CINXE.COM

Search results for: nitrate toxicity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nitrate toxicity</title> <meta name="description" content="Search results for: nitrate toxicity"> <meta name="keywords" content="nitrate toxicity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nitrate toxicity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nitrate toxicity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1319</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nitrate toxicity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> Hyparrhenia hirta: A Potential Protective Agent against DNA Damage and Liver Toxicity of Sodium Nitrate in Adult Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Bouaziz-Ketata">Hanen Bouaziz-Ketata</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ben%20Salah"> Ghada Ben Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Ben%20Salah"> Hichem Ben Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Jamoussi"> Kamel Jamoussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Najiba%20Zeghal"> Najiba Zeghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated the protective role of Hyparrhenia hirta on nitrate-induced liver damage. Experiments were carried out on adult rats divided into 3 groups, a control group and two treated groups. NaNO3 was administered daily by oral gavage at a dose of 400 mg/kg bw in treated groups either alone or coadministered with Hyparrhenia hirta methanolic extract via drinking water at a dose of 200 mg/kg bw for 50 days. Liver toxicity induced by NaNO3 was characterized by higher serum levels of glucose, total cholesterol and triglyceride and lower serum total protein than those of controls. Transaminases and lactate deshydrogenase activities in serum were elevated indicating hepatic cells’ damage after treatment with NaNO3. The hyperbilirubinemia and the increased serum gamma glutamyl transferase activities suggested the presence of cholestasis in NaNO3 exposed rats. In parallel, NaNO3 caused oxidant/antioxidant imbalance in the liver as reflected by the increased lipid peroxidation, the decreased total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities. Nitrate caused also a significant induction of DNA fragmentation as evidenced by the presence of a smear without ladder formation on agarose gel. Hyparrhenia hirta supplementation showed an improvement of all parameters cited above. We conclude that the present work provides ethnopharmacological relevance of Hyparrhenia hirta against the toxic effect of nitrate, suggesting its role as a potential antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyparrhenia%20hirta" title="Hyparrhenia hirta">Hyparrhenia hirta</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity" title=" nitrate toxicity"> nitrate toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/21161/hyparrhenia-hirta-a-potential-protective-agent-against-dna-damage-and-liver-toxicity-of-sodium-nitrate-in-adult-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi">Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahsan%20Khan"> Muhammad Ahsan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sufian"> M. Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title="heavy-metals">heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=larval-instars" title=" larval-instars"> larval-instars</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal-concentration" title=" lethal-concentration"> lethal-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=silkworm" title=" silkworm"> silkworm</a> </p> <a href="https://publications.waset.org/abstracts/97315/assessment-of-toxic-impact-of-metals-on-different-instars-of-silkworm-bombyx-mori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Meftah">T. Meftah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Zerafat"> M. M. Zerafat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate%20removal" title="nitrate removal">nitrate removal</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilane" title=" organosilane"> organosilane</a> </p> <a href="https://publications.waset.org/abstracts/18940/nitrate-removal-from-drinking-water-using-modified-natural-nanozeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> Usage of Biosorbent Material for the Removal of Nitrate from Wastewater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abouleish">M. Abouleish</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Umer"> R. Umer</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sara"> Z. Sara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrates" title=" nitrates"> nitrates</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20material" title=" plant material"> plant material</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20wastewater%20treatment" title=" and wastewater treatment"> and wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/110898/usage-of-biosorbent-material-for-the-removal-of-nitrate-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Characterization of the State of Pollution by Nitrates in the Groundwater in Arid Zones Case of Eloued District (South-East of Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zair%20Nadje">Zair Nadje</a>, <a href="https://publications.waset.org/abstracts/search?q=Attoui%20Badra"> Attoui Badra</a>, <a href="https://publications.waset.org/abstracts/search?q=Miloudi%20Abdelmonem"> Miloudi Abdelmonem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to assess sensitivity to nitrate pollution and monitor the temporal evolution of nitrate contents in groundwater using statistical models and map their spatial distribution. The nitrate levels observed in the waters of the town of El-Oued differ from one aquifer to another. Indeed, the waters of the Quaternary aquifer are the richest in nitrates, with average annual contents varying from 6 mg/l to 85 mg/l, for an average of 37 mg/l. These levels are higher than the WHO standard (50 mg/l) for drinking water. At the water level of the Terminal Complex (CT) aquifer, the annual average nitrate levels vary from 14 mg/l to 37 mg/l, with an average of 18 mg/l. In the Terminal Complex, excessive nitrate levels are observed in the central localities of the study area. The spatial distribution of nitrates in the waters of the Quaternary aquifer shows that the majority of the catchment points of this aquifer are subject to nitrate pollution. This study shows that in the waters of the Terminal Complex aquifer, nitrate pollution evolves in two major areas. The first focus is South-North, following the direction of underground flow. The second is West-East, progressing towards the East zone. The temporal distribution of nitrate contents in the water of the Terminal Complex aquifer in the city of El-Oued showed that for decades, nitrate contents have suffered a decline after an increase. This evolution of nitrate levels is linked to demographic growth and the rapid urbanization of the city of El-Oued. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activities" title="anthropogenic activities">anthropogenic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrates" title=" nitrates"> nitrates</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20zones%20city%20of%20El-Oued" title=" arid zones city of El-Oued"> arid zones city of El-Oued</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/184684/characterization-of-the-state-of-pollution-by-nitrates-in-the-groundwater-in-arid-zones-case-of-eloued-district-south-east-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Temperature Dependence and Seasonal Variation of Denitrifying Microbial Consortia from a Woodchip Bioreactor in Denmark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J%C3%A9glot">A. Jéglot</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Plauborg"> F. Plauborg</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Schnorr"> M. K. Schnorr</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20S%C3%B8rensen"> R. S. Sørensen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Elsgaard"> L. Elsgaard </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial wetlands such as woodchip bioreactors are efficient tools to remove nitrate from agricultural wastewater with a minimized environmental impact. However, the temperature dependence of the microbiological nitrate removal prevents the woodchip bioreactors from being an efficient system when the water temperature drops below 8℃. To quantify and describe the temperature effects on nitrate removal efficiency, we studied nitrate-reducing enrichments from a woodchip bioreactor in Denmark based on samples collected in Spring and Fall. Growth was quantified as optical density, and nitrate and nitrous oxide concentrations were measured in time-course experiments to compare the growth of the microbial population and the nitrate conversion efficiencies at different temperatures. Ammonia was measured to indicate the importance of dissimilatory nitrate reduction to ammonia (DNRA) in nitrate conversion for the given denitrifying community. The temperature responses observed followed the increasing trend proposed by the Arrhenius equation, indicating higher nitrate removal efficiencies at higher temperatures. However, the growth and the nitrous oxide production observed at low temperature provided evidence of the psychrotolerance of the microbial community under study. The assays conducted showed higher nitrate removal from the microbial community extracted from the woodchip bioreactor at the cold season compared to the ones extracted during the warmer season. This indicated the ability of the bacterial populations in the bioreactor to evolve and adapt to different seasonal temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste%20water%20treatment" title="agricultural waste water treatment">agricultural waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20wetland" title=" artificial wetland"> artificial wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=psychrophilic%20conditions" title=" psychrophilic conditions"> psychrophilic conditions</a> </p> <a href="https://publications.waset.org/abstracts/112798/temperature-dependence-and-seasonal-variation-of-denitrifying-microbial-consortia-from-a-woodchip-bioreactor-in-denmark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> Some Observations on the Preparation of Zinc Hydroxide Nitrate Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Nguyen"> Nguyen Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Peltekov"> Alexander Peltekov</a>, <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova"> Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanosized zinc hydroxide nitrate has been recently estimated as perspective foliar fertilizer, which has improved zinc solubility, but low phytotoxicity, in comparison with ZnO and other Zn containing compounds. The main problem is obtaining of stable particles with dimensions less than 100 nm. This work studies the effect of preparation conditions on the chemical compositions and particle size of the zinc hydroxide nitrates, prepared by precipitation. Zn(NO3)2.6H2O and NaOH with concentrations, ranged from 0.2 to 3.2M and the initial OH/Zn ratio from 0.5 to 1.6 were used at temperatures from 20 to 60 °C. All samples were characterized in detail by X-ray diffraction, scanning electron microscopy, differential thermal analysis and ICP. Stability and distribution of the zinc hydroxide nitrate particles were estimated too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20hydroxide%20nitrate" title="zinc hydroxide nitrate">zinc hydroxide nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilizer" title=" foliar fertilizer"> foliar fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/53436/some-observations-on-the-preparation-of-zinc-hydroxide-nitrate-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an Aerobic Suspension Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20W.%20N.%20Alattabi">Ali W. N. Alattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Clare%20B.%20Harris"> Clare B. Harris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Ortoneda"> Montserrat Ortoneda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Phipps"> David A. Phipps</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alzeyadi"> Ali Alzeyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim"> Khalid S. Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was performed to optimise the hydraulic retention time (HRT) and study its effects on the sludge characteristics and the effluent quality in an aerobic suspension sequencing batch reactor (ASSBR) treating synthetic wastewater. The results showed that increasing the HRT from 6 h to 12 h significantly improved the COD and Nitrate removal efficiency; it was increased from 78.7% - 75.7% to 94.7% – 97% for COD and Nitrate respectively. However, increasing the HRT from 12 h to 18 h reduced the COD and Nitrate removal efficiency from 94.7% - 97% to 91.1% – 94.4% respectively. Moreover, Increasing the HRT from 18 h to 24 h did not affect the COD and Nitrate removal efficiency. Sludge volume index (SVI) was used to monitor the sludge settling performance. The results showed a direct relationship between the HRT and SVI value. Increasing the HRT from 6 h to 12 h led to decrease the SVI value from 123 ml/g to 82.5 ml/g, and then it remained constant despite of increasing the HRT from 12 h to 18 h and to 24 h. The results obtained from this study showed that the HRT of 12 h was better for COD and Nitrate removal and a good settling performance occurred during that range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COD" title="COD">COD</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20retention%20time" title=" hydraulic retention time"> hydraulic retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20characteristics" title=" sludge characteristics"> sludge characteristics</a> </p> <a href="https://publications.waset.org/abstracts/49578/the-effects-of-hydraulic-retention-time-on-the-sludge-characteristics-and-effluent-quality-in-an-aerobic-suspension-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Alireza%20Farrokhzad">Seyed Alireza Farrokhzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Alavi"> Seyed Amin Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Panahpour"> Ebrahim Panahpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20properties" title=" soil chemical properties"> soil chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=loamy%20texture" title=" loamy texture"> loamy texture</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20space" title=" land space"> land space</a> </p> <a href="https://publications.waset.org/abstracts/176378/investigating-the-effect-of-industrial-wastewater-application-on-the-concentration-of-nitrate-and-phosphate-in-the-soil-of-the-land-space-of-chaharmahal-and-bakhtiari-sefid-dasht-steel-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eltarabily">Mohamed Eltarabily</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Yoshimura"> Chihiro Yoshimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20leaching" title=" nitrate leaching"> nitrate leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=HYDRUS-2D" title=" HYDRUS-2D"> HYDRUS-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20column" title=" soil column"> soil column</a> </p> <a href="https://publications.waset.org/abstracts/54355/comparison-between-experimental-modeling-and-hydrus-2d-for-nitrate-transport-through-a-saturated-soil-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Gamma-Hydroxybutyrate (GHB): A Review for the Prehospital Clinician</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20Welch">Theo Welch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gamma-hydroxybutyrate (GHB) is a depressant of the central nervous system with euphoric effects. It is being increasingly used recreationally in the United Kingdom (UK) despite associated morbidity and mortality. Due to the lack of evidence, healthcare professionals remain unsure as to the optimum management of GHB acute toxicity. Methods: A literature review was undertaken of its pharmacology and the emergency management of its acute toxicity.Findings: GHB is inexpensive and readily available over the Internet. Treatment of GHB acute toxicity is supportive. Clinicians should pay particular attention to the airway as emesis is common. Intubation is required in a minority of cases. Polydrug use is common and worsens prognosis. Conclusion: An inexpensive and readily available drug, GHB acute toxicity can be difficult to identify and treat. GHB acute toxicity is generally treated conservatively. Further research is needed to ascertain the indications, benefits, and risks of intubating patients with GHB acute toxicity. instructions give you guidelines for preparing papers for the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GHB" title="GHB">GHB</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-hydroxybutyrate" title=" gamma-hydroxybutyrate"> gamma-hydroxybutyrate</a>, <a href="https://publications.waset.org/abstracts/search?q=prehospital" title=" prehospital"> prehospital</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency" title=" emergency"> emergency</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/141712/gamma-hydroxybutyrate-ghb-a-review-for-the-prehospital-clinician" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> Ruminal Fermentation of Biologically Active Nitrate- and Nitro-Containing Forages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robin%20Anderson">Robin Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Nisbet"> David Nisbet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are biologically active chemicals that can accumulate naturally in rangeland grasses forages consumed by grazing cattle, sheep and goats. While toxic to livestock if accumulations and amounts consumed are high enough, particularly in animals having no recent exposure to the forages, these chemicals are known to be potent inhibitors of methane-producing bacteria inhabiting the rumen. Consequently, there is interest in examining their potential use as anti-methanogenic compounds to decrease methane emissions by grazing ruminants. Presently, rumen microbes, collected freshly from a cannulated Holstein cow maintained on 50:50 corn based concentrate:alfalfa diet were mixed (10 mL fluid) in 18 x 150 mm crimp top tubes with 0.5 of high nitrate-containing barley (Hordeum vulgare; containing 272 µmol nitrate per g forage dry matter), and NPA- or NPOH- containing milkvetch forages (Astragalus canadensis and Astragalus miser containing 80 and 174 soluble µmol NPA or NPOH/g forage dry matter respectively). Incubations containing 0.5 g alfalfa (Medicago sativa) were used as controls. Tubes (3 per each respective forage) were capped and incubated anaerobically (using oxygen free carbon dioxide) for 24 h at 39oC after which time amounts of total gas produced were measured via volume displacement and headspace samples were analyzed by gas chromatography to determine concentrations of hydrogen and methane. Fluid samples were analyzed by gas chromatography to measure accumulations of fermentation acids. A completely randomized analysis of variance revealed that the nitrate-containing barley and both the NPA- and the NPOH-containing milkvetches significantly decreased methane production, by > 50%, when compared to methane produced by populations incubated similarly with alfalfa (70.4 ± 3.6 µmol/ml incubation fluid). Accumulations of hydrogen, which are typically increased when methane production is inhibited, by incubations with the nitrate-containing barley and the NPA- and NPOH-containing milkvetches did not differ from accumulations observed in the alfalfa controls (0.09 ± 0.04 µmol/mL incubation fluid). Accumulations of fermentation acids produced in the incubations containing the high-nitrate barley and the NPA- and NPOH-containing milkvetches likewise did not differ from accumulations observed in incubations containing alfalfa (123.5 ± 10.8, 36.0 ± 3.0, 17.1 ± 1.5, 3.5 ± 0.3, 2.3 ± 0.2, 2.2 ± 0.2 µmol/mL incubation fluid for acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate, respectively). This finding indicates the microbial populations did not compensate for the decreased methane production via compensatory changes in production of fermentative acids. Stoichiometric estimation of fermentation balance revealed that > 77% of reducing equivalents generated during fermentation of the forages were recovered in fermentation products and the recoveries did not differ between the alfalfa incubations and those with the high-nitrate barley or the NPA- or NPOH-containing milkvetches. Stoichiometric estimates of amounts of hexose fermented similarly did not differ between the nitrate-, NPA and NPOH-containing incubations and those with the alfalfa, averaging 99.6 ± 37.2 µmol hexose consumed/mL of incubation fluid. These results suggest that forages containing nitrate, NPA or NPOH may be useful to reduce methane emissions of grazing ruminants provided risks of toxicity can be effectively managed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate" title="nitrate">nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitropropanol" title=" nitropropanol"> nitropropanol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitropropionic%20acid" title=" nitropropionic acid"> nitropropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20methane%20emissions" title=" rumen methane emissions"> rumen methane emissions</a> </p> <a href="https://publications.waset.org/abstracts/121493/ruminal-fermentation-of-biologically-active-nitrate-and-nitro-containing-forages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.M.%20Kaja">A.M. Kaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Yu"> Q. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.J.H%20Brouwers"> H.J.H Brouwers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20matrix" title="cement matrix">cement matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%E2%82%82%20abatement" title=" NO₂ abatement"> NO₂ abatement</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82-SiO%E2%82%82%20composite" title=" TiO₂-SiO₂ composite"> TiO₂-SiO₂ composite</a> </p> <a href="https://publications.waset.org/abstracts/93143/air-purifying-properties-of-cement-mortars-intermixed-with-tio2-sio2-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> Nitrate-Induced Biochemical and Histopathological Changes in the Kidney of Rats: Attenuation by Hyparrhenia hirta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Bouaziz">Hanen Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Moez%20Rafrafi"> Moez Rafrafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ben%20Salah"> Ghada Ben Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Jamoussi"> Kamel Jamoussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahia%20Boudawara"> Tahia Boudawara</a>, <a href="https://publications.waset.org/abstracts/search?q=Najiba%20Zeghal"> Najiba Zeghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated the protective role of Hyparrhenia hirta against sodium nitrate (NaNO3)-induced nephrotoxicity. A high-performance liquid chromatography coupled with a mass spectrometer (HPLC-MS) method was developed to separate and identify flavonoids in Hyparrhenia hirta. Seven flavonoids were identified as 3-O-methylquercetin, luteolin-7-O-glucoside, luteolin, apigenin-7-O-glucoside, apigenin-8-C-glucoside, luteolin-8-C-glucoside and luteolin-6-C-glucoside. Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered either alone in drinking water or co-administered with Hyparrhenia hirta. NaNO3 treatment induced a significant increase in plasma levels of creatinine, urea and uric while urinary level decreased significantly. Nephrotoxicity induced by NaNO3 was characterized by significant increase in creatinine clearance. In parallel, a significant increase in malondialdehyde level along with a concomitant decrease in total glutathione content and superoxide dismutase, catalase and glutathione peroxidase activities were observed in the kidney after NaNO3 treatment. The histopathological changes in kidney after NaNO3 administration were shrunken. There were renal tubule cell degeneration and infiltration of mononuclear cells. Most glomeruli revealed shrinkage, a wide capsular space and a peri-glomerular mononuclear cells infiltration. Hyparrhenia hirta supplementation showed a remarkable amelioration of the abnormalities cited above. The results concluded that the treatment with Hyparrhenia hirta had a significant role in protecting the animals from nitrate-induced kidney dysfunction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title="flavonoids">flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=hyparrhenia%20hirta" title=" hyparrhenia hirta"> hyparrhenia hirta</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity" title=" nitrate toxicity"> nitrate toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/21358/nitrate-induced-biochemical-and-histopathological-changes-in-the-kidney-of-rats-attenuation-by-hyparrhenia-hirta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Touil">Amira Touil</a>, <a href="https://publications.waset.org/abstracts/search?q=Achouak%20Arfaoui"> Achouak Arfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibtissem%20Mannaii"> Ibtissem Mannaii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/156278/kinetic-and-thermodynamic-study-of-nitrates-removal-by-sorption-on-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasnat">M. A. Hasnat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amirul%20Islam"> M. Amirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Rashed"> M. A. Rashed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamil.%20Safwan"> Jamil. Safwan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahabubul%20Alam"> M. Mahabubul Alam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis" title=" electrolysis"> electrolysis</a> </p> <a href="https://publications.waset.org/abstracts/40350/influence-of-electrode-assembly-on-catalytic-activation-and-deactivation-of-a-pt-film-immobilized-h-conducting-solid-electrolyte-in-electrocatalytic-reduction-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ehara">Takashi Ehara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Nakanishi"> Takayoshi Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Sasaki"> Kohei Sasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Abe"> Marina Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Abe"> Hiroshi Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyoaki%20Abe"> Kiyoaki Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryo%20Iizaka"> Ryo Iizaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Sato"> Takuya Sato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CuAlO<sub>2</sub> thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO<sub>2</sub> observed at annealing temperature of 800-950 &ordm;C on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO<sub>2</sub> have been observed only at the annealing temperature of 800-850 &ordm;C. At annealing temperature of 850&ordm;C, peaks of other species have been observed beside the CuAlO<sub>2</sub> peaks, then, the CuAlO<sub>2</sub> peaks disappeared at annealing temperature of 900 &deg;C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 &ordm;C with appearance of broad SiO<sub>2</sub> peak. In the present, we ascribe these peaks as metal silicide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CuAlO2" title="CuAlO2">CuAlO2</a>, <a href="https://publications.waset.org/abstracts/search?q=silicide" title=" silicide"> silicide</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20Films" title=" thin Films"> thin Films</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide" title=" transparent conducting oxide"> transparent conducting oxide</a> </p> <a href="https://publications.waset.org/abstracts/52540/preparation-of-cualo2-thin-films-on-si-or-sapphire-substrate-by-sol-gel-method-using-metal-acetate-or-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbelkacem%20Ouerdia">Benbelkacem Ouerdia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite "> nitrite </a> </p> <a href="https://publications.waset.org/abstracts/28572/study-of-biological-denitrification-using-heterotrophic-bacteria-and-natural-source-of-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouerdia%20Benbelkacem%20Belouanas">Ouerdia Benbelkacem Belouanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite"> nitrite</a> </p> <a href="https://publications.waset.org/abstracts/19044/valorization-of-dates-nodes-as-a-carbon-source-using-biological-denitrification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> Growth of Struvite Crystals in Synthetic Urine Using Magnesium Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reneiloe%20Seodigeng">Reneiloe Seodigeng</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kabuba"> John Kabuba</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urine diversion toilets have become popular as a means of solving the challenges in sanitation. As a result, the source-separated urine must be adequately treated so that it can be disposed of safely and valuable struvite can be extracted for use as fertilizer. In this study, synthetic urine was prepared, and struvite crystallisation experiments carried out using magnesium nitrate. The effect of residence time on crystal growth was studied. At residence time of 10, 30 and 60 minutes, mean particle sizes were 17, 34 and 53 µm showing that with higher residence times, larger crystal sizes can be achieved. SEM analysis of the crystal showed that the resultant crystals had the typical morphology of struvite crystals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=struvite" title="struvite">struvite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20nitrate" title=" magnesium nitrate"> magnesium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title=" crystallisation"> crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=urine%20treatment" title=" urine treatment"> urine treatment</a> </p> <a href="https://publications.waset.org/abstracts/111014/growth-of-struvite-crystals-in-synthetic-urine-using-magnesium-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Rezaeian">Saeed Rezaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rezaee%20Boroon"> M. Rezaee Boroon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20accumulations" title=" nitrate accumulations"> nitrate accumulations</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20fertilizers" title=" nitrate fertilizers"> nitrate fertilizers</a> </p> <a href="https://publications.waset.org/abstracts/75658/a-close-study-on-the-nitrate-fertilizer-use-and-environmental-pollution-for-human-health-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Nguyen">S. H. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Li"> L. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Hegarty"> R. S. Hegarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defaunation" title="defaunation">defaunation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20production" title=" methane production"> methane production</a> </p> <a href="https://publications.waset.org/abstracts/29114/effects-of-rumen-protozoa-and-nitrate-on-fermentation-and-methane-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Martin">J. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dannenberg"> A. Dannenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Detrell"> G. Detrell</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ewald"> R. Ewald</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fasoulas"> S. Fasoulas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO<sub>2</sub>, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20uptake" title=" nitrate uptake"> nitrate uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=flashing%20light%20effect" title=" flashing light effect"> flashing light effect</a> </p> <a href="https://publications.waset.org/abstracts/117448/maximizing-nitrate-absorption-of-agricultural-waste-water-in-a-tubular-microalgae-reactor-by-adapting-the-illumination-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Vildov%C3%A1">Anna Vildová</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hendrychov%C3%A1"> H. Hendrychová</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kube%C5%A1"> J. Kubeš</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20T%C5%AFmov%C3%A1"> L. Tůmová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silybum%20marianum%20%28L.%29%20Gaertn." title="Silybum marianum (L.) Gaertn.">Silybum marianum (L.) Gaertn.</a>, <a href="https://publications.waset.org/abstracts/search?q=elicitation" title=" elicitation"> elicitation</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nitrate" title=" silver nitrate"> silver nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=taxifolin" title=" taxifolin "> taxifolin </a> </p> <a href="https://publications.waset.org/abstracts/11361/influence-of-agno3-treatment-on-the-flavonolignan-production-in-cell-suspension-culture-of-silybum-marianum-l-gaertn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.R%C3%BC%C5%9Ft%C3%BC%20Karaman">M.Rüştü Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20%C4%B0%C5%9Feri"> İsmail İşeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Saltal%C4%B1"> Kadir Saltalı</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Re%C5%9Fit%20Brohi"> A.Reşit Brohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Horuz"> Ayhan Horuz</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCmin%20Dizman"> Mümin Dizman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=drainage%20water" title=" drainage water"> drainage water</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20pollution" title=" nitrate pollution"> nitrate pollution</a> </p> <a href="https://publications.waset.org/abstracts/11497/artificial-neural-network-based-approach-in-prediction-of-potential-water-pollution-across-different-land-use-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> Prevalence and Risk Factors of Economic Toxicity in Gynecologic Malignancies: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongliu%20Li">Dongliu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study systematically evaluates the incidence and influencing factors of economic toxicity in patients with gynecological malignant tumors. Methods: Literature on economic toxicity of gynecological malignancies were comprehensively searched in Pubmed, The Cochrane Library, Web of Science, Embase, CINAHL, CNKI, Wanfang Database, Chinese Biomedical Literature database and VIP database. The search period is up to February 2024. Stata 17 software was used to conduct a single-group meta-analysis of the incidence of economic toxicity in gynecological malignant tumors, and descriptive analysis was used to analyze the influencing factors. Results: A total of 11 pieces of literature were included, including 6475 patients with gynecological malignant tumors. The results of the meta-analysis showed that the incidence of economic toxicity in gynecological malignant tumors was 40% (95%CI 31%—48%). The influencing factors of economic toxicity in patients with gynecological malignant tumors include social demographic factors, medical insurance-related factors and disease-related factors. Conclusion: The incidence of economic toxicity in patients with gynecological malignant tumors is high, and medical staff should conduct early screening of patients according to relevant influencing factors, personalized assessment of patients' economic status, early prevention work and personalized intervention measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gynecological%20malignancy" title="gynecological malignancy">gynecological malignancy</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20toxicity" title=" economic toxicity"> economic toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20incidence%20rate" title=" the incidence rate"> the incidence rate</a>, <a href="https://publications.waset.org/abstracts/search?q=influencing%20factors" title=" influencing factors"> influencing factors</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a> </p> <a href="https://publications.waset.org/abstracts/191619/prevalence-and-risk-factors-of-economic-toxicity-in-gynecologic-malignancies-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanker%20Kalakotla">Shanker Kalakotla</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Mohan%20Gottumukkala"> Krishna Mohan Gottumukkala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbal%20mediated%20silver%20nanoparticles" title="herbal mediated silver nanoparticles">herbal mediated silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=HMSNPs" title=" HMSNPs"> HMSNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20of%20silver%20nanoparticles" title=" toxicity of silver nanoparticles"> toxicity of silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=PTP1B%20in-vitro%20anti-diabetic%20assay%20female%20albino%20mice" title=" PTP1B in-vitro anti-diabetic assay female albino mice"> PTP1B in-vitro anti-diabetic assay female albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=425%20OECD%20guidelines" title=" 425 OECD guidelines"> 425 OECD guidelines</a> </p> <a href="https://publications.waset.org/abstracts/52640/assessment-of-acute-oral-toxicity-studies-and-anti-diabetic-activity-of-herbal-mediated-nanomedicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadidja%20Bellifa">Khadidja Bellifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Mekelleche"> Sidi Mohamed Mekelleche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halogenated%20phenols" title="halogenated phenols">halogenated phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20mechanism" title=" toxicity mechanism"> toxicity mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophilicity%20index" title=" electrophilicity index"> electrophilicity index</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20stucture-toxicity%20relationships" title=" quantitative stucture-toxicity relationships"> quantitative stucture-toxicity relationships</a> </p> <a href="https://publications.waset.org/abstracts/45757/estimation-of-the-acute-toxicity-of-halogenated-phenols-using-quantum-chemistry-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zazi">Ali Zazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouiza%20Cherifi"> Ouiza Cherifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas" title=" synthesis gas"> synthesis gas</a> </p> <a href="https://publications.waset.org/abstracts/140128/comparative-study-of-ni-catalysts-supported-by-silica-and-modified-by-metal-additions-co-and-ce-for-the-steam-reforming-of-methane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Ihejirika">C. E. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Nwachukwu"> M. I. Nwachukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Njoku-Tony"> R. F. Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Ihejirika"> O. C. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20O.%20Enwereuzoh"> U. O. Enwereuzoh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Imo"> E. O. Imo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Ashiegbu"> D. C. Ashiegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium-carbide" title=" calcium-carbide"> calcium-carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity "> toxicity </a> </p> <a href="https://publications.waset.org/abstracts/12369/impact-of-calcium-carbide-waste-dumpsites-on-soil-chemical-and-microbial-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrate%20toxicity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10