">blowfly</a>, <a href="https://publications.waset.org/abstracts/search?q=BEVS" title=" BEVS"> BEVS</a>, <a href="https://publications.waset.org/abstracts/search?q=gene" title=" gene"> gene</a>, <a href="https://publications.waset.org/abstracts/search?q=immature%20insect" title=" immature insect"> immature insect</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein" title=" recombinant protein"> recombinant protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Sf9" title=" Sf9"> Sf9</a> </p> <a href="https://publications.waset.org/abstracts/156898/new-recombinant-netrin-a-protein-of-lucilia-sericata-larvae-by-bac-to-bac-expression-vector-system-in-sf9-insect-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10911</span> Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashima%20Sharma">Ashima Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20K.%20Chaudhuri"> Tapan K. Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20functional%20production%20of%20rHSA%20in%20E.%20coli" title="enhanced functional production of rHSA in E. coli">enhanced functional production of rHSA in E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20serum%20albumin" title=" recombinant human serum albumin"> recombinant human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20expression" title=" recombinant protein expression"> recombinant protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20processing" title=" recombinant protein processing"> recombinant protein processing</a> </p> <a href="https://publications.waset.org/abstracts/67504/production-of-recombinant-human-serum-albumin-in-escherichia-coli-a-crucial-biomolecule-for-biotechnological-and-healthcare-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10910</span> Characterization of Crustin from Litopenaeus vannamei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchao%20Donpudsa">Suchao Donpudsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Tassanakajon"> Anchalee Tassanakajon</a>, <a href="https://publications.waset.org/abstracts/search?q=Vichien%20Rimphanitchayakit"> Vichien Rimphanitchayakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A crustin gene, LV-SWD1, previously found in the hemocyte cDNA library of Litopenaeus vannamei, contains the open reading frames of 288 bp encoding a putative protein of 96 amino acid residues. The putative signal peptides of the LV-SWD1 were identified using the online SignalP 3.0 with predicted cleavage sites between Ala24-Val25, resulting in 72 residue mature protein with calculated molecular mass of 7.4 kDa and predicted pI of 8.5. This crustin contains a Arg-Pro rich region at the amino-terminus and a single whey acidic protein (WAP) domain at the carboxyl-terminus. In order to characterize their properties and biological activities, the recombinant crustin protein was produced in the Escherichia coli expression system. Antimicrobial assays showed that the growth of Bacillus subtilis was inhibited by this recombinant crustin with MIC of about 25-50 µM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustin" title="crustin">crustin</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20whey%20acidic%20protein" title=" single whey acidic protein"> single whey acidic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Litopenaeus%20vannamei" title=" Litopenaeus vannamei"> Litopenaeus vannamei</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/40824/characterization-of-crustin-from-litopenaeus-vannamei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10909</span> Chemical Synthesis of a cDNA and Its Expression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salman%20Akrokayan">Salman Akrokayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cDNA" title="synthetic cDNA">synthetic cDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20G-CSF" title=" recombinant G-CSF"> recombinant G-CSF</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning" title=" cloning"> cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/59150/chemical-synthesis-of-a-cdna-and-its-expression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10908</span> A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Emami">Shiva Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Persson"> Jenny Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bengt%20Johansson%20Lindbom"> Bengt Johansson Lindbom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Group%20A%20streptococcus" title="Group A streptococcus">Group A streptococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=IgG2c" title=" IgG2c"> IgG2c</a>, <a href="https://publications.waset.org/abstracts/search?q=IFN-%CE%B3" title=" IFN-γ"> IFN-γ</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a> </p> <a href="https://publications.waset.org/abstracts/141555/a-recombinant-group-a-streptococcus-gas-2w-strain-elicits-protective-immunity-in-mice-through-induction-of-an-ifn-gh-dependent-humoral-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10907</span> Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzyy-Rong%20Jinn">Tzyy-Rong Jinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Kuo%20Hsieh"> Sheng-Kuo Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Chung"> Yi-Ching Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Chia%20Hsieh"> Feng-Chia Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arti%EF%AC%81cial%20oil%20bodies" title="artificial oil bodies">artificial oil bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleosin-fusion%20protein" title=" Oleosin-fusion protein"> Oleosin-fusion protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mastoparan-B" title=" Mastoparan-B"> Mastoparan-B</a> </p> <a href="https://publications.waset.org/abstracts/68074/design-of-an-artificial-oil-body-cyanogen-bromide-technology-platform-for-the-expression-of-small-bioactive-peptide-mastoparan-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10906</span> Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katerina%20H.%20Takova">Katerina H. Takova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20N.%20Minkov"> Ivan N. Minkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergana%20G.%20Zahmanova"> Gergana G. Zahmanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20E%20virus" title="hepatitis E virus">hepatitis E virus</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20molecular%20farming" title=" plant molecular farming"> plant molecular farming</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20expression" title=" transient expression"> transient expression</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccines" title=" vaccines"> vaccines</a> </p> <a href="https://publications.waset.org/abstracts/90648/molecular-farming-plants-producing-vaccine-and-diagnostic-reagent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10905</span> Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Donatas%20Levisauskas"> Donatas Levisauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaldas%20Urniezius"> Renaldas Urniezius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithms" title="adaptive algorithms">adaptive algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20control" title=" model-based control"> model-based control</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20E.%20coli" title=" recombinant E. coli"> recombinant E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up%20of%20bioprocesses" title=" scale-up of bioprocesses"> scale-up of bioprocesses</a> </p> <a href="https://publications.waset.org/abstracts/88066/development-and-investigation-of-efficient-substrate-feeding-and-dissolved-oxygen-control-algorithms-for-scale-up-of-recombinant-e-coli-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10904</span> A Review on Bone Grafting, Artificial Bone Substitutes and Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Gayashan%20Samarawickrama">Kasun Gayashan Samarawickrama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone diseases, defects, and fractions are commonly seen in modern life. Since bone is regenerating dynamic living tissue, it will undergo healing process naturally, it cannot recover from major bone injuries, diseases and defects. In order to overcome them, bone grafting technique was introduced. Gold standard was the best method for bone grafting for the past decades. Due to limitations of gold standard, alternative methods have been implemented. Apart from them artificial bone substitutes and bone tissue engineering have become the emerging methods with technology for bone grafting. Many bone diseases and defects will be healed permanently with these promising techniques in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20grafting" title="bone grafting">bone grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20standard" title=" gold standard"> gold standard</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20substitutes" title=" bone substitutes"> bone substitutes</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/79771/a-review-on-bone-grafting-artificial-bone-substitutes-and-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10903</span> Preliminary Dosimetric Evaluation of Two New 153Sm Bone Pain Palliative Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Amraee"> N. Amraee</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Naseri"> Z. Naseri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar.%20Jalilian"> Ar. Jalilian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to calculate the absorbed dose to each human organ for two new Sm-153 bone-seeking agents in order to evaluate their effectiveness in bone pain palliation therapy. In this work, the absorbed dose of 153Sm-TTHMP and 153Sm-PDTMP to each human organ was evaluated based on biodistribution studies in rats by radiation dose assessment resource (RADAR) method. The highest absorbed dose for 153Sm-TTHMP and 153Sm-PDTMP is observed in trabecular bone with 1.844 and 3.167 mGy/MBq, respectively. Bone/red marrow dose ratio, as the target/critical organ dose ratio, for 153Sm-PDTMP is greater than 153Sm-TTHMP and is compatible with 153Sm-EDTMP. The results showed that these bone-seeking agents, specially 153Sm-PDTMP, have considerable characteristics compared to the most clinically used bone pain palliative radiopharmaceutical, and therefore, can be good candidates for bone pain palliation in patients with bone metastasis; however, further biological studies in other mammals are still needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20dosimetry" title="internal dosimetry">internal dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=PDTMP" title=" PDTMP"> PDTMP</a>, <a href="https://publications.waset.org/abstracts/search?q=153Sm" title=" 153Sm"> 153Sm</a>, <a href="https://publications.waset.org/abstracts/search?q=TTHMP" title=" TTHMP"> TTHMP</a> </p> <a href="https://publications.waset.org/abstracts/18061/preliminary-dosimetric-evaluation-of-two-new-153sm-bone-pain-palliative-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10902</span> Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Adeppa">J. Adeppa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Samanta"> S. Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20K.%20Raina"> O. K. Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fasciola%20gigantic" title="fasciola gigantic">fasciola gigantic</a>, <a href="https://publications.waset.org/abstracts/search?q=fasciola%20hepatica" title=" fasciola hepatica"> fasciola hepatica</a>, <a href="https://publications.waset.org/abstracts/search?q=GST" title=" GST"> GST</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-%20PCR" title=" RT- PCR"> RT- PCR</a> </p> <a href="https://publications.waset.org/abstracts/84694/molecular-characterisation-and-expression-of-glutathione-s-transferase-of-fasciola-gigantica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10901</span> Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Tokmakov">Alexander A. Tokmakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20analysis" title="bioinformatics analysis">bioinformatics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20synthesis" title=" cell-free protein synthesis"> cell-free protein synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=expression%20success" title=" expression success"> expression success</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20proteins" title=" recombinant proteins"> recombinant proteins</a> </p> <a href="https://publications.waset.org/abstracts/22904/bioinformatics-approach-to-identify-physicochemical-and-structural-properties-associated-with-successful-cell-free-protein-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10900</span> Preservation of Phenytoin and Sodium Valproate Induced Bone Loss by Raloxifene through Modulating Serum Estradiol and TGF-β3 Content in Bone of Female Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Vohora">Divya Vohora</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jamir%20Anwar"> Md. Jamir Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. Both phenytoin (PHT) and sodium valproate (SVP) inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with CVD supplementation, on PHT and SVP-induced alterations in bone in mice. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of AEDs was also investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and curative treatment with raloxifene ameliorated bony alterations and was more effective than CVD. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with their antiepileptic efficacy, and hence raloxifene could be a potential therapeutic option in the management of PHT and SVP-induced bone disease if clinically approved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiepileptic%20drugs" title="antiepileptic drugs">antiepileptic drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=raloxifene" title=" raloxifene"> raloxifene</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF-%CE%B23" title=" TGF-β3"> TGF-β3</a> </p> <a href="https://publications.waset.org/abstracts/16217/preservation-of-phenytoin-and-sodium-valproate-induced-bone-loss-by-raloxifene-through-modulating-serum-estradiol-and-tgf-v3-content-in-bone-of-female-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=364">364</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=365">365</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>