CINXE.COM

Campo (matematica) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Campo (matematica) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"0e5ce3d6-9eef-46aa-ae11-e3e685be2a00","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Campo_(matematica)","wgTitle":"Campo (matematica)","wgCurRevisionId":141926961,"wgRevisionId":141926961,"wgArticleId":31716,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Voci con modulo citazione e parametro coautori","P6706 letta da Wikidata","P1417 letta da Wikidata","P2812 letta da Wikidata","P7554 letta da Wikidata","Voci con codice Thesaurus BNCF","Voci non biografiche con codici di controllo di autorità","Teoria dei campi","Strutture algebriche"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Campo_(matematica)","wgRelevantArticleId":31716, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q190109","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat", "ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=it&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=ext.gadget.coloriDarkMode-default&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Campo (matematica) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Campo_(matematica)"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Campo_(matematica)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Campo_(matematica)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Campo_matematica rootpage-Campo_matematica skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L&#039;enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_it.wikipedia.org&amp;uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&amp;returnto=Campo+%28matematica%29" title="Si consiglia di registrarsi e di effettuare l&#039;accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&amp;returnto=Campo+%28matematica%29" title="Si consiglia di effettuare l&#039;accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_it.wikipedia.org&amp;uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&amp;returnto=Campo+%28matematica%29" title="Si consiglia di registrarsi e di effettuare l&#039;accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&amp;returnto=Campo+%28matematica%29" title="Si consiglia di effettuare l&#039;accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Storia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Storia"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Storia</span> </div> </a> <ul id="toc-Storia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definizione_formale" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione_formale"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definizione formale</span> </div> </a> <ul id="toc-Definizione_formale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Esempi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Esempi</span> </div> </a> <button aria-controls="toc-Esempi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Esempi</span> </button> <ul id="toc-Esempi-sublist" class="vector-toc-list"> <li id="toc-Campi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Campi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Campi</span> </div> </a> <ul id="toc-Campi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Anelli_che_non_sono_campi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anelli_che_non_sono_campi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Anelli che non sono campi</span> </div> </a> <ul id="toc-Anelli_che_non_sono_campi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Corpi_che_non_sono_campi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Corpi_che_non_sono_campi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Corpi che non sono campi</span> </div> </a> <ul id="toc-Corpi_che_non_sono_campi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relazione_con_altre_strutture_algebriche" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relazione_con_altre_strutture_algebriche"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relazione con altre strutture algebriche</span> </div> </a> <button aria-controls="toc-Relazione_con_altre_strutture_algebriche-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Relazione con altre strutture algebriche</span> </button> <ul id="toc-Relazione_con_altre_strutture_algebriche-sublist" class="vector-toc-list"> <li id="toc-Anelli" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anelli"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Anelli</span> </div> </a> <ul id="toc-Anelli-sublist" class="vector-toc-list"> <li id="toc-Caratteristica" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Caratteristica"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Caratteristica</span> </div> </a> <ul id="toc-Caratteristica-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gruppi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gruppi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Gruppi</span> </div> </a> <ul id="toc-Gruppi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_vettoriali" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spazi_vettoriali"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Spazi vettoriali</span> </div> </a> <ul id="toc-Spazi_vettoriali-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sottocampi_e_estensione_di_campi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sottocampi_e_estensione_di_campi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Sottocampi e estensione di campi</span> </div> </a> <button aria-controls="toc-Sottocampi_e_estensione_di_campi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Sottocampi e estensione di campi</span> </button> <ul id="toc-Sottocampi_e_estensione_di_campi-sublist" class="vector-toc-list"> <li id="toc-Estensioni_algebriche_e_trascendenti" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estensioni_algebriche_e_trascendenti"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Estensioni algebriche e trascendenti</span> </div> </a> <ul id="toc-Estensioni_algebriche_e_trascendenti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Costruzione_di_estensioni_algebriche" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Costruzione_di_estensioni_algebriche"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Costruzione di estensioni algebriche</span> </div> </a> <ul id="toc-Costruzione_di_estensioni_algebriche-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Teoria_di_Galois" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Teoria_di_Galois"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Teoria di Galois</span> </div> </a> <button aria-controls="toc-Teoria_di_Galois-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Teoria di Galois</span> </button> <ul id="toc-Teoria_di_Galois-sublist" class="vector-toc-list"> <li id="toc-Isomorfismi_e_automorfismi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isomorfismi_e_automorfismi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Isomorfismi e automorfismi</span> </div> </a> <ul id="toc-Isomorfismi_e_automorfismi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Estensioni_normali_e_separabili" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estensioni_normali_e_separabili"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Estensioni normali e separabili</span> </div> </a> <ul id="toc-Estensioni_normali_e_separabili-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Corrispondenza_di_Galois" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Corrispondenza_di_Galois"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Corrispondenza di Galois</span> </div> </a> <ul id="toc-Corrispondenza_di_Galois-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Estensioni_semplici_ed_elementi_primitivi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Estensioni_semplici_ed_elementi_primitivi"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Estensioni semplici ed elementi primitivi</span> </div> </a> <ul id="toc-Estensioni_semplici_ed_elementi_primitivi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Campi_finiti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Campi_finiti"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Campi finiti</span> </div> </a> <ul id="toc-Campi_finiti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l&#039;indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l&#039;indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Campo (matematica)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un&#039;altra lingua. Disponibile in 64 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-64" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">64 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%82%D9%84_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="حقل (رياضيات) - arabo" lang="ar" hreflang="ar" data-title="حقل (رياضيات)" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AF%D0%BB%D0%B0%D0%BD_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Ялан (алгебра) - baschiro" lang="ba" hreflang="ba" data-title="Ялан (алгебра)" data-language-autonym="Башҡортса" data-language-local-name="baschiro" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Поле (алгебра) - bielorusso" lang="be" hreflang="be" data-title="Поле (алгебра)" data-language-autonym="Беларуская" data-language-local-name="bielorusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Поле (алгебра) - bulgaro" lang="bg" hreflang="bg" data-title="Поле (алгебра)" data-language-autonym="Български" data-language-local-name="bulgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A7%87%E0%A6%A4%E0%A7%8D%E0%A6%B0_(%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4)" title="ক্ষেত্র (গণিত) - bengalese" lang="bn" hreflang="bn" data-title="ক্ষেত্র (গণিত)" data-language-autonym="বাংলা" data-language-local-name="bengalese" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Polje_(matematika)" title="Polje (matematika) - bosniaco" lang="bs" hreflang="bs" data-title="Polje (matematika)" data-language-autonym="Bosanski" data-language-local-name="bosniaco" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Cos_(matem%C3%A0tiques)" title="Cos (matemàtiques) - catalano" lang="ca" hreflang="ca" data-title="Cos (matemàtiques)" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%85%DB%95%DB%8C%D8%AF%D8%A7%D9%86_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="مەیدان (ماتماتیک) - curdo centrale" lang="ckb" hreflang="ckb" data-title="مەیدان (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="curdo centrale" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Komutativn%C3%AD_t%C4%9Bleso" title="Komutativní těleso - ceco" lang="cs" hreflang="cs" data-title="Komutativní těleso" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%D0%B9_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Уй (алгебра) - ciuvascio" lang="cv" hreflang="cv" data-title="Уй (алгебра)" data-language-autonym="Чӑвашла" data-language-local-name="ciuvascio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Legeme_(algebra)" title="Legeme (algebra) - danese" lang="da" hreflang="da" data-title="Legeme (algebra)" data-language-autonym="Dansk" data-language-local-name="danese" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/K%C3%B6rper_(Algebra)" title="Körper (Algebra) - tedesco" lang="de" hreflang="de" data-title="Körper (Algebra)" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%8E%CE%BC%CE%B1_(%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1)" title="Σώμα (άλγεβρα) - greco" lang="el" hreflang="el" data-title="Σώμα (άλγεβρα)" data-language-autonym="Ελληνικά" data-language-local-name="greco" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="voce di qualità"><a href="https://en.wikipedia.org/wiki/Field_(mathematics)" title="Field (mathematics) - inglese" lang="en" hreflang="en" data-title="Field (mathematics)" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kampo_(algebro)" title="Kampo (algebro) - esperanto" lang="eo" hreflang="eo" data-title="Kampo (algebro)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cuerpo_(matem%C3%A1ticas)" title="Cuerpo (matemáticas) - spagnolo" lang="es" hreflang="es" data-title="Cuerpo (matemáticas)" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Korpus_(matemaatika)" title="Korpus (matemaatika) - estone" lang="et" hreflang="et" data-title="Korpus (matemaatika)" data-language-autonym="Eesti" data-language-local-name="estone" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Gorputz_(matematika)" title="Gorputz (matematika) - basco" lang="eu" hreflang="eu" data-title="Gorputz (matematika)" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%DB%8C%D8%AF%D8%A7%D9%86_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="میدان (ریاضیات) - persiano" lang="fa" hreflang="fa" data-title="میدان (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kunta_(matematiikka)" title="Kunta (matematiikka) - finlandese" lang="fi" hreflang="fi" data-title="Kunta (matematiikka)" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Korpus_(mat%C3%B5maatiga)" title="Korpus (matõmaatiga) - võro" lang="vro" hreflang="vro" data-title="Korpus (matõmaatiga)" data-language-autonym="Võro" data-language-local-name="võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Corps_commutatif" title="Corps commutatif - francese" lang="fr" hreflang="fr" data-title="Corps commutatif" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/R%C3%A9imse_(matamaitic)" title="Réimse (matamaitic) - irlandese" lang="ga" hreflang="ga" data-title="Réimse (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="irlandese" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Corpo_(%C3%A1lxebra)" title="Corpo (álxebra) - galiziano" lang="gl" hreflang="gl" data-title="Corpo (álxebra)" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%93%D7%94_(%D7%9E%D7%91%D7%A0%D7%94_%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%99)" title="שדה (מבנה אלגברי) - ebraico" lang="he" hreflang="he" data-title="שדה (מבנה אלגברי)" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A5%87%E0%A4%A4%E0%A5%8D%E0%A4%B0_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4)" title="क्षेत्र (गणित) - hindi" lang="hi" hreflang="hi" data-title="क्षेत्र (गणित)" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Polje_(matematika)" title="Polje (matematika) - croato" lang="hr" hreflang="hr" data-title="Polje (matematika)" data-language-autonym="Hrvatski" data-language-local-name="croato" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Test_(algebra)" title="Test (algebra) - ungherese" lang="hu" hreflang="hu" data-title="Test (algebra)" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Corpore_(mathematica)" title="Corpore (mathematica) - interlingua" lang="ia" hreflang="ia" data-title="Corpore (mathematica)" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Lapangan_(matematika)" title="Lapangan (matematika) - indonesiano" lang="id" hreflang="id" data-title="Lapangan (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Feldo_(algebro)" title="Feldo (algebro) - ido" lang="io" hreflang="io" data-title="Feldo (algebro)" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8F%AF%E6%8F%9B%E4%BD%93" title="可換体 - giapponese" lang="ja" hreflang="ja" data-title="可換体" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학) - coreano" lang="ko" hreflang="ko" data-title="체 (수학)" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Corpus_(mathematica)" title="Corpus (mathematica) - latino" lang="la" hreflang="la" data-title="Corpus (mathematica)" data-language-autonym="Latina" data-language-local-name="latino" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Kierper_(Algeber)" title="Kierper (Algeber) - lussemburghese" lang="lb" hreflang="lb" data-title="Kierper (Algeber)" data-language-autonym="Lëtzebuergesch" data-language-local-name="lussemburghese" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Camp_(matematega)" title="Camp (matematega) - lombardo" lang="lmo" hreflang="lmo" data-title="Camp (matematega)" data-language-autonym="Lombard" data-language-local-name="lombardo" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Lauks_(matem%C4%81tika)" title="Lauks (matemātika) - lettone" lang="lv" hreflang="lv" data-title="Lauks (matemātika)" data-language-autonym="Latviešu" data-language-local-name="lettone" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Medan_(matematik)" title="Medan (matematik) - malese" lang="ms" hreflang="ms" data-title="Medan (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="malese" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lichaam_(Ned)_/_Veld_(Be)" title="Lichaam (Ned) / Veld (Be) - olandese" lang="nl" hreflang="nl" data-title="Lichaam (Ned) / Veld (Be)" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Kropp_i_matematikk" title="Kropp i matematikk - norvegese nynorsk" lang="nn" hreflang="nn" data-title="Kropp i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegese nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Tallkropp" title="Tallkropp - norvegese bokmål" lang="nb" hreflang="nb" data-title="Tallkropp" data-language-autonym="Norsk bokmål" data-language-local-name="norvegese bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Cia%C5%82o_(matematyka)" title="Ciało (matematyka) - polacco" lang="pl" hreflang="pl" data-title="Ciało (matematyka)" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Camp_(matem%C3%A0tica)" title="Camp (matemàtica) - piemontese" lang="pms" hreflang="pms" data-title="Camp (matemàtica)" data-language-autonym="Piemontèis" data-language-local-name="piemontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Corpo_(matem%C3%A1tica)" title="Corpo (matemática) - portoghese" lang="pt" hreflang="pt" data-title="Corpo (matemática)" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Corp_comutativ" title="Corp comutativ - rumeno" lang="ro" hreflang="ro" data-title="Corp comutativ" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Поле (алгебра) - russo" lang="ru" hreflang="ru" data-title="Поле (алгебра)" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Campu_(matimatica)" title="Campu (matimatica) - siciliano" lang="scn" hreflang="scn" data-title="Campu (matimatica)" data-language-autonym="Sicilianu" data-language-local-name="siciliano" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Polje_(matematika)" title="Polje (matematika) - serbo-croato" lang="sh" hreflang="sh" data-title="Polje (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbo-croato" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Field_(mathematics)" title="Field (mathematics) - Simple English" lang="en-simple" hreflang="en-simple" data-title="Field (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Pole_(algebra)" title="Pole (algebra) - slovacco" lang="sk" hreflang="sk" data-title="Pole (algebra)" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Fusha_(matematik%C3%AB)" title="Fusha (matematikë) - albanese" lang="sq" hreflang="sq" data-title="Fusha (matematikë)" data-language-autonym="Shqip" data-language-local-name="albanese" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D0%BE%D1%99%D0%B5_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Поље (математика) - serbo" lang="sr" hreflang="sr" data-title="Поље (математика)" data-language-autonym="Српски / srpski" data-language-local-name="serbo" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kropp_(algebra)" title="Kropp (algebra) - svedese" lang="sv" hreflang="sv" data-title="Kropp (algebra)" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%B3%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="களம் (கணிதம்) - tamil" lang="ta" hreflang="ta" data-title="களம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B5%E0%B8%A5%E0%B8%94%E0%B9%8C" title="ฟีลด์ - thailandese" lang="th" hreflang="th" data-title="ฟีลด์" data-language-autonym="ไทย" data-language-local-name="thailandese" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Cisim_(cebir)" title="Cisim (cebir) - turco" lang="tr" hreflang="tr" data-title="Cisim (cebir)" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Поле (алгебра) - ucraino" lang="uk" hreflang="uk" data-title="Поле (алгебра)" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%DB%8C%D8%AF%D8%A7%D9%86" title="میدان - urdu" lang="ur" hreflang="ur" data-title="میدان" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Tr%C6%B0%E1%BB%9Dng_(%C4%91%E1%BA%A1i_s%E1%BB%91)" title="Trường (đại số) - vietnamita" lang="vi" hreflang="vi" data-title="Trường (đại số)" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%9F%9F%EF%BC%88%E6%95%B0%E5%AD%A6%EF%BC%89" title="域(数学) - wu" lang="wuu" hreflang="wuu" data-title="域(数学)" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9F%9F_(%E6%95%B0%E5%AD%A6)" title="域 (数学) - cinese" lang="zh" hreflang="zh" data-title="域 (数学)" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%9F%9F_(%E4%BB%A3%E6%95%B8)" title="域 (代數) - cinese classico" lang="lzh" hreflang="lzh" data-title="域 (代數)" data-language-autonym="文言" data-language-local-name="cinese classico" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Th%C3%A9_(s%C3%B2%CD%98-ha%CC%8Dk)" title="Thé (sò͘-ha̍k) - min nan" lang="nan" hreflang="nan" data-title="Thé (sò͘-ha̍k)" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%AB%94_(%E6%95%B8%E5%AD%B8)" title="體 (數學) - cantonese" lang="yue" hreflang="yue" data-title="體 (數學)" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190109#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Campo_(matematica)" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Campo_(matematica)" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Campo_(matematica)"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Campo_(matematica)"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Campo_(matematica)" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Campo_(matematica)" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;oldid=141926961" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&amp;page=Campo_%28matematica%29&amp;id=141926961&amp;wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&amp;url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FCampo_%28matematica%29"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&amp;url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FCampo_%28matematica%29"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&amp;bookcmd=book_creator&amp;referer=Campo+%28matematica%29"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&amp;page=Campo_%28matematica%29&amp;action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Campo_(matematica)&amp;printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190109" title="Collegamento all&#039;elemento connesso dell&#039;archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l&#039;enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><p>In <a href="/wiki/Matematica" title="Matematica">matematica</a>, un <b>campo</b> è una <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">struttura algebrica</a> composta da un <a href="/wiki/Insieme" title="Insieme">insieme</a> non <a href="/wiki/Insieme_vuoto" title="Insieme vuoto">vuoto</a> e da due <a href="/wiki/Operazione_binaria" title="Operazione binaria">operazioni binarie</a> <a href="/wiki/Operazione_interna" title="Operazione interna">interne</a> (chiamate <i>somma</i> e <i>prodotto</i> e indicate di solito rispettivamente con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9972f426d9e07855984f73ee195a21dbc21755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.079ex; margin-bottom: -0.25ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle *}"></span>) che godono di proprietà assimilabili a quelle verificate da somma e prodotto sui <a href="/wiki/Numeri_razionali" class="mw-redirect" title="Numeri razionali">numeri razionali</a> o <a href="/wiki/Numeri_reali" class="mw-redirect" title="Numeri reali">reali</a> o anche <a href="/wiki/Numero_complesso" title="Numero complesso">complessi</a>. </p><p>Il campo è una struttura algebrica basilare in matematica, necessaria per lo studio approfondito dei <a href="/wiki/Polinomio" title="Polinomio">polinomi</a> e delle loro <a href="/wiki/Radice_(matematica)" title="Radice (matematica)">radici</a>, e per la definizione degli <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazi vettoriali</a>. Nel contesto degli spazi vettoriali un elemento di un campo è detto <i><a href="/wiki/Scalare_(matematica)" title="Scalare (matematica)">scalare</a></i>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Storia">Storia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=1" title="Modifica la sezione Storia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Storia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Storicamente le tre discipline algebriche che hanno portato al concetto di campo sono il problema della risoluzione delle <a href="/wiki/Equazione_algebrica" title="Equazione algebrica">equazioni polinomiali</a>, la <a href="/wiki/Teoria_algebrica_dei_numeri" title="Teoria algebrica dei numeri">teoria algebrica dei numeri</a> e la <a href="/wiki/Geometria_algebrica" title="Geometria algebrica">geometria algebrica</a>. Un primo contributo alla nozione di campo fu apportato nel 1770 da <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a> nei suoi studi sulla risoluzione delle equazioni polinomiali riuscendo di fatto a collegare i concetti di campo e <a href="/wiki/Gruppo_algebrico" title="Gruppo algebrico">gruppo algebrico</a>. Nel 1832 <a href="/wiki/%C3%89variste_Galois" title="Évariste Galois">Évariste Galois</a> ideò i criteri necessari e sufficienti affinché un'equazione polinomiale fosse risolvibile algebricamente, dando così origine alla <a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">teoria di Galois</a>, che pur senza averne concepito una nozione esplicita, fece ampio uso dei concetti di campo e gruppo. Nel 1871 <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> introdusse con il termine "campo" un insieme di numeri reali o complessi chiuso sotto le quattro operazioni aritmetiche. Il concetto fu poi ripreso nel 1881 da <a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Leopold Kronecker</a> che definì il campo di frazioni razionali come "dominio di razionalità". </p><p>La prima nozione formale di campo fu elaborata da 1893 da <a href="/wiki/Heinrich_Martin_Weber" title="Heinrich Martin Weber">Heinrich Martin Weber</a> e da questa iniziò quindi svilupparsi nei primi anni del <a href="/wiki/XX_secolo" title="XX secolo">XX secolo</a> la teoria dei campi grazie ai lavori di <a href="/wiki/Giuseppe_Veronese" title="Giuseppe Veronese">Giuseppe Veronese</a>, <a href="/wiki/Kurt_Hensel" title="Kurt Hensel">Kurt Hensel</a> ed <a href="/wiki/Ernst_Steinitz" title="Ernst Steinitz">Ernst Steinitz</a>. La <a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">teoria di Galois</a> tra il 1928 e il 1942 da <a href="/wiki/Emil_Artin" title="Emil Artin">Emil Artin</a> che eliminò la dipendenza della teoria dal <a href="/wiki/Teorema_dell%27elemento_primitivo" title="Teorema dell&#39;elemento primitivo">teorema dell'elemento primitivo</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Definizione_formale">Definizione formale</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=2" title="Modifica la sezione Definizione formale" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Definizione formale"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> non vuoto dotato di due operazioni binarie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9972f426d9e07855984f73ee195a21dbc21755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.079ex; margin-bottom: -0.25ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle *}"></span> è un campo se valgono le seguenti proprietà:<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> insieme all'operazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6ef363cd19902d1a7a71fb1c8b21e8ede52406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle +}"></span> è un <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">gruppo abeliano</a> con elemento neutro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)+c=a+(b+c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)+c=a+(b+c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b7b8d31d5845966e6abdbb030c73f343c17d4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:2.843ex;" alt="{\displaystyle (a+b)+c=a+(b+c)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=b+a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=b+a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684f43b5094501674e8314be5e24a80ee64682e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.234ex; height:2.343ex;" alt="{\displaystyle a+b=b+a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+a=a+0=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+a=a+0=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3c942c503fbd5094d165ac732129a285e29cfcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.892ex; height:2.343ex;" alt="{\displaystyle 0+a=a+0=a}"></span></li> <li>per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> esiste <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e0982b5868a66be1ed3ad7ef4bcd3d3db20f982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle -a}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+(-a)=-a+a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+(-a)=-a+a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/222b662f9f2ccb53749b2f003c9f0159892510e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.385ex; height:2.843ex;" alt="{\displaystyle a+(-a)=-a+a=0}"></span></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\setminus \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\setminus \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12835c964f389ba3df759462067bf0087becac7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.748ex; height:2.843ex;" alt="{\displaystyle K\setminus \{0\}}"></span> insieme all'operazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle *}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2217;<!-- ∗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle *}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9972f426d9e07855984f73ee195a21dbc21755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.079ex; margin-bottom: -0.25ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle *}"></span> è un <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">gruppo abeliano</a> con elemento neutro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a*b)*c=a*(b*c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a*b)*c=a*(b*c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b5f454bc3f6f4cd80632e092956d92ce2afd5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.964ex; height:2.843ex;" alt="{\displaystyle (a*b)*c=a*(b*c)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a*b=b*a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a*b=b*a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc7a1235743322cc522c4ecddbc3bb6ca354eb65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.943ex; height:2.176ex;" alt="{\displaystyle a*b=b*a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1*a=a*1=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2217;<!-- ∗ --></mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mn>1</mn> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1*a=a*1=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3119e96dcd920ddf9a9af14da847bde89bad8d7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.601ex; height:2.176ex;" alt="{\displaystyle 1*a=a*1=a}"></span></li> <li>per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455a7f96d74aa94573d8e32da3b240ab0aa294f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.491ex; height:2.676ex;" alt="{\displaystyle a\neq 0}"></span> esiste <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5709c8d86f7fec8fb86069bf5d15a9eabe564e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.563ex; height:2.676ex;" alt="{\displaystyle a^{-1}}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a*a^{-1}=a^{-1}*a=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a*a^{-1}=a^{-1}*a=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc1ef99e0acd41d40cd2461350e7fbcd5ef2fc61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:21.334ex; height:2.676ex;" alt="{\displaystyle a*a^{-1}=a^{-1}*a=1}"></span></li></ul> <p>La moltiplicazione è <a href="/wiki/Distributivit%C3%A0" title="Distributività">distributiva</a> rispetto all'addizione: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a*(b+c)=(a*b)+(a*c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a*(b+c)=(a*b)+(a*c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6efbc7c717a9d321dd65adc887cc797722d4ee15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.49ex; height:2.843ex;" alt="{\displaystyle a*(b+c)=(a*b)+(a*c)}"></span></li></ul> <p>(le relazioni devono valere per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>) </p><p>Ciascuna delle seguenti definizioni di campo è equivalente a quella data: </p> <ul><li>un <a href="/wiki/Anello_commutativo" title="Anello commutativo">anello commutativo</a> con unità in cui ogni elemento non nullo ha un inverso;</li> <li>un <a href="/wiki/Corpo_(matematica)" title="Corpo (matematica)">corpo</a> commutativo rispetto alla moltiplicazione.</li></ul> <p>Il <i>gruppo moltiplicativo</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> meno l'elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> è solitamente indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee44d723b0d9bf440e04a664ea1e6e1958d743de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.148ex; height:2.343ex;" alt="{\displaystyle K^{*}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Esempi">Esempi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=3" title="Modifica la sezione Esempi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Esempi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Campi">Campi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=4" title="Modifica la sezione Campi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Campi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>L'insieme dei <a href="/wiki/Numero_razionale" title="Numero razionale">numeri razionali</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>, con le operazioni di <a href="/wiki/Addizione" title="Addizione">addizione</a> e <a href="/wiki/Moltiplicazione" title="Moltiplicazione">moltiplicazione</a> usuali tra numeri è un campo.</li> <li>L'insieme dei <a href="/wiki/Numero_reale" title="Numero reale">numeri reali</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, con le operazioni di <a href="/wiki/Addizione" title="Addizione">addizione</a> e <a href="/wiki/Moltiplicazione" title="Moltiplicazione">moltiplicazione</a> tra numeri reali è un campo.</li> <li>L'insieme dei <a href="/wiki/Numero_complesso" title="Numero complesso">numeri complessi</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>, con l'appropriata estensione delle operazioni di <a href="/wiki/Addizione" title="Addizione">addizione</a> e <a href="/wiki/Moltiplicazione" title="Moltiplicazione">moltiplicazione</a> è un campo.</li> <li>I <a href="/wiki/Numero_algebrico" title="Numero algebrico">numeri algebrici</a> formano un campo.</li> <li>I <a href="/wiki/Numeri_surreali" class="mw-redirect" title="Numeri surreali">numeri surreali</a> e i <a href="/wiki/Numeri_p-adici" class="mw-redirect" title="Numeri p-adici">numeri p-adici</a> formano dei campi.</li> <li>L'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /p\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57869a3a3c4c431cc49c4c7ab1d9c7ea692b517b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.433ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"></span> delle <a href="/wiki/Aritmetica_modulare" title="Aritmetica modulare">classi di resto</a> modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> con le usuali operazioni di somma e prodotto forma un campo se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> è un <a href="/wiki/Numero_primo" title="Numero primo">numero primo</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Anelli_che_non_sono_campi">Anelli che non sono campi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=5" title="Modifica la sezione Anelli che non sono campi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: Anelli che non sono campi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>L'esempio più importante è l'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> dei <a href="/wiki/Numeri_interi" class="mw-redirect" title="Numeri interi">numeri interi</a>: non è un campo perché i soli elementi ad avere un inverso moltiplicativo sono <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span>.</li> <li>Il prodotto di anelli è un anello, ma il prodotto di campi non è un campo. Quindi ad esempio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}=\mathbb {R} \times \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}=\mathbb {R} \times \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd1ccce2a9e51985a297fe9cb76a94c9afa24e1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.027ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}=\mathbb {R} \times \mathbb {R} }"></span> è un anello ma non un campo: l'elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b53cc1773694affcc1d4d6c2c778d43156a1206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (1,0)}"></span> non ha un inverso.</li> <li>Ogni <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d&#39;integrità">dominio d'integrità</a> finito è un campo.</li></ul> <p>D'altra parte, ogni <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d&#39;integrità">dominio d'integrità</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è contenuto in un campo, detto <a href="/wiki/Campo_quoziente" class="mw-redirect" title="Campo quoziente">campo quoziente</a>, che è il "più piccolo" campo fra quelli contenenti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Il campo quoziente di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Corpi_che_non_sono_campi">Corpi che non sono campi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=6" title="Modifica la sezione Corpi che non sono campi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Corpi che non sono campi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>I <a href="/wiki/Quaternioni" class="mw-redirect" title="Quaternioni">quaternioni</a> non formano un campo, perché l'operazione di moltiplicazione non è commutativa.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Relazione_con_altre_strutture_algebriche">Relazione con altre strutture algebriche</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=7" title="Modifica la sezione Relazione con altre strutture algebriche" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=7" title="Edit section&#039;s source code: Relazione con altre strutture algebriche"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Anelli">Anelli</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=8" title="Modifica la sezione Anelli" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=8" title="Edit section&#039;s source code: Anelli"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Come notato precedentemente, i campi sono dei particolari <a href="/wiki/Anello_(algebra)" title="Anello (algebra)">anelli</a>, anche se la maggior parte degli strumenti impiegati nello studio di questi ultimi non permette di dare molte informazioni sui campi. Gli unici <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">ideali</a> di un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, ad esempio, sono <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> stesso e l'<a href="/wiki/Ideale_nullo" title="Ideale nullo">ideale nullo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff0df9ef65c0572eb676580ce1c02b8ec40f694" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\displaystyle \{0\}}"></span>: questo implica che ogni <a href="/wiki/Omomorfismo" title="Omomorfismo">omomorfismo</a> non nullo a valori in un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> ha un <a href="/wiki/Nucleo_(matematica)" title="Nucleo (matematica)">nucleo</a> banale, ed è quindi <a href="/wiki/Funzione_iniettiva" title="Funzione iniettiva">iniettivo</a>, ovvero è un'<a href="/wiki/Estensione_di_campi" title="Estensione di campi">estensione di campi</a>. </p><p>Un campo è anche un <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d&#39;integrità">dominio d'integrità</a> e un particolare <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">dominio euclideo</a> con la valutazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(a)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(a)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23fcdae2eac5fa2d4015bbab270989b7d37e7bf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.428ex; height:2.843ex;" alt="{\displaystyle v(a)=1}"></span> per ogni elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> e, di conseguenza, è anche un <a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">dominio a fattorizzazione unica</a>. Questo tuttavia non porta a risultati interessanti, perché ogni elemento non nullo, essendo invertibile, ha una fattorizzazione "vuota" (ovvero costituita solo da un'unità). </p><p>Come sugli anelli, sui campi è possibile definire dei <a href="/wiki/Polinomio" title="Polinomio">polinomi</a>: l'anello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K[X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K[X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bb4d802ca5718a14dc961af8692f35cdfad169b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.34ex; height:2.843ex;" alt="{\displaystyle K[X]}"></span> così risultante è un dominio euclideo (con la valutazione data dal grado del polinomio) e in particolare un <a href="/wiki/Anello_ad_ideali_principali" class="mw-redirect" title="Anello ad ideali principali">anello ad ideali principali</a>: questa proprietà permette di definire il concetto di <a href="/wiki/Polinomio_minimo" title="Polinomio minimo">polinomio minimo</a> di un <a href="/wiki/Elemento_algebrico" class="mw-redirect" title="Elemento algebrico">elemento algebrico</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Caratteristica">Caratteristica</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=9" title="Modifica la sezione Caratteristica" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=9" title="Edit section&#039;s source code: Caratteristica"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Caratteristica_(algebra)" title="Caratteristica (algebra)">Caratteristica (algebra)</a></b>.</span></div> </div> <p>Un'altra proprietà degli anelli che si trasferisce sui campi è la caratteristica, definita come il minimo intero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> tale che:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\underbrace {1+1+\dots +1} \\n\mathrm {~volte} \end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mn>1</mn> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">e</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\underbrace {1+1+\dots +1} \\n\mathrm {~volte} \end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64d7d5ab0db25401739cf5a05489068109ad9a53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.483ex; height:7.509ex;" alt="{\displaystyle {\begin{matrix}\underbrace {1+1+\dots +1} \\n\mathrm {~volte} \end{matrix}}}"></span></dd></dl> <p>è uguale a zero. Se questo minimo non esiste, cioè se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+1+\ldots +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+1+\ldots +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9186d1ce161087ceccffeb21085ff8c319130546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.732ex; height:2.343ex;" alt="{\displaystyle 1+1+\ldots +1}"></span> è sempre diverso da zero, la caratteristica è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> per definizione. Essendo i campi dei domini d'integrità, la loro caratteristica è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> oppure un numero primo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. La caratteristica di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> determina univocamente il suo sottocampo fondamentale: se è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> sono i <a href="/wiki/Numero_razionale" title="Numero razionale">numeri razionali</a>, mentre se è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> è il <a href="/wiki/Campo_finito" title="Campo finito">campo finito</a> con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> elementi, ovvero l'<a href="/wiki/Anello_quoziente" class="mw-redirect" title="Anello quoziente">anello quoziente</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /p\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57869a3a3c4c431cc49c4c7ab1d9c7ea692b517b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.433ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"></span> (denotato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span> o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d35035371db7bee93733c68c1802114c17d8bb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.479ex; height:2.843ex;" alt="{\displaystyle \mathbb {F} _{p}}"></span>). Tutti i campi finiti hanno caratteristica positiva, mentre il viceversa non è vero: un esempio è il campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{p}(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{p}(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d196051a842b13f50e5d6afc9603d3c607287cff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.269ex; height:3.009ex;" alt="{\displaystyle \mathbb {F} _{p}(X)}"></span> delle <a href="/wiki/Funzione_razionale" title="Funzione razionale">funzioni razionali</a> su un campo finito. </p> <div class="mw-heading mw-heading3"><h3 id="Gruppi">Gruppi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=10" title="Modifica la sezione Gruppi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=10" title="Edit section&#039;s source code: Gruppi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dalla definizione di campo segue immediatamente che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2047accf7c0de5156287eb653acc874f74faa93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.717ex; height:2.843ex;" alt="{\displaystyle (K,+)}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K\setminus \{0\},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K\setminus \{0\},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55e47aa90e60a65ec3b03b46c9e7cfd8b1487404" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.238ex; height:2.843ex;" alt="{\displaystyle (K\setminus \{0\},\cdot )}"></span>, quest'ultimo spesso denotato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K^{*},\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K^{*},\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a05e4efc8eae1f5066231b0496c34d9a81b3b1a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.638ex; height:2.843ex;" alt="{\displaystyle (K^{*},\cdot )}"></span> sono <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">gruppi abeliani</a>. Come conseguenza del fatto che un polinomio di grado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> non può avere più di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> radici, ogni sottogruppo finito di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee44d723b0d9bf440e04a664ea1e6e1958d743de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.148ex; height:2.343ex;" alt="{\displaystyle K^{*}}"></span> (e quindi, in particolare, ogni <a href="/wiki/Gruppo_moltiplicativo" title="Gruppo moltiplicativo">gruppo moltiplicativo</a> di un campo finito) è <a href="/wiki/Gruppo_ciclico" title="Gruppo ciclico">ciclico</a>; questo non avviene mai invece per il gruppo additivo, ad eccezione dei campi con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> elementi. </p> <div class="mw-heading mw-heading3"><h3 id="Spazi_vettoriali">Spazi vettoriali</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=11" title="Modifica la sezione Spazi vettoriali" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=11" title="Edit section&#039;s source code: Spazi vettoriali"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>I campi sono fondamentali nella definizione degli <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazi vettoriali</a>; gran parte delle proprietà di questi ultimi (esistenza di una <a href="/wiki/Base_(algebra_lineare)" title="Base (algebra lineare)">base</a>, <a href="/wiki/Dimensione_(spazio_vettoriale)" title="Dimensione (spazio vettoriale)">dimensione</a>, sottospazi) non dipendono dal particolare campo impiegato. Analogamente, si possono definire <a href="/wiki/Spazio_affine" title="Spazio affine">spazi affini</a> e <a href="/wiki/Spazio_proiettivo" title="Spazio proiettivo">spazi proiettivi</a> su campi qualsiasi. La possibilità di definire un <a href="/wiki/Prodotto_scalare" title="Prodotto scalare">prodotto scalare</a> (e quindi una struttura di <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a>) dipende invece dal campo scelto, in quanto si basa sulla possibilità di definire una <a href="/wiki/Relazione_d%27ordine" title="Relazione d&#39;ordine">relazione d'ordine</a> sul campo. </p><p>Legato al campo base dello spazio vettoriale è la possibilità di <a href="/wiki/Diagonalizzazione" class="mw-redirect" title="Diagonalizzazione">diagonalizzare</a> gli <a href="/wiki/Operatore_lineare" class="mw-redirect" title="Operatore lineare">operatori lineari</a>, in quanto legata alla presenza di <a href="/wiki/Radice_(matematica)" title="Radice (matematica)">radici</a> del <a href="/wiki/Polinomio_caratteristico" title="Polinomio caratteristico">polinomio caratteristico</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Sottocampi_e_estensione_di_campi">Sottocampi e estensione di campi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=12" title="Modifica la sezione Sottocampi e estensione di campi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=12" title="Edit section&#039;s source code: Sottocampi e estensione di campi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Estensione_di_campi" title="Estensione di campi">Estensione di campi</a></b>.</span></div> </div> <p>Un sottoinsieme di un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> chiuso rispetto alla somma e al prodotto e contenente gli inversi e gli opposti di tutti i propri elementi forma esso stesso un campo, ed è detto <i>sottocampo</i> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Ad esempio i numeri razionali formano un sottocampo dei numeri reali, che a loro volta sono un sottocampo dei numeri complessi. </p><p>Rovesciando la prospettiva, un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> che contiene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> come sottocampo è un&#39;<i>estensione</i> o un <i>ampliamento</i> di quest'ultimo. Poiché inoltre ogni omomorfismo di campi è iniettivo (cioè è un'immersione), si può considerare un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> come un'estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> anche nel caso in cui esista un'immersione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>. </p><p>Un'estensione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> di un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è automaticamente uno spazio vettoriale su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, e possiede quindi una sua <a href="/wiki/Dimensione_(spazio_vettoriale)" title="Dimensione (spazio vettoriale)">dimensione</a>: questa è detta <i>grado</i> dell'estensione, ed è indicata come <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [H:K]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>H</mi> <mo>:</mo> <mi>K</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [H:K]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd4420311ded875925dd1959f6885c10ce31cc52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.36ex; height:2.843ex;" alt="{\displaystyle [H:K]}"></span>. Un'importante proprietà del grado è la sua moltiplicatività: se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq H\subseteq L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>H</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq H\subseteq L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dce54ef5702fdcc7cb19d3272cdc8af6cf33d6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.909ex; height:2.343ex;" alt="{\displaystyle K\subseteq H\subseteq L}"></span> e tutti e tre sono campi, allora </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [K:L]=[K:H]\cdot [H:L].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>K</mi> <mo>:</mo> <mi>L</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>K</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <mi>H</mi> <mo>:</mo> <mi>L</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [K:L]=[K:H]\cdot [H:L].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f36da65cf9ed600b695ab520a2438d80f37da14a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.542ex; height:2.843ex;" alt="{\displaystyle [K:L]=[K:H]\cdot [H:L].}"></span></dd></dl> <p>Se il grado di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è finito l'estensione è detta finita, mentre infinita in caso contrario. </p><p>Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è un'estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> è un sottoinsieme di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, si indica con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f263a8ad6b721f42d99108940674062fb5ff5d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.374ex; height:2.843ex;" alt="{\displaystyle K(S)}"></span> il più piccolo sottocampo di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> che contiene sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, ossia la più piccola estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> che contiene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>; particolare importanza hanno le <a href="/wiki/Estensione_semplice" title="Estensione semplice">estensioni semplici</a>, ovvero quelle in cui <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> è formato da un solo elemento. </p> <div class="mw-heading mw-heading3"><h3 id="Estensioni_algebriche_e_trascendenti">Estensioni algebriche e trascendenti</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=13" title="Modifica la sezione Estensioni algebriche e trascendenti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=13" title="Edit section&#039;s source code: Estensioni algebriche e trascendenti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un'estensione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac864b38f4348e23edcb3e7aaf8cb1eeb90c3954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.228ex; height:2.343ex;" alt="{\displaystyle K\subseteq H}"></span> è detta <i><a href="/wiki/Estensione_algebrica" title="Estensione algebrica">algebrica</a></i> se ogni elemento di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è <a href="/wiki/Radice_(matematica)" title="Radice (matematica)">radice</a> di un polinomio a coefficienti in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, e <i><a href="/wiki/Estensione_trascendente" title="Estensione trascendente">trascendente</a></i> altrimenti. Ad esempio l'estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> è algebrica, mentre quella di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> è trascendente. </p><p>Le estensioni semplici possono essere classificate immediatamente come algebriche o trascendenti a partire dal loro grado: se questo è finito l'estensione è algebrica, mentre se è infinito è trascendente. Nel primo caso, il grado è uguale a quello del <a href="/wiki/Polinomio_minimo" title="Polinomio minimo">polinomio minimo</a> del grado che genera l'ampliamento; un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> è detto algebrico o trascendente su un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> a seconda che l'estensione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K(\alpha )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K(\alpha )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2892c42db68269b951dfb7bd08f87b097e4d909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.363ex; height:2.843ex;" alt="{\displaystyle K(\alpha )}"></span> sia algebrica o trascendente. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0854290031d92bf519f3ed79754edbe3eec1db77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.973ex; height:2.509ex;" alt="{\displaystyle K=\mathbb {Q} }"></span>, gli elementi algebrici e trascendenti sono detti generalmente <a href="/wiki/Numeri_algebrici" class="mw-redirect" title="Numeri algebrici">numeri algebrici</a> e <a href="/wiki/Numeri_trascendenti" class="mw-redirect" title="Numeri trascendenti">numeri trascendenti</a>. Tutte le estensioni finite sono algebriche, mentre il viceversa non è vero: un esempio è l'estensione algebrica </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} \subseteq \mathbb {Q} ({\sqrt {2}},{\sqrt[{3}]{2}},{\sqrt[{4}]{2}},\ldots ,{\sqrt[{n}]{2}},\ldots ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} \subseteq \mathbb {Q} ({\sqrt {2}},{\sqrt[{3}]{2}},{\sqrt[{4}]{2}},\ldots ,{\sqrt[{n}]{2}},\ldots ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1451ea3c9f53fa073ed575613d09acf3563bebf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.567ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} \subseteq \mathbb {Q} ({\sqrt {2}},{\sqrt[{3}]{2}},{\sqrt[{4}]{2}},\ldots ,{\sqrt[{n}]{2}},\ldots ).}"></span></dd></dl> <p>Vale però il seguente risultato: un'estensione è finita <a href="/wiki/Se_e_solo_se" title="Se e solo se">se e solo se</a> è algebrica e finitamente generata (cioè generata da un numero finito di elementi). </p><p>Per distinguere tra loro le estensioni trascendenti, non potendo usare il grado dell'ampliamento, si usa il <a href="/wiki/Grado_di_trascendenza" class="mw-redirect" title="Grado di trascendenza">grado di trascendenza</a>: questo è definito come il massimo numero di elementi <a href="/wiki/Indipendenza_algebrica" title="Indipendenza algebrica">algebricamente indipendenti</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, ossia come il massimo numero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> per cui esistono <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> elementi di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> per cui non esiste alcun polinomio ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> incognite a coefficienti in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> annullato da quegli elementi. Un'estensione algebrica ha grado di trascendenza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, mentre un'estensione trascendente semplice ha grado di trascendenza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Costruzione_di_estensioni_algebriche">Costruzione di estensioni algebriche</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=14" title="Modifica la sezione Costruzione di estensioni algebriche" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=14" title="Edit section&#039;s source code: Costruzione di estensioni algebriche"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dato un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> e un <a href="/wiki/Polinomio_irriducibile" title="Polinomio irriducibile">polinomio irriducibile</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b884e2d65b3356219702968b6751485fb8f38570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.068ex; height:2.843ex;" alt="{\displaystyle f(X)}"></span> a coefficienti in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, è sempre possibile trovare un'estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> in cui il polinomio ha una radice: l'anello quoziente </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {K[X]}{(f(X))}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>K</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {K[X]}{(f(X))}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10872d34af764800cce66699893149c082054697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:8.36ex; height:6.509ex;" alt="{\displaystyle {\frac {K[X]}{(f(X))}},}"></span></dd></dl> <p>è infatti un campo, estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> (l'immersione è quella che associa ad ogni elemento di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> la classe della sua costante), in cui l'elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+(f(X))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X+(f(X))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f1ce7fc0c382c5d3e94be68107693b960c821a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.698ex; height:2.843ex;" alt="{\displaystyle X+(f(X))}"></span> è una soluzione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b884e2d65b3356219702968b6751485fb8f38570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.068ex; height:2.843ex;" alt="{\displaystyle f(X)}"></span>; il grado dell'estensione è, inoltre, il grado del polinomio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b884e2d65b3356219702968b6751485fb8f38570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.068ex; height:2.843ex;" alt="{\displaystyle f(X)}"></span>. In tal modo è possibile trovare campi su cui dei polinomi assegnati abbiano una soluzione, o perfino tutte le possibili soluzioni; inoltre tutte le possibili estensioni sono <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfe</a> tra loro. </p><p>Un campo su cui tutti i polinomi abbiano almeno una radice è detto <a href="/wiki/Campo_algebricamente_chiuso" title="Campo algebricamente chiuso">algebricamente chiuso</a>: l'esempio più importante è il campo dei numeri complessi, dove tale asserzione è nota con il nome di <a href="/wiki/Teorema_fondamentale_dell%27algebra" title="Teorema fondamentale dell&#39;algebra">teorema fondamentale dell'algebra</a> (sebbene sia sempre dimostrato almeno in parte con metodi analitici); né il campo dei numeri razionali né quello dei numeri reali sono algebricamente chiusi (ad esempio il polinomio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{2}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{2}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/759c679330a1c67db74a3da9ee5cca488de3a589" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.054ex; height:2.843ex;" alt="{\displaystyle X^{2}+1}"></span> non ha radici). Dal <a href="/wiki/Lemma_di_Zorn" title="Lemma di Zorn">lemma di Zorn</a> segue che ogni campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è contenuto in un campo algebricamente chiuso che sia il più piccolo possibile, cioè tale che ogni ampliamento intermedio tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> ed esso non sia algebricamente chiuso; questo prende il nome di <a href="/wiki/Chiusura_algebrica" title="Chiusura algebrica">chiusura algebrica</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> e, sempre grazie al lemma di Zorn, è possibile dimostrare che è unica a meno di isomorfismi. La chiusura algebrica dei numeri reali è il campo dei numeri complessi, ma questa non è la chiusura algebrica dei razionali, che è invece il campo dei numeri algebrici. </p> <div class="mw-heading mw-heading2"><h2 id="Teoria_di_Galois">Teoria di Galois</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=15" title="Modifica la sezione Teoria di Galois" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=15" title="Edit section&#039;s source code: Teoria di Galois"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">Teoria di Galois</a></b>.</span></div> </div> <p>La teoria di Galois studia le estensioni algebriche di un campo attraverso lo studio del gruppo degli <a href="/wiki/Automorfismo" title="Automorfismo">automorfismi</a> delle estensioni, ovvero degli isomorfismi di un campo in sé. Questo gruppo (detto <a href="/wiki/Gruppo_di_Galois" title="Gruppo di Galois">gruppo di Galois</a> dell'estensione) può essere spesso calcolato esplicitamente fornendo, attraverso la <a href="/w/index.php?title=Corrispondenza_di_Galois&amp;action=edit&amp;redlink=1" class="new" title="Corrispondenza di Galois (la pagina non esiste)">corrispondenza di Galois</a>, informazioni sul campo stesso. </p> <div class="mw-heading mw-heading3"><h3 id="Isomorfismi_e_automorfismi">Isomorfismi e automorfismi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=16" title="Modifica la sezione Isomorfismi e automorfismi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=16" title="Edit section&#039;s source code: Isomorfismi e automorfismi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gli isomorfismi di campi hanno molte proprietà che ne facilitano lo studio. Una basilare è che mandano il sottocampo fondamentale del dominio nel sottocampo fondamentale del codominio (e quindi conserva la caratteristica); inoltre, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> è una radice di un polinomio a coefficienti nel sottocampo fondamentale, la sua immagine è una radice dello stesso polinomio. In particolare conserva il grado del polinomio e, quindi, il grado delle estensioni: due campi isomorfi hanno lo stesso grado sul loro sottocampo fondamentale. </p><p>Se il dominio e il codominio coincidono, si ha un <i>automorfismo</i> del campo: le proprietà precedenti implicano che un automorfismo è l'identità sul sottocampo fondamentale (ovvero fissa tutti gli elementi del sottocampo fondamentale) e che un elemento di grado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (cioè il cui polinomio minimo ha grado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>) ha al più <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> immagini distinte. L'insieme degli elementi fissati dall'automorfismo (ovvero degli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> per cui <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\alpha )=\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\alpha )=\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c768d1422a03aa945c5b7483ec0995806b2bf2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.162ex; height:2.843ex;" alt="{\displaystyle f(\alpha )=\alpha }"></span>) è un campo, che viene detto <a href="/w/index.php?title=Campo_fisso&amp;action=edit&amp;redlink=1" class="new" title="Campo fisso (la pagina non esiste)">campo fisso</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Estensioni_normali_e_separabili">Estensioni normali e separabili</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=17" title="Modifica la sezione Estensioni normali e separabili" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=17" title="Edit section&#039;s source code: Estensioni normali e separabili"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lo studio degli automorfismi di un campo ha bisogno di alcune ipotesi sull'estensione considerata. </p><p>La prima è quella di <a href="/wiki/Estensione_normale" title="Estensione normale">estensione normale</a>: questa è un ampliamento algebrico <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caf8a88c4ffbe5ab2b7da8749b640fbfb4b45d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.747ex; height:2.343ex;" alt="{\displaystyle K\subseteq L}"></span> in cui ogni isomorfismo di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> in una sua chiusura algebrica che fissa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> fissa anche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> o, equivalentemente, un polinomio irriducibile in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K[X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K[X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bb4d802ca5718a14dc961af8692f35cdfad169b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.34ex; height:2.843ex;" alt="{\displaystyle K[X]}"></span> che ha una radice in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> vi ha tutte le sue radici, o ancora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> è il <a href="/wiki/Campo_di_spezzamento" title="Campo di spezzamento">campo di spezzamento</a> di un polinomio a coefficienti in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Un tipico esempio di estensione non normale è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ({\sqrt[{3}]{2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ({\sqrt[{3}]{2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4682c6f3952f1b35a5db23be9b806fc79e771d30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.716ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} ({\sqrt[{3}]{2}})}"></span>, perché <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca071ab504481c2bb76081aacb03f5519930710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{2}}}"></span> è radice di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{3}-2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{3}-2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c43c9dfe300d88672a8ad99c471bc7608673072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.054ex; height:2.843ex;" alt="{\displaystyle X^{3}-2}"></span>, le cui altre radici sono <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{2}}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{2}}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1086db6069ef7e4baab012e6d085569a0cfefe91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.544ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{2}}\omega }"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{2}}\omega ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{2}}\omega ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c46ca4014a54d84698cf2a4b63a732c90c08ad20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.598ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{2}}\omega ^{2}}"></span> dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> è una <a href="/wiki/Radice_dell%27unit%C3%A0" title="Radice dell&#39;unità">radice terza dell'unità</a>. </p><p>La seconda è quella di <a href="/wiki/Estensione_separabile" title="Estensione separabile">estensione separabile</a>, ovvero di un ampliamento algebrico in cui ogni elemento è radice di un <a href="/wiki/Polinomio_separabile" title="Polinomio separabile">polinomio separabile</a>, ovvero di un polinomio senza radici multiple. Questa ipotesi è necessaria perché un elemento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> abbia esattamente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> immagini distinte, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> è il suo grado. Su un campo di caratteristica zero tutte le estensioni sono separabili; se la caratteristica è invece positiva, si possono avere casi di estensioni non separabili. L'insieme di tutti gli elementi separabili su un campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è un campo, che è detto la sua <a href="/wiki/Chiusura_separabile" class="mw-redirect" title="Chiusura separabile">chiusura separabile</a>. </p><p>Un'estensione sia normale che separabile è detta <i>di Galois</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Corrispondenza_di_Galois">Corrispondenza di Galois</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=18" title="Modifica la sezione Corrispondenza di Galois" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=18" title="Edit section&#039;s source code: Corrispondenza di Galois"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Teorema_fondamentale_della_teoria_di_Galois" title="Teorema fondamentale della teoria di Galois">Teorema fondamentale della teoria di Galois</a></b>.</span></div> </div> <p>Nelle estensioni di Galois finite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subseteq L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subseteq L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caf8a88c4ffbe5ab2b7da8749b640fbfb4b45d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.747ex; height:2.343ex;" alt="{\displaystyle K\subseteq L}"></span>, si ha una <a href="/wiki/Corrispondenza_biunivoca" title="Corrispondenza biunivoca">corrispondenza biunivoca</a> (detta <i>corrispondenza di Galois</i>) tra i <a href="/wiki/Sottogruppo" title="Sottogruppo">sottogruppi</a> del gruppo di Galois dell'estensione e i campi intermedi tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>; ad un sottogruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> corrisponde il campo fissato da tutti gli automorfismi appartenenti ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>, mentre ad un sottocampo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> corrisponde il gruppo degli automorfismi di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> che fissano <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, ovvero il gruppo di Galois di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. L'importanza di questo teorema deriva dalla possibilità di trasportare problemi relativi a campi in problemi sui gruppi, che sono più facili da trattare anche perché spesso è possibile scrivere esplicitamente il gruppo, che è finito, mentre il campo è, spesso, infinito. </p><p>Nel caso di estensioni infinite, il teorema fondamentale non è più vero con queste ipotesi; è invece necessario introdurre sul gruppo di Galois una <a href="/wiki/Topologia" title="Topologia">topologia</a> (la <a href="/wiki/Topologia_di_Krull" title="Topologia di Krull">topologia di Krull</a>) che lo rende un <a href="/wiki/Gruppo_topologico" title="Gruppo topologico">gruppo topologico</a>; la corrispondenza si ha tra i campi intermedi dell'estensione e i sottogruppi chiusi del gruppo di Galois. </p> <div class="mw-heading mw-heading2"><h2 id="Estensioni_semplici_ed_elementi_primitivi">Estensioni semplici ed elementi primitivi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=19" title="Modifica la sezione Estensioni semplici ed elementi primitivi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=19" title="Edit section&#039;s source code: Estensioni semplici ed elementi primitivi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un elemento che genera un'estensione è detto <i>elemento primitivo</i> per essa. Poiché le estensioni semplici sono più facili da studiare (ad esempio perché gli automorfismi sono univocamente determinati dall'immagine dell'elemento primitivo) è interessante cercare di caratterizzare gli ampliamenti semplici. </p><p>Per ampliamenti algebrici il risultato fondamentale è il <a href="/wiki/Teorema_dell%27elemento_primitivo" title="Teorema dell&#39;elemento primitivo">teorema dell'elemento primitivo</a>, che afferma che un ampliamento finito <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subseteq K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subseteq K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248fcf331bcea032a8a1b4170718547ffca9b357" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.905ex; height:2.343ex;" alt="{\displaystyle F\subseteq K}"></span> è semplice se e solo se ha un numero finito di campi intermedi; un importante corollario è che tutti gli ampliamenti finiti e separabili sono semplici, e di conseguenza lo sono anche tutti gli ampliamenti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subseteq F(\alpha _{1},\ldots ,\alpha _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subseteq F(\alpha _{1},\ldots ,\alpha _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66766dca4ff2ca5379a14217f53700d9582bafb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.815ex; height:2.843ex;" alt="{\displaystyle F\subseteq F(\alpha _{1},\ldots ,\alpha _{n})}"></span>, con gli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b1fb627423abe4988b7ed88d4920bf1ec074790" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.287ex; height:2.009ex;" alt="{\displaystyle \alpha _{i}}"></span> separabili. In particolare, quest'ultima condizione è soddisfatta se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> è un campo di caratteristica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, e quindi ogni ampliamento algebrico finito di un'estensione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> è semplice (ad esempio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} ({\sqrt {2}},{\sqrt {3}})=\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} ({\sqrt {2}},{\sqrt {3}})=\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d3876beb063700c707eab7cce9d0e704f1f4fae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.601ex; height:3.176ex;" alt="{\displaystyle \mathbb {Q} ({\sqrt {2}},{\sqrt {3}})=\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}})}"></span>). Il risultato continua a valere se almeno <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> tra gli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b1fb627423abe4988b7ed88d4920bf1ec074790" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.287ex; height:2.009ex;" alt="{\displaystyle \alpha _{i}}"></span> sono separabili, mentre due elementi non separabili possono impedire l'esistenza di un elemento primitivo. </p><p>La condizione sulla finitezza dell'ampliamento è essenziale: ad esempio l'ampliamento di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span> nella sua chiusura algebrica è algebrico (e ovviamente separabile) ma non semplice, perché se lo fosse avrebbe grado uguale a quello del suo elemento primitivo, mentre ogni algebrico ha grado finito. </p><p>Per gli ampliamenti trascendenti i risultati ottenibili non sono così buoni. Il <a href="/w/index.php?title=Teorema_di_L%C3%BCroth&amp;action=edit&amp;redlink=1" class="new" title="Teorema di Lüroth (la pagina non esiste)">teorema di Lüroth</a> afferma che ogni campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> tale che </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subset L\subseteq F(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>L</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subset L\subseteq F(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65ecd9203c49116ac2358b619f279c7d6a6cfff2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.051ex; height:2.843ex;" alt="{\displaystyle F\subset L\subseteq F(X)}"></span></dd></dl> <p>(dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> è un'indeterminata su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>), ovvero ogni campo intermedio di un'estensione trascendente semplice, è a sua volta un ampliamento semplice di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. Questo teorema non è estendibile a sottocampi in ampliamenti di due o più indeterminate; in <a href="/wiki/Geometria_algebrica" title="Geometria algebrica">geometria algebrica</a>, una questione legata ad essa è se ogni estensione trascendente di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> è <i>puramente</i> trascendente, ovvero se per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> si può scrivere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=F(Y_{1},Y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=F(Y_{1},Y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88ba7a6c9c530f7ef862534001675f191b9dee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.075ex; height:2.843ex;" alt="{\displaystyle L=F(Y_{1},Y_{2})}"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c909ab9869a6ca440f1244dc0e494f42b741b937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle Y_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e6a0ca6752e3b9040b24de6f0c99b6099b0c861" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.405ex; height:2.509ex;" alt="{\displaystyle Y_{2}}"></span> sono indeterminate indipendenti su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. Questo non è vero nelle ipotesi del teorema di Lüroth; <a href="/wiki/Guido_Castelnuovo" title="Guido Castelnuovo">Guido Castelnuovo</a> ha però dimostrato che per campi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> per cui <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\subset L\subseteq F(X,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>L</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\subset L\subseteq F(X,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/456cd7e6dd9b2b744047b433bfb4a917200ac724" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.858ex; height:2.843ex;" alt="{\displaystyle F\subset L\subseteq F(X,Y)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> è algebricamente chiuso e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\subseteq F(X,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\subseteq F(X,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d1f94b416a23b7fe28b3bf6d810ab78e7bdff9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.019ex; height:2.843ex;" alt="{\displaystyle L\subseteq F(X,Y)}"></span> è finito e separabile, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> è puramente trascendente su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Campi_finiti">Campi finiti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=20" title="Modifica la sezione Campi finiti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=20" title="Edit section&#039;s source code: Campi finiti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Campo_finito" title="Campo finito">Campo finito</a></b>.</span></div> </div> <p>I campi finiti hanno importanza in <a href="/wiki/Teoria_dei_numeri" title="Teoria dei numeri">teoria dei numeri</a>, <a href="/wiki/Geometria_algebrica" title="Geometria algebrica">geometria algebrica</a> e <a href="/wiki/Crittografia" title="Crittografia">crittografia</a>. Sono completamente caratterizzati dalla loro <a href="/wiki/Cardinalit%C3%A0" title="Cardinalità">cardinalità</a>: per ogni primo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> e per ogni intero positivo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> esiste (a meno di isomorfismi) un solo campo con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a7a7e74ae90ab94f01e1629177758fb68b423b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.676ex;" alt="{\displaystyle p^{n}}"></span> elementi, e tutti i campi finiti sono in questa forma. Un campo con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> elementi è denotato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb96e056c071d13fc7702013f9273e7f5cd88a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.409ex; height:2.843ex;" alt="{\displaystyle \mathbb {F} _{q}}"></span> o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle GF(q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle GF(q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7632e02672649089c63c998757aa3afc0782a0f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.446ex; height:2.843ex;" alt="{\displaystyle GF(q)}"></span>. La caratteristica del campo con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a7a7e74ae90ab94f01e1629177758fb68b423b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.676ex;" alt="{\displaystyle p^{n}}"></span> elementi è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. </p><p>L'ampliamento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{p}\subseteq \mathbb {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{p}\subseteq \mathbb {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e3b774cea6ad9fad98f4d975810b77a373f9909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.022ex; height:2.843ex;" alt="{\displaystyle \mathbb {F} _{p}\subseteq \mathbb {F} _{p^{n}}}"></span> è algebrico di grado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, normale e separabile; inoltre è semplice (perché, ad esempio, il gruppo moltiplicativo di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {F} _{p^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {F} _{p^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7ef6f7b38b948ec1d7d54dfa483c00db7dedd5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.444ex; height:2.843ex;" alt="{\displaystyle \mathbb {F} _{p^{n}}}"></span> è ciclico). Il campo con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a7a7e74ae90ab94f01e1629177758fb68b423b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.676ex;" alt="{\displaystyle p^{n}}"></span> elementi comprende quello con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bab32900e0cbcdf2743e43f83431e87e56c734e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.934ex; height:2.676ex;" alt="{\displaystyle p^{m}}"></span> se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. La chiusura algebrica dei campi finiti con caratteristica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> è data dalla loro unione, che è un campo infinito. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=21" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=21" title="Edit section&#039;s source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text"><cite class="citation cita" style="font-style:normal"><a href="#CITEREFkunze">Hoffman, Kunze</a>,&#160;Pag. 2</cite>.</span> </li> <li id="cite_note-2"><a href="#cite_ref-2"><b>^</b></a> <span class="reference-text"><cite class="citation cita" style="font-style:normal"><a href="#CITEREFkunze">Hoffman, Kunze</a>,&#160;Pag. 3</cite>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=22" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=22" title="Edit section&#039;s source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation libro" style="font-style:normal"> Lucio Lombardo-Radice, <span style="font-style:italic;">Istituzioni di algebra astratta</span>, 3ª&#160;ed., Milano, Feltrinelli, 1965, <a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Speciale:RicercaISBN/978-8807620034" title="Speciale:RicercaISBN/978-8807620034">978-8807620034</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal"> Stefania Gabelli, <span style="font-style:italic;">Teoria delle equazioni e Teoria di Galois</span>, Milano, Springer, 2008, <a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Speciale:RicercaISBN/978-88-470-0618-8" title="Speciale:RicercaISBN/978-88-470-0618-8">978-88-470-0618-8</a>.</cite></li> <li><cite id="CITEREFkunze" class="citation libro" style="font-style:normal"> Kenneth Hoffman, Ray Kunze, <a rel="nofollow" class="external text" href="https://archive.org/details/linearalgebra00hoff_0"><span style="font-style:italic;">Linear Algebra</span></a>, 2ª&#160;ed., Englewood Cliffs, New Jersey, Prentice - Hall, inc., 1971, <a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Speciale:RicercaISBN/0-13-536821-9" title="Speciale:RicercaISBN/0-13-536821-9">0-13-536821-9</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal"> William Stallings, <span style="font-style:italic;">Capitolo 4 - I campi finiti</span>, in <span style="font-style:italic;">Crittografia e sicurezza delle reti</span>, ed. italiana a cura di Luca Salgarelli, 2ª edizione, Milano, McGraw-Hill, ottobre 2006, pp.&#160;101-136., <a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Speciale:RicercaISBN/88-386-6377-7" title="Speciale:RicercaISBN/88-386-6377-7">88-386-6377-7</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal"> Mario Girardi e Giorgio Israel, <span style="font-style:italic;">Teoria dei campi</span>, Giangiacomo Feltrinelli Editore, 1976.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Rudolf Lidl e Harald Niederreiter, <span style="font-style:italic;">Finite Fields</span>, Cambridge University Press, 1994.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Siegfried Bosch, <span style="font-style:italic;">Algebra</span>, Springer, 2003.</cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=23" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=23" title="Edit section&#039;s source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Glossario_di_teoria_dei_campi" title="Glossario di teoria dei campi">Glossario di teoria dei campi</a></li> <li>Altre <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">strutture algebriche</a></li> <li><a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">Spazio vettoriale</a></li> <li><a href="/wiki/Estensione_algebrica" title="Estensione algebrica">Estensione algebrica</a></li> <li><a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">Teoria di Galois</a></li> <li><a href="/wiki/Teoria_dei_campi_(matematica)" class="mw-redirect" title="Teoria dei campi (matematica)">Teoria dei campi (matematica)</a></li> <li><a href="/wiki/Campo_finito" title="Campo finito">Campo finito</a></li> <li><a href="/wiki/Campo_con_un_elemento" title="Campo con un elemento">Campo con un elemento</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=24" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=24" title="Edit section&#039;s source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><a href="https://it.wiktionary.org/wiki/campo" class="extiw" title="wikt:campo">Wikizionario</a></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://it.wiktionary.org/wiki/" title="Collabora a Wikizionario"><img alt="Collabora a Wikizionario" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/18px-Wiktionary_small.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/27px-Wiktionary_small.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Wiktionary_small.svg/36px-Wiktionary_small.svg.png 2x" data-file-width="350" data-file-height="350" /></a></span> <a href="https://it.wiktionary.org/wiki/" class="extiw" title="wikt:">Wikizionario</a> contiene il lemma di dizionario «<b><a href="https://it.wiktionary.org/wiki/campo" class="extiw" title="wikt:campo">campo</a></b>»</li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Campo_(matematica)&amp;veaction=edit&amp;section=25" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Campo_(matematica)&amp;action=edit&amp;section=25" title="Edit section&#039;s source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFSapere.it" class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.sapere.it/enciclopedia/campo.html"><span style="font-style:italic;">campo</span></a>, su <span style="font-style:italic;">sapere.it</span>, <a href="/wiki/De_Agostini" title="De Agostini">De Agostini</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190109#P6706" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/field-mathematics"><span style="font-style:italic;">field</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190109#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Field.html"><span style="font-style:italic;">Field</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190109#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Field"><span style="font-style:italic;">Field</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190109#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r141815314">.mw-parser-output .navbox{border:1px solid #aaa;clear:both;margin:auto;padding:2px;width:100%}.mw-parser-output .navbox th{padding-left:1em;padding-right:1em;text-align:center}.mw-parser-output .navbox>tbody>tr:first-child>th{background:#ccf;font-size:90%;width:100%;color:var(--color-base,black)}.mw-parser-output .navbox_navbar{float:left;margin:0;padding:0 10px 0 0;text-align:left;width:6em}.mw-parser-output .navbox_title{font-size:110%}.mw-parser-output .navbox_abovebelow{background:#ddf;font-size:90%;font-weight:normal}.mw-parser-output .navbox_group{background:#ddf;font-size:90%;padding:0 10px;white-space:nowrap}.mw-parser-output .navbox_list{font-size:90%;width:100%}.mw-parser-output .navbox_list a{white-space:nowrap}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_odd{background:#fdfdfd;color:var(--color-base,black)}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_even{background:#f7f7f7;color:var(--color-base,black)}.mw-parser-output .navbox a.mw-selflink{color:var(--color-base,black)}.mw-parser-output .navbox_center{text-align:center}.mw-parser-output .navbox .navbox_image{padding-left:7px;vertical-align:middle;width:0}.mw-parser-output .navbox+.navbox{margin-top:-1px}.mw-parser-output .navbox .mw-collapsible-toggle{font-weight:normal;text-align:right;width:7em}body.skin--responsive .mw-parser-output .navbox_image img{max-width:none!important}.mw-parser-output .subnavbox{margin:-3px;width:100%}.mw-parser-output .subnavbox_group{background:#e6e6ff;padding:0 10px}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-night .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-night .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-os .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-os .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}</style><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Algebra"><tbody><tr><th colspan="3" style="background:#ffc0cb;"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Algebra" title="Template:Algebra"><span title="Vai alla pagina del template">V</span></a>&#160;·&#160;<a href="/w/index.php?title=Discussioni_template:Algebra&amp;action=edit&amp;redlink=1" class="new" title="Discussioni template:Algebra (la pagina non esiste)"><span title="Discuti del template">D</span></a>&#160;·&#160;<a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Algebra&amp;action=edit"><span title="Modifica il template. Usa l&#39;anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Algebra" title="Algebra">Algebra</a></span></th></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Numero" title="Numero">Numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Numero_naturale" title="Numero naturale">Naturali</a><b>&#160;·</b> <a href="/wiki/Numero_intero" title="Numero intero">Interi</a><b>&#160;·</b> <a href="/wiki/Numero_razionale" title="Numero razionale">Razionali</a><b>&#160;·</b> <a href="/wiki/Numero_irrazionale" title="Numero irrazionale">Irrazionali</a><b>&#160;·</b> <a href="/wiki/Numero_algebrico" title="Numero algebrico">Algebrici</a><b>&#160;·</b> <a href="/wiki/Numero_trascendente" title="Numero trascendente">Trascendenti</a><b>&#160;·</b> <a href="/wiki/Numero_reale" title="Numero reale">Reali</a><b>&#160;·</b> <a href="/wiki/Numero_complesso" title="Numero complesso">Complessi</a><b>&#160;·</b> <a href="/wiki/Numero_ipercomplesso" title="Numero ipercomplesso">Numero ipercomplesso</a><b>&#160;·</b> <a href="/wiki/Numero_p-adico" title="Numero p-adico">Numero p-adico</a><b>&#160;·</b> <a href="/wiki/Numero_duale" title="Numero duale">Duali</a><b>&#160;·</b> <a href="/wiki/Numero_complesso_iperbolico" title="Numero complesso iperbolico">Complessi iperbolici</a></td><td rowspan="10" class="navbox_image"><figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics-p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/58px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="58" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/87px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/116px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a><figcaption></figcaption></figure></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Principi fondamentali</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Principio_d%27induzione" title="Principio d&#39;induzione">Principio d'induzione</a><b>&#160;·</b> <a href="/wiki/Principio_del_buon_ordinamento" title="Principio del buon ordinamento">Principio del buon ordinamento</a><b>&#160;·</b> <a href="/wiki/Relazione_di_equivalenza" title="Relazione di equivalenza">Relazione di equivalenza</a><b>&#160;·</b> <a href="/wiki/Relazione_d%27ordine" title="Relazione d&#39;ordine">Relazione d'ordine</a><b>&#160;·</b> <a href="/wiki/Associativit%C3%A0_della_potenza" title="Associatività della potenza">Associatività della potenza</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Algebra_elementare" title="Algebra elementare">Algebra elementare</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Equazione" title="Equazione">Equazione</a><b>&#160;·</b> <a href="/wiki/Disequazione" title="Disequazione">Disequazione</a><b>&#160;·</b> <a href="/wiki/Polinomio" title="Polinomio">Polinomio</a><b>&#160;·</b> <a href="/wiki/Triangolo_di_Tartaglia" title="Triangolo di Tartaglia">Triangolo di Tartaglia</a><b>&#160;·</b> <a href="/wiki/Teorema_binomiale" title="Teorema binomiale">Teorema binomiale</a><b>&#160;·</b> <a href="/wiki/Teorema_del_resto" title="Teorema del resto">Teorema del resto</a><b>&#160;·</b> <a href="/wiki/Lemma_di_Gauss_(polinomi)" title="Lemma di Gauss (polinomi)">Lemma di Gauss</a><b>&#160;·</b> <a href="/wiki/Teorema_delle_radici_razionali" title="Teorema delle radici razionali">Teorema delle radici razionali</a><b>&#160;·</b> <a href="/wiki/Regola_di_Ruffini" title="Regola di Ruffini">Regola di Ruffini</a><b>&#160;·</b> <a href="/wiki/Criterio_di_Eisenstein" title="Criterio di Eisenstein">Criterio di Eisenstein</a><b>&#160;·</b> <a href="/wiki/Criterio_di_Cartesio" title="Criterio di Cartesio">Criterio di Cartesio</a><b>&#160;·</b> <a href="/wiki/Disequazione_con_il_valore_assoluto" title="Disequazione con il valore assoluto">Disequazione con il valore assoluto</a><b>&#160;·</b> <a href="/wiki/Segno_(matematica)" title="Segno (matematica)">Segno</a><b>&#160;·</b> <a href="/wiki/Metodo_di_Gauss-Seidel" title="Metodo di Gauss-Seidel">Metodo di Gauss-Seidel</a><b>&#160;·</b> <a href="/wiki/Polinomio_simmetrico" title="Polinomio simmetrico">Polinomio simmetrico</a><b>&#160;·</b> <a href="/wiki/Funzione_simmetrica" title="Funzione simmetrica">Funzione simmetrica</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Elementi di <a href="/wiki/Calcolo_combinatorio" title="Calcolo combinatorio">Calcolo combinatorio</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Fattoriale" title="Fattoriale">Fattoriale</a><b>&#160;·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b>&#160;·</b> <a href="/wiki/Disposizione" title="Disposizione">Disposizione</a><b>&#160;·</b> <a href="/wiki/Combinazione" title="Combinazione">Combinazione</a><b>&#160;·</b> <a href="/wiki/Dismutazione_(matematica)" title="Dismutazione (matematica)">Dismutazione</a><b>&#160;·</b> <a href="/wiki/Principio_di_inclusione-esclusione" title="Principio di inclusione-esclusione">Principio di inclusione-esclusione</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Concetti fondamentali di <a href="/wiki/Teoria_dei_numeri" title="Teoria dei numeri">Teoria dei numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Primi</th><td colspan="1"><a href="/wiki/Numero_primo" title="Numero primo">Numero primo</a><b>&#160;·</b> <a href="/wiki/Teorema_dell%27infinit%C3%A0_dei_numeri_primi" title="Teorema dell&#39;infinità dei numeri primi">Teorema dell'infinità dei numeri primi</a><b>&#160;·</b> <a href="/wiki/Crivello_di_Eratostene" title="Crivello di Eratostene">Crivello di Eratostene</a><b>&#160;·</b> <a href="/wiki/Crivello_di_Atkin" title="Crivello di Atkin">Crivello di Atkin</a><b>&#160;·</b> <a href="/wiki/Test_di_primalit%C3%A0" title="Test di primalità">Test di primalità</a><b>&#160;·</b> <a href="/wiki/Teorema_fondamentale_dell%27aritmetica" title="Teorema fondamentale dell&#39;aritmetica">Teorema fondamentale dell'aritmetica</a></td></tr><tr><th class="subnavbox_group">Divisori</th><td colspan="1"><a href="/wiki/Interi_coprimi" title="Interi coprimi">Interi coprimi</a><b>&#160;·</b> <a href="/wiki/Identit%C3%A0_di_B%C3%A9zout" title="Identità di Bézout">Identità di Bézout</a><b>&#160;·</b> <a href="/wiki/Massimo_comun_divisore" title="Massimo comun divisore">MCD</a><b>&#160;·</b> <a href="/wiki/Minimo_comune_multiplo" title="Minimo comune multiplo">mcm</a><b>&#160;·</b> <a href="/wiki/Algoritmo_di_Euclide" title="Algoritmo di Euclide">Algoritmo di Euclide</a><b>&#160;·</b> <a href="/wiki/Algoritmo_esteso_di_Euclide" title="Algoritmo esteso di Euclide">Algoritmo esteso di Euclide</a><b>&#160;·</b> <a href="/wiki/Criteri_di_divisibilit%C3%A0" title="Criteri di divisibilità">Criteri di divisibilità</a><b>&#160;·</b> <a href="/wiki/Divisore" title="Divisore">Divisore</a></td></tr><tr><th class="subnavbox_group"><a href="/wiki/Aritmetica_modulare" title="Aritmetica modulare">Aritmetica modulare</a></th><td colspan="1"><a href="/wiki/Teorema_cinese_del_resto" title="Teorema cinese del resto">Teorema cinese del resto</a><b>&#160;·</b> <a href="/wiki/Piccolo_teorema_di_Fermat" title="Piccolo teorema di Fermat">Piccolo teorema di Fermat</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Eulero_(aritmetica_modulare)" title="Teorema di Eulero (aritmetica modulare)">Teorema di Eulero</a><b>&#160;·</b> <a href="/wiki/Funzione_%CF%86_di_Eulero" title="Funzione φ di Eulero">Funzione φ di Eulero</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Wilson" title="Teorema di Wilson">Teorema di Wilson</a><b>&#160;·</b> <a href="/wiki/Reciprocit%C3%A0_quadratica" title="Reciprocità quadratica">Reciprocità quadratica</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_gruppi" title="Teoria dei gruppi">Teoria dei gruppi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Gruppi</th><td colspan="1"><a href="/wiki/Gruppo_(matematica)" title="Gruppo (matematica)">Gruppo</a> (<a href="/wiki/Gruppo_finito" title="Gruppo finito">finito</a><b>&#160;·</b> <a href="/wiki/Gruppo_ciclico" title="Gruppo ciclico">ciclico</a><b>&#160;·</b> <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">abeliano</a>)<b>&#160;·</b> <a href="/wiki/Gruppo_primario" title="Gruppo primario">Gruppo primario</a><b>&#160;·</b> <a href="/wiki/Gruppo_quoziente" title="Gruppo quoziente">Gruppo quoziente</a><b>&#160;·</b> <a href="/wiki/Gruppo_nilpotente" title="Gruppo nilpotente">Gruppo nilpotente</a><b>&#160;·</b> <a href="/wiki/Gruppo_risolubile" title="Gruppo risolubile">Gruppo risolubile</a><b>&#160;·</b> <a href="/wiki/Gruppo_simmetrico" title="Gruppo simmetrico">Gruppo simmetrico</a><b>&#160;·</b> <a href="/wiki/Gruppo_diedrale" title="Gruppo diedrale">Gruppo diedrale</a><b>&#160;·</b> <a href="/wiki/Gruppo_semplice" title="Gruppo semplice">Gruppo semplice</a><b>&#160;·</b> <a href="/wiki/Gruppo_sporadico" title="Gruppo sporadico">Gruppo sporadico</a><b>&#160;·</b> <a href="/wiki/Gruppo_mostro" title="Gruppo mostro">Gruppo mostro</a><b>&#160;·</b> <a href="/wiki/Gruppo_di_Klein" title="Gruppo di Klein">Gruppo di Klein</a><b>&#160;·</b> <a href="/wiki/Gruppo_dei_quaternioni" title="Gruppo dei quaternioni">Gruppo dei quaternioni</a><b>&#160;·</b> <a href="/wiki/Gruppo_generale_lineare" title="Gruppo generale lineare">Gruppo generale lineare</a><b>&#160;·</b> <a href="/wiki/Gruppo_ortogonale" title="Gruppo ortogonale">Gruppo ortogonale</a><b>&#160;·</b> <a href="/wiki/Gruppo_unitario" title="Gruppo unitario">Gruppo unitario</a><b>&#160;·</b> <a href="/wiki/Gruppo_unitario_speciale" title="Gruppo unitario speciale">Gruppo unitario speciale</a><b>&#160;·</b> <a href="/wiki/Gruppo_residualmente_finito" title="Gruppo residualmente finito">Gruppo residualmente finito</a><b>&#160;·</b> <a href="/wiki/Gruppo_spaziale" title="Gruppo spaziale">Gruppo spaziale</a><b>&#160;·</b> <a href="/wiki/Gruppo_profinito" title="Gruppo profinito">Gruppo profinito</a><b>&#160;·</b> <a href="/wiki/Out(Fn)" title="Out(Fn)">Out(F<sub>n</sub>)</a><b>&#160;·</b> <a href="/wiki/Parola_(teoria_dei_gruppi)" title="Parola (teoria dei gruppi)">Parola</a><b>&#160;·</b> <a href="/wiki/Prodotto_diretto" title="Prodotto diretto">Prodotto diretto</a><b>&#160;·</b> <a href="/wiki/Prodotto_semidiretto" title="Prodotto semidiretto">Prodotto semidiretto</a><b>&#160;·</b> <a href="/wiki/Prodotto_intrecciato" title="Prodotto intrecciato">Prodotto intrecciato</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Alternativa_di_Tits" title="Alternativa di Tits">Alternativa di Tits</a><b>&#160;·</b> <a href="/wiki/Teorema_di_isomorfismo" title="Teorema di isomorfismo">Teorema di isomorfismo</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Lagrange_(teoria_dei_gruppi)" title="Teorema di Lagrange (teoria dei gruppi)">Teorema di Lagrange</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Cauchy_(teoria_dei_gruppi)" title="Teorema di Cauchy (teoria dei gruppi)">Teorema di Cauchy</a><b>&#160;·</b> <a href="/wiki/Teoremi_di_Sylow" title="Teoremi di Sylow">Teoremi di Sylow</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Cayley" title="Teorema di Cayley">Teorema di Cayley</a><b>&#160;·</b> <a href="/wiki/Gruppo_abeliano#Classificazione" title="Gruppo abeliano">Teorema di struttura dei gruppi abeliani finiti</a><b>&#160;·</b> <a href="/wiki/Lemma_della_farfalla" title="Lemma della farfalla">Lemma della farfalla</a><b>&#160;·</b> <a href="/wiki/Lemma_del_ping-pong" title="Lemma del ping-pong">Lemma del ping-pong</a><b>&#160;·</b> <a href="/wiki/Classificazione_dei_gruppi_semplici_finiti" title="Classificazione dei gruppi semplici finiti">Classificazione dei gruppi semplici finiti</a></td></tr><tr><th class="subnavbox_group">Sottoinsiemi</th><td colspan="1"><a href="/wiki/Sottogruppo" title="Sottogruppo">Sottogruppo</a><b>&#160;·</b> <a href="/wiki/Sottogruppo_normale" title="Sottogruppo normale">Sottogruppo normale</a><b>&#160;·</b> <a href="/wiki/Sottogruppo_caratteristico" title="Sottogruppo caratteristico">Sottogruppo caratteristico</a><b>&#160;·</b> <a href="/wiki/Sottogruppo_di_Frattini" title="Sottogruppo di Frattini">Sottogruppo di Frattini</a><b>&#160;·</b> <a href="/wiki/Sottogruppo_di_torsione" title="Sottogruppo di torsione">Sottogruppo di torsione</a><b>&#160;·</b> <a href="/wiki/Classe_laterale" title="Classe laterale">Classe laterale</a><b>&#160;·</b> <a href="/wiki/Classe_di_coniugio" title="Classe di coniugio">Classe di coniugio</a><b>&#160;·</b> <a href="/wiki/Serie_di_composizione" title="Serie di composizione">Serie di composizione</a></td></tr><tr><td colspan="2" class="navbox_center"><a href="/wiki/Omomorfismo_di_gruppi" title="Omomorfismo di gruppi">Omomorfismo</a><b>&#160;·</b> <a href="/wiki/Isomorfismo_tra_gruppi" title="Isomorfismo tra gruppi">Isomorfismo</a><b>&#160;·</b> <a href="/wiki/Automorfismo_interno" title="Automorfismo interno">Automorfismo interno</a><b>&#160;·</b> <a href="/wiki/Automorfismo_esterno" title="Automorfismo esterno">Automorfismo esterno</a><b>&#160;·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b>&#160;·</b> <a href="/wiki/Presentazione_di_un_gruppo" title="Presentazione di un gruppo">Presentazione di un gruppo</a><b>&#160;·</b> <a href="/wiki/Azione_di_gruppo" title="Azione di gruppo">Azione di gruppo</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_degli_anelli" title="Teoria degli anelli">Teoria degli anelli</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Anello_(algebra)" title="Anello (algebra)">Anello</a> (<a href="/wiki/Anello_artiniano" title="Anello artiniano">artiniano</a><b>&#160;·</b> <a href="/wiki/Anello_noetheriano" title="Anello noetheriano">noetheriano</a><b>&#160;·</b> <a href="/wiki/Anello_locale" title="Anello locale">locale</a>)<b>&#160;·</b> <a href="/wiki/Caratteristica_(algebra)" title="Caratteristica (algebra)">Caratteristica</a><b>&#160;·</b> <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale</a> (<a href="/wiki/Ideale_primo" title="Ideale primo">primo</a><b>&#160;·</b> <a href="/wiki/Ideale_massimale" title="Ideale massimale">massimale</a>)<b>&#160;·</b> <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d&#39;integrità">Dominio</a> (<a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">a fattorizzazione unica</a><b>&#160;·</b> <a href="/wiki/Dominio_ad_ideali_principali" title="Dominio ad ideali principali">a ideali principali</a><b>&#160;·</b> <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">euclideo</a>)<b>&#160;·</b> <a href="/wiki/Matrice" title="Matrice">Matrice</a><b>&#160;·</b> <a href="/wiki/Anello_semplice" title="Anello semplice">Anello semplice</a><b>&#160;·</b> <a href="/wiki/Anello_degli_endomorfismi" title="Anello degli endomorfismi">Anello degli endomorfismi</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Artin-Wedderburn" title="Teorema di Artin-Wedderburn">Teorema di Artin-Wedderburn</a><b>&#160;·</b> <a href="/wiki/Modulo_(algebra)" title="Modulo (algebra)">Modulo</a><b>&#160;·</b> <a href="/wiki/Dominio_di_Dedekind" title="Dominio di Dedekind">Dominio di Dedekind</a><b>&#160;·</b> <a href="/wiki/Estensione_di_anelli" title="Estensione di anelli">Estensione di anelli</a><b>&#160;·</b> <a href="/wiki/Teorema_della_base_di_Hilbert" title="Teorema della base di Hilbert">Teorema della base di Hilbert</a><b>&#160;·</b> <a href="/wiki/Anello_di_Gorenstein" title="Anello di Gorenstein">Anello di Gorenstein</a><b>&#160;·</b> <a href="/wiki/Base_di_Gr%C3%B6bner" title="Base di Gröbner">Base di Gröbner</a><b>&#160;·</b> <a href="/wiki/Prodotto_tensoriale" title="Prodotto tensoriale">Prodotto tensoriale</a><b>&#160;·</b> <a href="/wiki/Primo_associato" title="Primo associato">Primo associato</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_campi_(matematica)" class="mw-redirect" title="Teoria dei campi (matematica)">Teoria dei campi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><td colspan="2" class="navbox_center"><a class="mw-selflink selflink">Campo</a><b>&#160;·</b> <a href="/wiki/Polinomio_irriducibile" title="Polinomio irriducibile">Polinomio irriducibile</a><b>&#160;·</b> <a href="/wiki/Polinomio_ciclotomico" title="Polinomio ciclotomico">Polinomio ciclotomico</a><b>&#160;·</b> <a href="/wiki/Teorema_fondamentale_dell%27algebra" title="Teorema fondamentale dell&#39;algebra">Teorema fondamentale dell'algebra</a><b>&#160;·</b> <a href="/wiki/Campo_finito" title="Campo finito">Campo finito</a><b>&#160;·</b> <a href="/wiki/Automorfismo" title="Automorfismo">Automorfismo</a><b>&#160;·</b> <a href="/wiki/Endomorfismo_di_Frobenius" title="Endomorfismo di Frobenius">Endomorfismo di Frobenius</a></td></tr><tr><th class="subnavbox_group">Estensioni</th><td colspan="1"><a href="/wiki/Campo_di_spezzamento" title="Campo di spezzamento">Campo di spezzamento</a><b>&#160;·</b> <a href="/wiki/Estensione_di_campi" title="Estensione di campi">Estensione di campi</a><b>&#160;·</b> <a href="/wiki/Estensione_algebrica" title="Estensione algebrica">Estensione algebrica</a><b>&#160;·</b> <a href="/wiki/Estensione_separabile" title="Estensione separabile">Estensione separabile</a><b>&#160;·</b> <a href="/wiki/Chiusura_algebrica" title="Chiusura algebrica">Chiusura algebrica</a><b>&#160;·</b> <a href="/wiki/Campo_di_numeri" title="Campo di numeri">Campo di numeri</a><b>&#160;·</b> <a href="/wiki/Estensione_normale" title="Estensione normale">Estensione normale</a><b>&#160;·</b> <a href="/wiki/Estensione_di_Galois" title="Estensione di Galois">Estensione di Galois</a><b>&#160;·</b> <a href="/wiki/Estensione_abeliana" title="Estensione abeliana">Estensione abeliana</a><b>&#160;·</b> <a href="/wiki/Estensione_ciclotomica" title="Estensione ciclotomica">Estensione ciclotomica</a><b>&#160;·</b> <a href="/wiki/Teoria_di_Kummer" title="Teoria di Kummer">Teoria di Kummer</a></td></tr><tr><th class="subnavbox_group">Teoria di Galois</th><td colspan="1"><a href="/wiki/Gruppo_di_Galois" title="Gruppo di Galois">Gruppo di Galois</a><b>&#160;·</b> <a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">Teoria di Galois</a><b>&#160;·</b> <a href="/wiki/Teorema_fondamentale_della_teoria_di_Galois" title="Teorema fondamentale della teoria di Galois">Teorema fondamentale della teoria di Galois</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Abel-Ruffini" title="Teorema di Abel-Ruffini">Teorema di Abel-Ruffini</a><b>&#160;·</b> <a href="/wiki/Costruzioni_con_riga_e_compasso" title="Costruzioni con riga e compasso">Costruzioni con riga e compasso</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Altre <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">strutture algebriche</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Magma_(matematica)" title="Magma (matematica)">Magma</a><b>&#160;·</b> <a href="/wiki/Semigruppo" title="Semigruppo">Semigruppo</a><b>&#160;·</b> <a href="/wiki/Corpo_(matematica)" title="Corpo (matematica)">Corpo</a><b>&#160;·</b> <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">Spazio vettoriale</a><b>&#160;·</b> <a href="/wiki/Algebra_su_campo" title="Algebra su campo">Algebra su campo</a><b>&#160;·</b> <a href="/wiki/Algebra_di_Lie" title="Algebra di Lie">Algebra di Lie</a><b>&#160;·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b>&#160;·</b> <a href="/wiki/Algebra_di_Clifford" title="Algebra di Clifford">Algebra di Clifford</a><b>&#160;·</b> <a href="/wiki/Gruppo_topologico" title="Gruppo topologico">Gruppo topologico</a><b>&#160;·</b> <a href="/wiki/Gruppo_ordinato" title="Gruppo ordinato">Gruppo ordinato</a><b>&#160;·</b> <a href="/wiki/Quasi-anello" title="Quasi-anello">Quasi-anello</a><b>&#160;·</b> <a href="/wiki/Algebra_di_Boole" title="Algebra di Boole">Algebra di Boole</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">argomenti</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Teoria_delle_categorie" title="Teoria delle categorie">Teoria delle categorie</a><b>&#160;·</b> <a href="/wiki/Algebra_lineare" title="Algebra lineare">Algebra lineare</a><b>&#160;·</b> <a href="/wiki/Algebra_commutativa" title="Algebra commutativa">Algebra commutativa</a><b>&#160;·</b> <a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b>&#160;·</b> <a href="/wiki/Algebra_astratta" title="Algebra astratta">Algebra astratta</a><b>&#160;·</b> <a href="/wiki/Algebra_computazionale" class="mw-redirect" title="Algebra computazionale">Algebra computazionale</a><b>&#160;·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b>&#160;·</b> <a href="/wiki/Algebra_universale" title="Algebra universale">Algebra universale</a></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141815314"><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Algebra_commutativa"><tbody><tr><th colspan="2"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Algebra_commutativa" title="Template:Algebra commutativa"><span title="Vai alla pagina del template">V</span></a>&#160;·&#160;<a href="/w/index.php?title=Discussioni_template:Algebra_commutativa&amp;action=edit&amp;redlink=1" class="new" title="Discussioni template:Algebra commutativa (la pagina non esiste)"><span title="Discuti del template">D</span></a>&#160;·&#160;<a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Algebra_commutativa&amp;action=edit"><span title="Modifica il template. Usa l&#39;anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Algebra_commutativa" title="Algebra commutativa">Algebra commutativa</a></span></th></tr><tr><th colspan="1" class="navbox_group">Concetti generali</th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Anello_(algebra)" title="Anello (algebra)">Anello</a><b>&#160;·</b> <a class="mw-selflink selflink">Campo</a><b>&#160;·</b> <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d&#39;integrità">Dominio d'integrità</a><b>&#160;·</b> <a href="/wiki/Anello_locale" title="Anello locale">Anello locale</a><b>&#160;·</b> <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale</a> <small>(<a href="/wiki/Ideale_massimale" title="Ideale massimale">Massimale</a><b>&#160;·</b> <a href="/wiki/Ideale_primo" title="Ideale primo">Primo</a><b>&#160;·</b> <a href="/wiki/Radicale_di_un_ideale" title="Radicale di un ideale">Radicale</a><b>&#160;·</b> <a href="/wiki/Radicale_di_Jacobson" title="Radicale di Jacobson">Radicale di Jacobson</a>)</small><b>&#160;·</b> <a href="/wiki/Decomposizione_primaria" title="Decomposizione primaria">Decomposizione primaria</a><b>&#160;·</b> <a href="/wiki/Primo_associato" title="Primo associato">Primo associato</a><b>&#160;·</b> <a href="/wiki/Spettro_di_un_anello" title="Spettro di un anello">Spettro</a><b>&#160;·</b> <a href="/wiki/Dimensione_di_Krull" title="Dimensione di Krull">Dimensione di Krull</a><b>&#160;·</b> <a href="/wiki/Profondit%C3%A0_(algebra)" title="Profondità (algebra)">Profondità</a></td></tr><tr><th colspan="1" class="navbox_group">Estensioni</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Localizzazione_(algebra)" title="Localizzazione (algebra)">Localizzazione</a> <small>(<a href="/wiki/Campo_dei_quozienti" title="Campo dei quozienti">Campo dei quozienti</a>)</small><b>&#160;·</b> <a href="/wiki/Estensione_intera" title="Estensione intera">Estensione intera</a><b>&#160;·</b> <a href="/wiki/Chiusura_integrale" title="Chiusura integrale">Chiusura integrale</a><b>&#160;·</b> <a href="/wiki/Completamento_di_un_anello" title="Completamento di un anello">Completamento</a><b>&#160;·</b> <a href="/wiki/Anello_dei_polinomi" title="Anello dei polinomi">Anello dei polinomi</a><b>&#160;·</b> <a href="/wiki/Anello_delle_serie_formali" class="mw-redirect" title="Anello delle serie formali">Anello delle serie formali</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Anello_noetheriano" title="Anello noetheriano">Anelli noetheriani</a></th><td colspan="1" class="navbox_list navbox_odd"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Classi</th><td colspan="1"><a href="/wiki/Anello_artiniano" title="Anello artiniano">Anello artiniano</a><b>&#160;·</b> <a href="/wiki/Anello_locale_regolare" title="Anello locale regolare">Anello regolare</a><b>&#160;·</b> <a href="/wiki/Anello_di_Gorenstein" title="Anello di Gorenstein">Anello di Gorenstein</a><b>&#160;·</b> <a href="/wiki/Anello_di_Cohen-Macaulay" title="Anello di Cohen-Macaulay">Anello di Cohen-Macaulay</a><b>&#160;·</b> <a href="/wiki/Anello_eccellente" title="Anello eccellente">Anello eccellente</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Teorema_dell%27ideale_principale" title="Teorema dell&#39;ideale principale">Teorema dell'ideale principale</a><b>&#160;·</b> <a href="/wiki/Teorema_della_base_di_Hilbert" title="Teorema della base di Hilbert">Teorema della base di Hilbert</a><b>&#160;·</b> <a href="/wiki/Teorema_degli_zeri_di_Hilbert" title="Teorema degli zeri di Hilbert">Teorema degli zeri di Hilbert</a><b>&#160;·</b> <a href="/wiki/Lemma_di_normalizzazione_di_Noether" title="Lemma di normalizzazione di Noether">Lemma di normalizzazione di Noether</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group">Valutazioni</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Anello_di_valutazione" title="Anello di valutazione">Anello di valutazione</a><b>&#160;·</b> <a href="/wiki/Anello_a_valutazione_discreta" title="Anello a valutazione discreta">Anello a valutazione discreta</a><b>&#160;·</b> <a href="/wiki/Dominio_di_Pr%C3%BCfer" title="Dominio di Prüfer">Dominio di Prüfer</a><b>&#160;·</b> <a href="/wiki/Dominio_di_B%C3%A9zout" title="Dominio di Bézout">Dominio di Bézout</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Fattorizzazione_(teoria_degli_anelli)" title="Fattorizzazione (teoria degli anelli)">Fattorizzazione</a></th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">Dominio a fattorizzazione unica</a><b>&#160;·</b> <a href="/wiki/Dominio_ad_ideali_principali" title="Dominio ad ideali principali">Dominio ad ideali principali</a><b>&#160;·</b> <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">Dominio euclideo</a><b>&#160;·</b> <a href="/wiki/Dominio_di_Dedekind" title="Dominio di Dedekind">Dominio di Dedekind</a><b>&#160;·</b> <a href="/wiki/Dominio_di_Krull" title="Dominio di Krull">Dominio di Krull</a></td></tr><tr><th colspan="1" class="navbox_group"><a href="/wiki/Modulo_(algebra)" title="Modulo (algebra)">Teoria dei moduli</a></th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Modulo_libero" title="Modulo libero">Modulo libero</a><b>&#160;·</b> <a href="/wiki/Modulo_proiettivo" title="Modulo proiettivo">Modulo proiettivo</a><b>&#160;·</b> <a href="/wiki/Modulo_iniettivo" title="Modulo iniettivo">Modulo iniettivo</a><b>&#160;·</b> <a href="/wiki/Prodotto_tensoriale" title="Prodotto tensoriale">Prodotto tensoriale</a><b>&#160;·</b> <a href="/wiki/Modulo_piatto" title="Modulo piatto">Modulo piatto</a><b>&#160;·</b> <a href="/wiki/Lemma_di_Nakayama" title="Lemma di Nakayama">Lemma di Nakayama</a><b>&#160;·</b> <a href="/wiki/Lunghezza_di_un_modulo" title="Lunghezza di un modulo">Lunghezza</a></td></tr><tr><th colspan="1" class="navbox_group">Argomenti correlati</th><td colspan="1" class="navbox_list navbox_odd"><a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b>&#160;·</b> <a href="/wiki/Geometria_algebrica" title="Geometria algebrica">Geometria algebrica</a><b>&#160;·</b> <a href="/wiki/Teoria_algebrica_dei_numeri" title="Teoria algebrica dei numeri">Teoria algebrica dei numeri</a><b>&#160;·</b> <a href="/wiki/Teoria_delle_categorie" title="Teoria delle categorie">Teoria delle categorie</a></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r140554510">.mw-parser-output .CdA{border:1px solid #aaa;width:100%;margin:auto;font-size:90%;padding:2px}.mw-parser-output .CdA th{background-color:#f2f2f2;font-weight:bold;width:20%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .CdA th{background-color:#202122}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .CdA th{background-color:#202122}}</style><table class="CdA"><tbody><tr><th><a href="/wiki/Aiuto:Controllo_di_autorit%C3%A0" title="Aiuto:Controllo di autorità">Controllo di autorità</a></th><td><a href="/wiki/Nuovo_soggettario" title="Nuovo soggettario">Thesaurus BNCF</a> <span class="uid"><a rel="nofollow" class="external text" href="https://thes.bncf.firenze.sbn.it/termine.php?id=18363">18363</a></span></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt="&#160;" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span>&#32;<b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>&#58; accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐shht9 Cached time: 20241125082825 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.478 seconds Real time usage: 0.722 seconds Preprocessor visited node count: 3500/1000000 Post‐expand include size: 74663/2097152 bytes Template argument size: 1122/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 20583/5000000 bytes Lua time usage: 0.207/10.000 seconds Lua memory usage: 6123306/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 374.815 1 -total 29.89% 112.017 1 Template:Collegamenti_esterni 18.93% 70.969 5 Template:Vedi_anche 17.41% 65.264 2 Template:Navbox 16.54% 62.002 1 Template:Algebra 10.12% 37.936 7 Template:Cita_libro 7.44% 27.897 1 Template:Interprogetto 6.95% 26.066 1 Template:Portale 4.14% 15.504 4 Template:Navbox_subgroup 4.09% 15.320 1 Template:Controllo_di_autorità --> <!-- Saved in parser cache with key itwiki:pcache:31716:|#|:idhash:canonical and timestamp 20241125082825 and revision id 141926961. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Campo_(matematica)&amp;oldid=141926961">https://it.wikipedia.org/w/index.php?title=Campo_(matematica)&amp;oldid=141926961</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Teoria_dei_campi" title="Categoria:Teoria dei campi">Teoria dei campi</a></li><li><a href="/wiki/Categoria:Strutture_algebriche" title="Categoria:Strutture algebriche">Strutture algebriche</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:Voci_con_modulo_citazione_e_parametro_coautori" title="Categoria:Voci con modulo citazione e parametro coautori">Voci con modulo citazione e parametro coautori</a></li><li><a href="/wiki/Categoria:P6706_letta_da_Wikidata" title="Categoria:P6706 letta da Wikidata">P6706 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li><li><a href="/wiki/Categoria:Voci_con_codice_Thesaurus_BNCF" title="Categoria:Voci con codice Thesaurus BNCF">Voci con codice Thesaurus BNCF</a></li><li><a href="/wiki/Categoria:Voci_non_biografiche_con_codici_di_controllo_di_autorit%C3%A0" title="Categoria:Voci non biografiche con codici di controllo di autorità">Voci non biografiche con codici di controllo di autorità</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il&#160;2 nov 2024 alle 18:43.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Campo_(matematica)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-74cc59cb9d-mbjn2","wgBackendResponseTime":253,"wgPageParseReport":{"limitreport":{"cputime":"0.478","walltime":"0.722","ppvisitednodes":{"value":3500,"limit":1000000},"postexpandincludesize":{"value":74663,"limit":2097152},"templateargumentsize":{"value":1122,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":20583,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 374.815 1 -total"," 29.89% 112.017 1 Template:Collegamenti_esterni"," 18.93% 70.969 5 Template:Vedi_anche"," 17.41% 65.264 2 Template:Navbox"," 16.54% 62.002 1 Template:Algebra"," 10.12% 37.936 7 Template:Cita_libro"," 7.44% 27.897 1 Template:Interprogetto"," 6.95% 26.066 1 Template:Portale"," 4.14% 15.504 4 Template:Navbox_subgroup"," 4.09% 15.320 1 Template:Controllo_di_autorità"]},"scribunto":{"limitreport-timeusage":{"value":"0.207","limit":"10.000"},"limitreport-memusage":{"value":6123306,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-shht9","timestamp":"20241125082825","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Campo (matematica)","url":"https:\/\/it.wikipedia.org\/wiki\/Campo_(matematica)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190109","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190109","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-07-14T03:26:37Z","dateModified":"2024-11-02T17:43:08Z","headline":"struttura algebrica"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10