CINXE.COM

Search results for: scanning electron microscope

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: scanning electron microscope</title> <meta name="description" content="Search results for: scanning electron microscope"> <meta name="keywords" content="scanning electron microscope"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="scanning electron microscope" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="scanning electron microscope"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3249</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: scanning electron microscope</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Alenezi">Hanan Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20Dispersive%20X-Ray%20Spectroscopy%20%28EDS%29" title="Energy Dispersive X-Ray Spectroscopy (EDS)">Energy Dispersive X-Ray Spectroscopy (EDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane" title=" Membrane"> Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyetherimide%20PEI" title=" Polyetherimide PEI"> Polyetherimide PEI</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20electron%20microscope%20%28SEM%29" title=" Scanning electron microscope (SEM)"> Scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solvent" title=" Solvent"> Solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20Diffraction%20%28XRD%29" title=" X-Ray Diffraction (XRD)"> X-Ray Diffraction (XRD)</a> </p> <a href="https://publications.waset.org/abstracts/120499/basic-evaluation-for-polyetherimide-membrane-using-spectroscopy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Wear Diagnosis of Diesel Engine Helical Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajanan%20Rane"> Gajanan Rane</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Rani"> Sushma Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20gear" title="helical gear">helical gear</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20defect" title=" casting defect"> casting defect</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a> </p> <a href="https://publications.waset.org/abstracts/49719/wear-diagnosis-of-diesel-engine-helical-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> SEM Image Classification Using CNN Architectures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCzi%CC%87n%20Ti%CC%87rke%C5%9F">Güzi̇n Ti̇rkeş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Teki%CC%87n"> Özge Teki̇n</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Kurtulu%C5%9F"> Kerem Kurtuluş</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yekta%20Yurtseven"> Y. Yekta Yurtseven</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Baran"> Murat Baran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title="convolutional neural networks">convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/160332/sem-image-classification-using-cnn-architectures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyfullah%20Madakbas">Seyfullah Madakbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Birtane"> Hatice Birtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhedral%20oligomeric%20silsesquioxanes" title=" polyhedral oligomeric silsesquioxanes"> polyhedral oligomeric silsesquioxanes</a> </p> <a href="https://publications.waset.org/abstracts/93175/thermal-properties-of-polyhedral-oligomeric-silsesquioxanespolyimide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Linek">M. Linek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title="scanning electron microscope">scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20concrete" title=" cement concrete"> cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=airfield%20pavements" title=" airfield pavements"> airfield pavements</a> </p> <a href="https://publications.waset.org/abstracts/53038/using-scanning-electron-microscope-and-computed-tomography-for-concrete-diagnostics-of-airfield-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Chand">Prakash Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Gaur"> Anurag Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashavani%20Kumar"> Ashavani Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nano-structures (Zn1-δCraFebO; where δ= a + b=20%, a = 5, 6, 8 & 10% and b=15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UV-visible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-structures" title="nano-structures">nano-structures</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide "> zinc oxide </a> </p> <a href="https://publications.waset.org/abstracts/11644/effect-of-cr-and-fe-doping-on-the-structural-and-optical-properties-of-zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3243</span> Effect of Mercerization on Coconut Fiber Surface Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sphiwe%20Simelane">Sphiwe Simelane</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Madyira"> Daniel Madyira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fibers requires that they should be treated in preparation for their use in Natural Fiber-reinforced polymer composites. This paper reports on the effects of sodium hydroxide (NaOH) treatment on the surface of coconut fibers. The fibers were subjected to 5%, 10%, 15% and 20% NaOH concentrations and soaked for 4 hours and thoroughly rinsed and allowed to dry in the open air for seven days, after which time they were dried in an oven for 30 minutes. Untreated and treated coconut fibers were observed under the Scanning Electron Microscope and it was noted that the surface structure of the fibers was modified differently by the different NaOH concentrations, and the resultant colour of the treated fibers got darker as the solution concentration increased, and the texture felt rougher to the touch as a result of the erosion of the fiber surface. Further, the increase in alkali concentration striped the surface of more constituents, thus exposing “pits” and other surface components rendering the surface rough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/138059/effect-of-mercerization-on-coconut-fiber-surface-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3242</span> Investigations on Microstructural and Raman Scattering Properties of B2O3 Doped Ba(Ti1-xZrx)O3 Nanoceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keri%CC%87m%20Emre%20%C3%96ks%C3%BCz">Keri̇m Emre Öksüz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eaduman%20%C5%9Een"> Şaduman Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=U%C4%9Fur%20%C5%9Een"> Uğur Şen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 0.5 wt. % B2O3–doped Ba (Ti1-xZrx) O3, (x=0-0.4) lead-free nanoceramics were synthesized using the solid-state reaction method by adopting the ball milling technique. The influence of the substitution content on crystallographic structure, phase transition, microstructure and sintering behaviour of BT and BZT ceramics were investigated. XRD analysis at room temperature revealed a structural transformation from tetragonal to rhombohedral with enhancement of ZrO2 content in the barium titanate matrix. The scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate microstructure and surface morphology of the sintered samples. The evolution of the Raman spectra was studied for various compositions, and the spectroscopic signature of the corresponding phase was determined. Scanning Electron Microscope (SEM) observations revealed enhanced microstructural uniformity and retarded grain growth with increasing Zr content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BaTiO3" title="BaTiO3">BaTiO3</a>, <a href="https://publications.waset.org/abstracts/search?q=barium-titanate-zirconate" title=" barium-titanate-zirconate"> barium-titanate-zirconate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoceramics" title=" nanoceramics"> nanoceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/34952/investigations-on-microstructural-and-raman-scattering-properties-of-b2o3-doped-bati1-xzrxo3-nanoceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3241</span> Investigation and Identification of a Number of Precious and Semi-precious Stones Related to Bam Historical Citadel Using Micro Raman Spectroscopy and Scanning Electron Microscopy (SEM/EDX)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Darkhal">Nazli Darkhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of gems and ornaments has been common in Iran since the beginning of history. The prosperity of the country, the wealth, and the interest of the people of this land in luxurious and glorious life, combined with beauty, have always attracted the attention of the gems and ornaments of the Iranian people. Iranians are famous in the world for having a long history of collecting and recognizing precious stones. In this case, we can use the unique treasure of national jewelry. Raman spectroscopy method is one of the oscillating spectroscopy methods that is classified in the group of nondestructive study methods, and like other methods, in addition to several advantages, it also has disadvantages and problems. Micro Raman spectroscopy is one of the different types of Raman spectroscopy in which an optical microscope is combined with a Raman device to provide more capabilities and advantages than its original method. In this way, with the help of Raman spectroscopy and a light microscope, while observing more details from different parts of the historical sample, natural or artificial pigments can be identified in a small part of it. The EDX electron microscope also functions as the basis for the interaction of the electron beam with the matter. The beams emitted from this interaction can be used to examine samples. In this article, in addition to introducing the micro Raman spectroscopy method, studies have been conducted on the structure of three samples of existing stones in the historic citadel of Bam. Using this method of study on precious and semi-precious stones, in addition to requiring a short time, can provide us with complete information about the structure and theme of these samples. The results of experiments and gemology of the stones showed that the selected beads are agate and jasper, and they can be placed in the chalcedony group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bam%20citadel" title="bam citadel">bam citadel</a>, <a href="https://publications.waset.org/abstracts/search?q=precious%20and%20semi-precious%20stones" title=" precious and semi-precious stones"> precious and semi-precious stones</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/146686/investigation-and-identification-of-a-number-of-precious-and-semi-precious-stones-related-to-bam-historical-citadel-using-micro-raman-spectroscopy-and-scanning-electron-microscopy-semedx" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3240</span> Impact of Machining Parameters on the Surface Roughness of Machined PU Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louis%20Denis%20Kevin%20Catherine">Louis Denis Kevin Catherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Aziz%20Raja%20Ma%E2%80%99arof"> Raja Aziz Raja Ma’arof</a>, <a href="https://publications.waset.org/abstracts/search?q=Azrina%20Arshad"> Azrina Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeth%20Suresh"> Sangeeth Suresh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. The polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition, the step over and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20%28PU%29" title="polyurethane (PU)">polyurethane (PU)</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment%20%28DOE%29" title=" design of experiment (DOE)"> design of experiment (DOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20%28SEM%29" title=" scanning electron microscope (SEM)"> scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/20483/impact-of-machining-parameters-on-the-surface-roughness-of-machined-pu-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3239</span> Comparative Scanning Electron Microscopic Observations of Anthelminthic Effect of Trigonella foenum-graecum on Paramphistomum cervi in Buffalo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Roat">Kiran Roat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Sanger"> Bhanupriya Sanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Swarnakar"> Gayatri Swarnakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amphistomiasis disease is the main health problem throughout of the world and responsible for great economic losses to cattle industries, mostly to poor cattle farmers in developing countries. Among the rumen parasites, the Paramphistomum cervi were collected from the rumen of freshly slaughtered buffalo for the further treatment process. Trigonella foenum-graecum is commonly known as methi and fenugreek and their seeds are known for their therapeutic value. The present study was considered to evaluate in vitro efficacy of aqueous extract of Trigonella foenum-graecum on P. cervi. 130 mg/ml concentration of aqueous extract shows total mortality of P. cervi at 5 hours. The ultrastructural surface topography of untreated animal was compared with a treated animal by scanning electron microscope (SEM). The body of untreated P. cervi in conical shape, tegumental surface is highly ridged with transverse folds and present abundance number of papillaes. Observations demonstrated that the body of treated P. cervi become shrunken & elongated. Treated parasite shows the deep breakage in tegument and the disappearance of tegumental folds & papillae. Severe blebs formations have been found. Above findings, it can be concluded that the seeds of Trigonella foenum-graecum can be used as an anthelminthic agent to eliminate P. cervi from the body of buffalo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paramphistomum%20cervi" title="Paramphistomum cervi">Paramphistomum cervi</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum-graecum" title=" Trigonella foenum-graecum"> Trigonella foenum-graecum</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo" title=" buffalo"> buffalo</a> </p> <a href="https://publications.waset.org/abstracts/57215/comparative-scanning-electron-microscopic-observations-of-anthelminthic-effect-of-trigonella-foenum-graecum-on-paramphistomum-cervi-in-buffalo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3238</span> Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Peyman%20Soleymani">Amir Peyman Soleymani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20Jankovic"> Jasna Jankovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20fuel%20cells" title="PEM fuel cells">PEM fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20batteries" title=" Li-ion batteries"> Li-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20and%203D%20imaging" title=" 2D and 3D imaging"> 2D and 3D imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20characterizations" title=" materials characterizations"> materials characterizations</a> </p> <a href="https://publications.waset.org/abstracts/111206/defects-analysis-components-distribution-and-properties-simulation-in-the-fuel-cells-and-batteries-by-2d-and-3d-characterization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3237</span> A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngmok%20Yun">Youngmok Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bosung%20Kim"> Bosung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Lee"> Sungho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeongsu%20Jeon"> Kyeongsu Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwook%20Hwangbo"> Hyunwook Hwangbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Byounggun%20Choi"> Byounggun Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betavoltaic" title="betavoltaic">betavoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear" title=" nuclear"> nuclear</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-63" title=" Ni-63"> Ni-63</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-isotope" title=" radio-isotope"> radio-isotope</a> </p> <a href="https://publications.waset.org/abstracts/50012/a-study-on-evaluation-for-performance-verification-of-ni-63-radioisotope-betavoltaic-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3236</span> Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khedr">Mohamed Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Farghali"> Ahmed Farghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20El%20Rouby"> Waleed El Rouby</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrhman%20Hamdeldeen"> Abdelrhman Hamdeldeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CeO2" title="CeO2">CeO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doped%20CeO2" title=" doped CeO2"> doped CeO2</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/62882/photocatalytic-activity-of-pure-and-doped-ceo2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3235</span> Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MTS" title="MTS">MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=HTST" title=" HTST"> HTST</a>, <a href="https://publications.waset.org/abstracts/search?q=ESEM" title=" ESEM"> ESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=E.COLI%20O157%3AH7" title=" E.COLI O157:H7"> E.COLI O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57139/morphology-analysis-of-apple-carrot-juice-treated-by-manothermosonication-mts-and-high-temperature-short-time-htst-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3234</span> Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahdi%20Rafiaei">Seyed Mahdi Rafiaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state" title="solid state">solid state</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/54006/synthesis-microstructure-and-photoluminescence-properties-of-yttrium-orthovanadates-influences-of-silica-nano-particles-and-nano-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3233</span> Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnamoorthy%20Sathiyan">Krishnamoorthy Sathiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanti%20Gopal%20Patra"> Shanti Gopal Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronen%20Bar-Ziv"> Ronen Bar-Ziv</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomer%20Zidki"> Tomer Zidki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalysts" title="electrocatalysts">electrocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum%20disulfide" title=" molybdenum disulfide"> molybdenum disulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution%20reaction" title=" oxygen evolution reaction"> oxygen evolution reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metals" title=" transition metals"> transition metals</a> </p> <a href="https://publications.waset.org/abstracts/118638/structural-alteration-of-mos2-by-incorporating-fe-co-composite-for-an-enhanced-oxygen-evolution-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3232</span> Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20S.%20Mohammed">Fatima S. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Derrick%20Crump"> Derrick Crump</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20dust" title="indoor dust">indoor dust</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmattan%20dust" title=" Harmattan dust"> Harmattan dust</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20effects" title=" health effects"> health effects</a> </p> <a href="https://publications.waset.org/abstracts/60517/physical-characterization-of-indoor-dust-particles-using-scanning-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3231</span> Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Mili%C4%8Devi%C4%87">I. Miličević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadzima%20Nyarko"> M. Hadzima Nyarko</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bu%C5%A1i%C4%87"> R. Bušić</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Simonovi%C4%87%20Radosavljevi%C4%87"> J. Simonović Radosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Prokopijevi%C4%87"> M. Prokopijević</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vojisavljevi%C4%87"> K. Vojisavljević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH%20treatment" title=" NaOH treatment"> NaOH treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20aggregate" title=" rubber aggregate"> rubber aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20rubberized%20concrete" title=" self-compacting rubberized concrete"> self-compacting rubberized concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20analysis" title=" scanning electron microscope analysis"> scanning electron microscope analysis</a> </p> <a href="https://publications.waset.org/abstracts/128606/effect-of-rubber-treatment-on-compressive-strength-and-modulus-of-elasticity-of-self-compacting-rubberized-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3230</span> Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syahrizal%20Ahmad">Mohamad Syahrizal Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Illyas%20M.%20Isa"> Illyas M. Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxybenzene" title="4-dihydroxybenzene">4-dihydroxybenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroquinone" title=" hydroquinone"> hydroquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/84969/electrochemical-detection-of-hydroquinone-by-square-wave-voltammetry-using-a-zn-layered-hydroxide-ferulate-modified-multiwall-carbon-nanotubes-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3229</span> Fatigue Strength of S275 Mild Steel under Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Aldeeb">T. Aldeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abduelmula"> M. Abduelmula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20strength" title="fatigue strength">fatigue strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%28FEA%29" title=" finite element analysis(FEA)"> finite element analysis(FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=S275%20mild%20steel" title=" S275 mild steel"> S275 mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20%28SEM%29" title=" scanning electron microscope (SEM)"> scanning electron microscope (SEM)</a> </p> <a href="https://publications.waset.org/abstracts/93422/fatigue-strength-of-s275-mild-steel-under-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3228</span> Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Chekin">Fereshteh Chekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Sadeghi"> Sepideh Sadeghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxide%20nanoparticles" title="nickel oxide nanoparticles">nickel oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20dodecyl%20sulphate" title=" sodium dodecyl sulphate"> sodium dodecyl sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilizer" title=" stabilizer"> stabilizer</a> </p> <a href="https://publications.waset.org/abstracts/14906/synthesis-of-nickel-oxide-nanoparticles-in-presence-of-sodium-dodecyl-sulphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3227</span> Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hui%20Lim">Yee Hui Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Gusareva"> Elena Gusareva</a>, <a href="https://publications.waset.org/abstracts/search?q=Irvan%20Luhung"> Irvan Luhung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Frank"> Yulia Frank</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Christoph%20Schuster"> Stephan Christoph Schuster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20microplastics" title="atmospheric microplastics">atmospheric microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20deposition" title=" wet deposition"> wet deposition</a> </p> <a href="https://publications.waset.org/abstracts/153093/metagenomics-composition-during-and-after-wet-deposition-and-the-presence-of-airborne-microplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3226</span> Palyno-Morphological Characteristics of Gymnosperm Flora of Pakistan and Its Taxonomic Implications with Light Microscope and Scanning Electron Microscopy Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raees%20Khan">Raees Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Z.%20Ul%20Abidin"> Sheikh Z. Ul Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20S.%20Mumtaz"> Abdul S. Mumtaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Liu"> Jie Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is intended to assess gymnosperms pollen flora of Pakistan using Light Microscope (LM) and Scanning Electron Microscopy (SEM) for its taxonomic significance in identification of gymnosperms. Pollens of 35 gymnosperm species (12 genera and five families) were collected from its various distributional sites of gymnosperms in Pakistan. LM and SEM were used to investigate different palyno-morphological characteristics. Five pollen types (i.e., Inaperturate, Monolete, Monoporate, Vesiculate-bisaccate, and Polyplicate) were observed. In equatorial view seven types of pollens were observed, in which ten species were sub-angular, nine species were triangular, six species were perprolate, three species were rhomboidal, three species were semi-angular, two species were rectangular and two species were prolate. While five types of pollen were observed in polar view, in which ten species were spheroidal, nine species were angular, eight were interlobate, six species were circular, and two species were elliptic. Eighteen species have rugulate and 17 species has faveolate ornamentation. Eighteen species have verrucate and 17 have gemmate type sculpturing. The data was analysed through cluster analysis. The study showed that these palyno-morphological features have significance value in classification and identification of gymnosperms. Based on these different palyno-morphological features, a taxonomic key was proposed for the accurate and fast identifications of gymnosperms from Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gymnosperms" title="gymnosperms">gymnosperms</a>, <a href="https://publications.waset.org/abstracts/search?q=palynology" title=" palynology"> palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/82016/palyno-morphological-characteristics-of-gymnosperm-flora-of-pakistan-and-its-taxonomic-implications-with-light-microscope-and-scanning-electron-microscopy-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3225</span> High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nese%20%20Ozturk%20Korpe">Nese Ozturk Korpe</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20H.%20Karas"> Muhammed H. Karas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titanium%20Aluminide" title="Titanium Aluminide">Titanium Aluminide</a>, <a href="https://publications.waset.org/abstracts/search?q=Volume%20Combustion%20Synthesis" title=" Volume Combustion Synthesis"> Volume Combustion Synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Intermetallic" title=" Intermetallic"> Intermetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=Porosity" title=" Porosity"> Porosity</a> </p> <a href="https://publications.waset.org/abstracts/120337/high-temperature-volume-combustion-synthesis-of-ti3al-with-low-porosities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3224</span> Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kerakra">S. Kerakra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhelal"> S. Bouhelal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poncot"> M. Poncot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotactic%20polypropylene" title="isotactic polypropylene">isotactic polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20recycled%20PET%20fibers" title=" hollow recycled PET fibers"> hollow recycled PET fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20recycled-PET%20fibers" title=" solid recycled-PET fibers"> solid recycled-PET fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber" title=" short fiber"> short fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/87527/effect-of-hollow-and-solid-recycled-poly-fibers-on-the-mechanical-and-morphological-properties-of-short-fiber-reinforced-polypropylene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3223</span> Production and Characterization of Nanofibrillated Cellulose from Kenaf Core (Hibiscus cannabinus) via Ultrasonic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley">R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ainun%20Zuriyati"> M. A. Ainun Zuriyati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on production and characterizations of nanofibrillated cellulose (NFC) from kenaf core. NFC was produced by employing ultrasonic treatments in aqueous solution. Field emission scanning electron microscope (FESEM) and scanning transmission electron microscopy (STEM) were used to study the size and morphology structure. The chemical and characteristics of the cellulose and NFC were studied using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscometer. Degrees of polymerization (DP) of cellulose and NFC were obtained via viscosity value. Results showed that 5 to 47 nm diameters of fibrils were measured. Moreover, the thermal stability of the NFC was increased as compared to the cellulose that confirmed by TGA analysis. It was also found that NFC had higher crystallinity and lower viscosity than the cellulose which were measured by XRD and viscometer, respectively. The NFC characteristics have enormous prospect related to bio-nanocomposite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallinity" title="crystallinity">crystallinity</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20core" title=" kenaf core"> kenaf core</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose" title=" nanofibrillated cellulose"> nanofibrillated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/42007/production-and-characterization-of-nanofibrillated-cellulose-from-kenaf-core-hibiscus-cannabinus-via-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3222</span> A Comparative Study of Essential Oils Used in Papyrus Sterilization: A Case Study from the Early Islamic Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahaa%20Fawwaz%E2%80%AC%E2%80%8F">Bahaa Fawwaz‬‏</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted on a papyrus housed at the Museum of Islamic Art in Cairo, Egypt. This papyrus was inscribed with black ink. Twelve fungal species were isolated and identified. Five types of fungi were ultimately identified to complete the study. The isolated fungi were then incubated for three months after the aging procedure. This study investigates the in-vitro growth inhibition of Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Trichoderma longibrachiatum Rifai, and Paecilomyces variotii on papyrus. The hyphal growth was observed using the environmental scanning electron microscope (ESEM). Natural oils, such as lavender oil, lemongrass oil, and rosemary oil, were used. The impact of these natural oils on the newly aged papyrus was assessed using scanning electron microscopy and color analysis to identify the most effective oils for inhibiting fungus growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=papyrus" title=" papyrus"> papyrus</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a> </p> <a href="https://publications.waset.org/abstracts/186141/a-comparative-study-of-essential-oils-used-in-papyrus-sterilization-a-case-study-from-the-early-islamic-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3221</span> Synthesis of Rare Earth Doped Nano-Phosphors through the Use of Isobutyl Nitrite and Urea Fuels: Study of Microstructure and Luminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahdi%20Rafiaei">Seyed Mahdi Rafiaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, red emitting Eu³⁺ doped YVO₄ nano-phosphors have been synthesized via the facile combustion method using isobutyl nitrite and urea fuels, individually. Field-emission scanning electron microscope (FE-SEM) images, high resolution transmission electron microscope (TEM) images and X-ray diffraction (XRD) spectra reveal that the mentioned fuels can be used successfully to synthesis YVO₄: Eu³⁺ nano-particles. Interestingly, the fuels have a large effect on the size and morphology of nano-phosphors as well as luminescence properties. Noteworthy the use of isobutyl nitrite provides an average particle size of 65 nm, while the employment of urea, results in the formation of larger particles and also provides higher photoluminescence emission intensity. The improved luminescence performance is attributed to the condition of chemical reaction via the combustion synthesis and the size of synthesized phosphors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphors" title="phosphors">phosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=fuels" title=" fuels"> fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/93632/synthesis-of-rare-earth-doped-nano-phosphors-through-the-use-of-isobutyl-nitrite-and-urea-fuels-study-of-microstructure-and-luminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3220</span> The Conservation of the Botanical Collar of Tutankhamun</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safwat%20Mohamed%20Sayed%20Ali">Safwat Mohamed Sayed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Kamal"> Hussein Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the conservation procedures of the botanical collar of King Tutankhamun. It dates back to the new Kingdom. This collar was kept in a box but found in bad condition. Many parts of the collar were separated. The collar suffered from dryness and dust, so it needed to be cleaned mechanically and recollected together. Japanese paper was used to collect the separated parts of the collar on a linen thread. The linen thread was dyed with organic dye to match the color of the plant material. The guidance in collecting the different parts of the plant collar is the original photograph captured at the discovery of the tomb. Also, the optical microscope was used in collecting fractured parts. The weak parts of the collar were treated with a suitable consolidation material. Klucel G dissolved in Ethyl Alcohol 0.5% was used in the treatment and gave convenient results. Some investigations were executed in order to identify the plant types used in making the botanical collar. Scanning Electron microscope and optical microscope were used in plant identification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=investigation" title=" investigation"> investigation</a> </p> <a href="https://publications.waset.org/abstracts/171861/the-conservation-of-the-botanical-collar-of-tutankhamun" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=108">108</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10