CINXE.COM

Search results for: luminescence

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: luminescence</title> <meta name="description" content="Search results for: luminescence"> <meta name="keywords" content="luminescence"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="luminescence" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="luminescence"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 119</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: luminescence</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Enhancement of Light Extraction of Luminescent Coating by Nanostructuring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aubry%20Martin">Aubry Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehed%20Amara"> Nehed Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Nyalosaso"> Jeff Nyalosaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Potdevin"> Audrey Potdevin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7Ois%20ReVeret"> FrançOis ReVeret</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Langlet"> Michel Langlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Chadeyron"> Genevieve Chadeyron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphor%20coatings" title="phosphor coatings">phosphor coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructuring" title=" nanostructuring"> nanostructuring</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20extraction" title=" light extraction"> light extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanowires" title=" ZnO nanowires"> ZnO nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20lithography" title=" colloidal lithography"> colloidal lithography</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20devices" title=" LED devices"> LED devices</a> </p> <a href="https://publications.waset.org/abstracts/139533/enhancement-of-light-extraction-of-luminescent-coating-by-nanostructuring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sk.%20Mahamuda"> Sk. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch"> Ch</a>, <a href="https://publications.waset.org/abstracts/search?q=Annapurna"> Annapurna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Srinivasa%20Rao"> A. Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoro%20tungsten%20tellurite%20glasses" title="fluoro tungsten tellurite glasses">fluoro tungsten tellurite glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=judd-ofelt%20intensity%20parameters" title=" judd-ofelt intensity parameters"> judd-ofelt intensity parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulated%20emission%20cross-section" title=" stimulated emission cross-section"> stimulated emission cross-section</a> </p> <a href="https://publications.waset.org/abstracts/43867/composition-dependent-spectroscopic-studies-of-sm3-doped-alkali-fluoro-tungsten-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Yousuf">Asad Yousuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20field%20dosimetry" title="small field dosimetry">small field dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=optically%20stimulated%20luminescence" title=" optically stimulated luminescence"> optically stimulated luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=audit%20treatment" title=" audit treatment"> audit treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=radiological%20physics%20center" title=" radiological physics center"> radiological physics center</a> </p> <a href="https://publications.waset.org/abstracts/7998/audit-of-tps-photon-beam-dataset-for-small-field-output-factors-using-oslds-against-rpc-standard-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Comparison of FNTD and OSLD Detectors&#039; Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=FNTD%20and%20OSLD%20detectors%20response" title=" FNTD and OSLD detectors response"> FNTD and OSLD detectors response</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20ion%20beams" title=" light ion beams"> light ion beams</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulations" title=" Monte Carlo simulations"> Monte Carlo simulations</a> </p> <a href="https://publications.waset.org/abstracts/7133/comparison-of-fntd-and-osld-detectors-responses-to-light-ion-beams-using-monte-carlo-simulations-and-exprimental-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Battal">Ahmet Battal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Tatar"> Demet Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20D%C3%BCzg%C3%BCn"> Bahattin Düzgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2" title=" SnO2"> SnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20doped" title=" doubly doped"> doubly doped</a> </p> <a href="https://publications.waset.org/abstracts/28569/effect-of-substrate-temperature-on-some-physical-properties-of-doubly-doped-tin-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeyma%20%C3%96z%C3%A7irak%20Erg%C3%BCn">Şeyma Özçirak Ergün</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20%C5%9Eakalar"> Ergün Şakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Yalazi%CC%87"> Emrah Yalazi̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Nebahat%20%C5%9Eahi%CC%87n"> Nebahat Şahi̇n</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20electrophoresis" title=" gel electrophoresis"> gel electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizeradiation" title=" ionizeradiation"> ionizeradiation</a> </p> <a href="https://publications.waset.org/abstracts/53071/prediction-of-ionizing-radiation-doses-in-irradiated-red-pepper-capsicum-annuum-and-mint-mentha-piperita-by-gel-electrophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarnapriya%20Thiyagarajan">Swarnapriya Thiyagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Modesto%20Antonio%20Sosa%20Aquino"> Modesto Antonio Sosa Aquino</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Vallejo%20Hernandez"> Miguel Vallejo Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Senthilkumar%20Kalaiselvan%20Dhivyaraj"> Senthilkumar Kalaiselvan Dhivyaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayaramakrishnan%20Velusamy"> Jayaramakrishnan Velusamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title="dosimetry">dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20tetraborate" title=" lithium tetraborate"> lithium tetraborate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/69681/thermoluminescence-study-of-cu-doped-lithium-tetra-borate-samples-synthesized-by-watersolution-assisted-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Metal-Organic Frameworks for Innovative Functional Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20E.%20Emam">Hossam E. Emam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20textiles" title=" functional textiles"> functional textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20purification" title=" fuel purification"> fuel purification</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20applications" title=" environmental applications"> environmental applications</a> </p> <a href="https://publications.waset.org/abstracts/123054/metal-organic-frameworks-for-innovative-functional-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Dosimetric Application of α-Al2O3:C for Food Irradiation Using TA-OSL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soni">A. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Mishra"> D. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Koul"> D. K. Koul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> α-Al2O3:C has been reported to have deeper traps at 600°C and 900°C respectively. These traps have been reported to accessed at relatively earlier temperatures (122 and 322 °C respectively) using thermally assisted OSL (TA-OSL). In this work, the dose response α-Al2O3:C was studied in the dose range of 10Gy to 10kGy for its application in food irradiation in low ( upto 1kGy) and medium(1 to 10kGy) dose range. The TOL (Thermo-optically stimulated luminescence) measurements were carried out on RisØ TL/OSL, TL-DA-15 system having a blue light-emitting diodes (λ=470 ±30nm) stimulation source with power level set at the 90% of the maximum stimulation intensity for the blue LEDs (40 mW/cm2). The observations were carried on commercial α-Al2O3:C phosphor. The TOL experiments were carried out with number of active channel (300) and inactive channel (1). Using these settings, the sample is subjected to linear thermal heating and constant optical stimulation. The detection filter used in all observations was a Hoya U-340 (Ip ~ 340 nm, FWHM ~ 80 nm). Irradiation of the samples was carried out using a 90Sr/90Y β-source housed in the system. A heating rate of 2 °C/s was preferred in TL measurements so as to reduce the temperature lag between the heater plate and the samples. To study the dose response of deep traps of α-Al2O3:C, samples were irradiated with various dose ranging from 10 Gy to 10 kGy. For each set of dose, three samples were irradiated. In order to record the TA-OSL, initially TL was recorded up to a temperature of 400°C, to deplete the signal due to 185°C main dosimetry TL peak in α-Al2O3:C, which is also associated with the basic OSL traps. After taking TL readout, the sample was subsequently subjected to TOL measurement. As a result, two well-defined TA-OSL peaks at 121°C and at 232°C occur in time as well as temperature domain which are different from the main dosimetric TL peak which occurs at ~ 185°C. The linearity of the integrated TOL signal has been measured as a function of absorbed dose and found to be linear upto 10kGy. Thus, it can be used for low and intermediate dose range of for its application in food irradiation. The deep energy level defects of α-Al2O3:C phosphor can be accessed using TOL section of RisØ reader system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Al2O3%3AC" title="α-Al2O3:C">α-Al2O3:C</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20traps" title=" deep traps"> deep traps</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20irradiation" title=" food irradiation"> food irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=TA-OSL" title=" TA-OSL"> TA-OSL</a> </p> <a href="https://publications.waset.org/abstracts/46419/dosimetric-application-of-a-al2o3c-for-food-irradiation-using-ta-osl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cabaj">Joanna Cabaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Baluta"> Sylwia Baluta</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Malecha"> Karol Malecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamila%20Drzozga"> Kamila Drzozga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=LTCC" title=" LTCC"> LTCC</a> </p> <a href="https://publications.waset.org/abstracts/80992/the-strategy-for-detection-of-catecholamines-in-body-fluids-optical-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Solati">Elmira Solati</a>, <a href="https://publications.waset.org/abstracts/search?q=Atousa%20Mehrani"> Atousa Mehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Dorranian"> Davoud Dorranian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%20nanoparticles" title="Au nanoparticles">Au nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO-Au%20nanocomposites" title=" ZnO-Au nanocomposites"> ZnO-Au nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles" title=" ZnO nanoparticles"> ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/36793/generation-of-zno-au-nanocomposite-in-water-using-pulsed-laser-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakara%20Naidu%20Neppalli">Sudhakara Naidu Neppalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejas%20S.%20Bhosale"> Tejas S. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title="band gap">band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20copolymer" title=" block copolymer"> block copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameter" title=" interaction parameter"> interaction parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/72662/supramolecular-approach-towards-novel-applications-battery-band-gap-and-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payman%20Davoodi-Nasab">Payman Davoodi-Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahbar-Kelishami"> Ahmad Rahbar-Kelishami</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Safdari"> Jaber Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Abolghasemi"> Hossein Abolghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium&ndash;iron&ndash;boron (Nd&ndash;Fe&ndash;B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion%20liquid%20membrane" title="emulsion liquid membrane">emulsion liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20of%20neodymium" title=" extraction of neodymium"> extraction of neodymium</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a> </p> <a href="https://publications.waset.org/abstracts/66254/performance-study-of-neodymium-extraction-by-carbon-nanotubes-assisted-emulsion-liquid-membrane-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Luminescent Properties of Sm³⁺-Doped Silica Nanophosphor Synthesized from Highly Active Amorphous Nanosilica Derived from Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celestine%20Mbakaan">Celestine Mbakaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Iorkyaa%20Ahemen"> Iorkyaa Ahemen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Onoja"> A. D. Onoja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Amah"> A. N. Amah</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Barki"> Emmanuel Barki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice husk (RH) is a natural sheath that forms and covers the grain of rice. The husk composed of hard materials, including opaline silica and lignin. It separates from its grain during rice milling. RH also contains approximately 15 to 28 wt % of silica in hydrated amorphous form. Nanosilica was derived from the husk of different rice varieties after pre-treating the husk (RH) with HCl and calcination at 550°C. Nanosilica derived from the husk of Osi rice variety produced the highest silica yield, and further pretreatment with 0.8 M H₃PO₄ acid removed more mineral impurities. The silica obtained from this rice variety was selected as a host matrix for doping with Sm³⁺ ions. Rice husk silica (RH-SiO₂) doped with samarium (RH-SiO₂: xSm³⁺ (x=0.01, 0.05, and 0.1 molar ratios) nanophosphors were synthesized via the sol-gel method. The structural analysis by X-ray diffraction analysis (XRD) reveals amorphous structure while the surface morphology, as revealed by SEM and TEM, indicates agglomerates of nano-sized spherical particles with an average particle size measuring 21 nm. The nanophosphor has a large surface area measuring 198.0 m²/g, and Fourier transform infrared spectroscopy (FT-IR) shows only a single absorption band which is strong and broad with a valley at 1063 cm⁻¹. Diffuse reflectance spectroscopy (DRS) shows strong absorptions at 319, 345, 362, 375, 401, and 474 nm, which can be exclusively assigned to the 6H5/2→4F11/2, 3H7/2, 4F9/2, 4D5/2, 4K11/2, and 4M15/2 + 4I11/2, transitions of Sm³⁺ respectively. The photoluminescence excitation spectra show that near UV and blue LEDs can effectively be used as excitation sources to produce red-orange and yellow-orange emission from Sm³⁺ ion-doped RH-SiO₂ nanophosphors. The photoluminescence (PL) of the nanophosphors gives three main lines; 568, 605, and 652 nm, which are attributed to the intra-4f shell transitions from the excited level to ground levels, respectively under excitation wavelengths of 365 and 400 nm. The result, as confirmed from the 1931 CIE coordinates diagram, indicates the emission of red-orange light by RH-SiO₂: xSm³⁺ (x=0.01 and 0.1 molar ratios) and yellow-orange light from RH-SiO₂: 0.05 Sm³⁺. Finally, the result shows that RH-SiO₂ doped with samarium (Sm³⁺) ions can be applicable in display applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescence" title="luminescence">luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilica" title=" nanosilica"> nanosilica</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophosphors" title=" nanophosphors"> nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=Sm%C2%B3%E2%81%BA" title=" Sm³⁺"> Sm³⁺</a> </p> <a href="https://publications.waset.org/abstracts/116366/luminescent-properties-of-sm3-doped-silica-nanophosphor-synthesized-from-highly-active-amorphous-nanosilica-derived-from-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Literary Words of Foreign Origin as Social Markers in Jeffrey Archer&#039;s Novels Speech Portrayals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Ivushkina">Tatiana Ivushkina </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is aimed at studying the use of literary words of foreign origin in modern fiction from a sociolinguistic point of view, which presupposes establishing correlation between this category of words in a speech portrayal or narrative and a social status of the speaker, verifying that it bears social implications and serves as a social marker or index of socially privileged identity in the British literature of the 21-st century. To this end, there were selected literary words of foreign origin in context (60 contexts) and subjected to careful examination. The study is carried out on two novels by Jeffrey Archer – Not a Penny More, Not a Penny Less and A Prisoner of Birth – who, being a graduate from Oxford, represents socially privileged classes himself and gives a wide depiction of characters with different social backgrounds and statuses. The analysis of the novels enabled us to categorize the selected words into four relevant groups. The first represented by terms (commodity, debenture, recuperation, syringe, luminescence, umpire, etc.) serves to unambiguously indicate education, occupation, a field of knowledge in which a character is involved or a situation of communication. The second group is formed of words used in conjunction with their Germanic counterparts (perspiration – sweat, padre – priest, convivial – friendly) to contrast social position of the characters: literary words serving as social indices of upper class speakers whereas their synonyms of Germanic origin characterize middle or lower class speech portrayals. The third class of words comprises socially marked words (verbs, nouns, and adjectives), or U-words (the term first coined by Allan Ross and Nancy Mitford), the status acquired in the course of social history development (elegant, excellent, sophistication, authoritative, preposterous, etc.). The fourth includes words used in a humorous or ironic meaning to convey the narrator’s attitude to the characters or situation itself (ministrations, histrionic, etc.). Words of this group are perceived as 'alien', stylistically distant as they create incongruity between style and subject matter. Social implication of the selected words is enhanced by French words and phrases often accompanying them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=British%20literature%20of%20the%20XXI%20century" title="British literature of the XXI century">British literature of the XXI century</a>, <a href="https://publications.waset.org/abstracts/search?q=literary%20words%20of%20foreign%20origin" title=" literary words of foreign origin"> literary words of foreign origin</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20context" title=" social context"> social context</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20meaning" title=" social meaning"> social meaning</a> </p> <a href="https://publications.waset.org/abstracts/108639/literary-words-of-foreign-origin-as-social-markers-in-jeffrey-archers-novels-speech-portrayals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Short-Term Stress Indicators in Home and Experimental Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madara%20Nikolajenko">Madara Nikolajenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jevgenija%20Kondratjeva"> Jevgenija Kondratjeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress is a response of the body to physical or psychological environmental stressors. Cortisol level in blood serum is determined as the main indicator of stress, but the blood collection, the animal preparation and other activities can cause unpleasant conditions and induce increase of these hormones. Therefore, less invasive methods are searched to determine stress hormone levels, for example, by measuring the cortisol level saliva. The aim of the study is to find out the changes of stress hormones in blood and saliva in home and experimental dogs in simulated short-term stress conditions. The study included clinically healthy experimental beagle dogs (n=6) and clinically healthy home American Staffordshire terriers (n=6). The animals were let into a fenced area to adapt. Loud drum sounds (in cooperation with 'Andžeja Grauda drum school') were used as a stressor. Blood serum samples were taken for sodium, potassium, glucose and cortisol level determination and saliva samples for cortisol determination only. Control parameters were taken immediately before the start of the stressor, and next samples were taken immediately after the stress. The last measurements were taken two hours after the stress. Electrolyte levels in blood serum were determined using direction selective electrode method (ILab Aries analyzer) and cortisol in blood serum and saliva using electrochemical luminescence method (Roche Diagnostics). Blood glucose level was measured with glucometer (ACCU-CHECK Active test strips). Cortisol level in the blood increased immediately after the stress in all home dogs (P < 0,05), but only in 33% (P < 0,05) of the experimental dogs. After two hours the measurement decreased in 83% (P < 0,05) of home dogs (in 50% returning to the control point) and in 83% (P < 0,05) of the experimental dogs. Cortisol in saliva immediately after the stress increased in 50% (P > 0,05) of home dogs and in 33% (P > 0,05) of the experimental dogs. After two hours in 83% (P > 0,05) of the home animals, the measurements decreased, only in 17% of the experimental dogs it decreased as well, while in 49% measurement was undetectable due to the lack of material. Blood sodium, potassium, and glucose measurements did not show any significant changes. The combination of short-term stress indicators, when, after the stressor, all indicators should immediately increase and decrease after two hours, confirmed in none of the animals. Therefore the authors can conclude that each animal responds to a stressful situation with different physiological mechanisms and hormonal activity. Cortisol level in saliva and blood is released with the different speed and is not an objective indicator of acute stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20behaivor" title="animal behaivor">animal behaivor</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term%20stress" title=" short-term stress"> short-term stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20indicators" title=" stress indicators"> stress indicators</a> </p> <a href="https://publications.waset.org/abstracts/61019/the-short-term-stress-indicators-in-home-and-experimental-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Althalb">Hakima Althalb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/90318/potential-of-ozonation-and-phytoremediation-to-reduce-hydrocarbon-levels-remaining-after-the-pilot-scale-microbial-based-bioremediation-land-farming-of-a-heavily-polluted-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Diaka">Magdalena Diaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Mazierski"> Paweł Mazierski</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20%C5%BBebrowska"> Joanna Żebrowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Winiarski"> Michał Winiarski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Klimczuk"> Tomasz Klimczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Zaleska-Medynska"> Adriana Zaleska-Medynska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20properties" title=" antibacterial properties"> antibacterial properties</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanotubes" title=" titania nanotubes"> titania nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20TiO2%2FMxOy%20nanostructures" title=" new TiO2/MxOy nanostructures"> new TiO2/MxOy nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/41607/enhanced-photocatalytic-activities-of-tio2ag2o-heterojunction-nanotubes-arrays-obtained-by-electrochemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monica%20Enculescu">Monica Enculescu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Evanghelidis"> A. Evanghelidis</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Enculescu"> I. Enculescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanofibers" title=" polymer nanofibers"> polymer nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/77211/luminescent-dye-doped-polymer-nanofibers-produced-by-electrospinning-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Dumont">Antoine Dumont</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiji%20Hong"> Weiji Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng-Hong%20Lu"> Zheng-Hong Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=material%20physics" title="material physics">material physics</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diode" title=" light emitting diode"> light emitting diode</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20vacuum%20deposition" title=" high vacuum deposition"> high vacuum deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20processing" title=" thin film processing "> thin film processing </a> </p> <a href="https://publications.waset.org/abstracts/107127/development-of-perovskite-quantum-dots-light-emitting-diode-by-dual-source-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iulianna%20Taritsa">Iulianna Taritsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldeep%20Neote"> Kuldeep Neote</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Fossel"> Eric Fossel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=immunogenic%20cell%20death" title=" immunogenic cell death"> immunogenic cell death</a>, <a href="https://publications.waset.org/abstracts/search?q=lysosome" title=" lysosome"> lysosome</a> </p> <a href="https://publications.waset.org/abstracts/142935/using-lysosomal-immunogenic-cell-death-to-target-breast-cancer-via-xanthine-oxidasemicro-antibody-fusion-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Photocatalytic Properties of Pt/Er-KTaO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Krukowska">Anna Krukowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Klimczuk"> Tomasz Klimczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Zaleska-Medynska"> Adriana Zaleska-Medynska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalytic" title="heterogeneous photocatalytic">heterogeneous photocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=KTaO3%20photocatalysts" title=" KTaO3 photocatalysts"> KTaO3 photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Er3%2B%20ion%20doping" title=" Er3+ ion doping"> Er3+ ion doping</a>, <a href="https://publications.waset.org/abstracts/search?q=Pt%20photodeposition" title=" Pt photodeposition"> Pt photodeposition</a> </p> <a href="https://publications.waset.org/abstracts/41587/photocatalytic-properties-of-pter-ktao3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Augustas%20Vaitkevicius">Augustas Vaitkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Korjik"> Mikhail Korjik</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Tretyak"> Eugene Tretyak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Trusova"> Ekaterina Trusova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Tamulaitis"> Gintautas Tamulaitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramics" title="glass ceramics">glass ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicate" title=" silicate "> silicate </a> </p> <a href="https://publications.waset.org/abstracts/51777/photoluminescence-of-barium-and-lithium-silicate-glasses-and-glass-ceramics-doped-with-rare-earth-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoheng%20Liu">Guoheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhilong%20Huang"> Zhilong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithofacies%20classification" title="lithofacies classification">lithofacies classification</a>, <a href="https://publications.waset.org/abstracts/search?q=tuffaceous%20shale" title=" tuffaceous shale"> tuffaceous shale</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20enrichment" title=" oil enrichment"> oil enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucaogou%20formation" title=" Lucaogou formation"> Lucaogou formation</a> </p> <a href="https://publications.waset.org/abstracts/79989/the-effects-of-lithofacies-on-oil-enrichment-in-lucaogou-formation-fine-grained-sedimentary-rocks-in-santanghu-basin-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ul%20Rehman">T. Ul Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Agnello"> S. Agnello</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Gelardi"> F. M. Gelardi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Calvino"> M. M. Calvino</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lazzara"> G. Lazzara</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Buscarino"> G. Buscarino</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cannas"> M. Cannas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%C2%B3%E2%81%BA%20cation%20exchange" title="Fe³⁺ cation exchange">Fe³⁺ cation exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescent%20metal-organic%20frameworks%20%28LMOFs%29" title=" luminescent metal-organic frameworks (LMOFs)"> luminescent metal-organic frameworks (LMOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-53%28Al%29" title=" MIL-53(Al)"> MIL-53(Al)</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state%20analysis" title=" solid-state analysis"> solid-state analysis</a> </p> <a href="https://publications.waset.org/abstracts/184892/tailoring-structural-thermal-and-luminescent-properties-of-solid-state-mil-53al-mof-via-fe3-cation-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Quantum Dots Incorporated in Biomembrane Models for Cancer Marker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20E.%20Goto">Thiago E. Goto</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20C.%20Lopes"> Carla C. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20B.%20Nader"> Helena B. Nader</a>, <a href="https://publications.waset.org/abstracts/search?q=Anielle%20C.%20A.%20Silva"> Anielle C. A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Noelio%20O.%20Dantas"> Noelio O. Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20R.%20Siqueira%20Jr."> José R. Siqueira Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Caseli"> Luciano Caseli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots (QD) are semiconductor nanocrystals that can be employed in biological research as a tool for fluorescence imagings, having the potential to expand in vivo and in vitro analysis as cancerous cell biomarkers. Particularly, cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) exhibit stable luminescence that is feasible for biological applications, especially for imaging of tumor cells. For these facts, it is interesting to know the mechanisms of action of how such QDs mark biological cells. For that, simplified models are a suitable strategy. Among these models, Langmuir films of lipids formed at the air-water interface seem to be adequate since they can mimic half a membrane. They are monomolecular films formed at liquid-gas interfaces that can spontaneously form when organic solutions of amphiphilic compounds are spread on the liquid-gas interface. After solvent evaporation, the monomolecular film is formed, and a variety of techniques, including tensiometric, spectroscopic and optic can be applied. When the monolayer is formed by membrane lipids at the air-water interface, a model for half a membrane can be inferred where the aqueous subphase serve as a model for external or internal compartment of the cell. These films can be transferred to solid supports forming the so-called Langmuir-Blodgett (LB) films, and an ampler variety of techniques can be additionally used to characterize the film, allowing for the formation of devices and sensors. With these ideas in mind, the objective of this work was to investigate the specific interactions of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and LB films of lipids and specific cell extracts as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers, constructed either of selected lipids or of non-tumorigenic and tumorigenic cells extracts. The quantum dots expanded the monolayers and changed the PM-IRRAS spectra for the lipid monolayers. The mixed films were then compressed to high surface pressures and transferred from the floating monolayer to solid supports by using the LB technique. Images of the films were then obtained with atomic force microscopy (AFM) and confocal microscopy, which provided information about the morphology of the films. Similarities and differences between films with different composition representing cell membranes, with or without CdSe MSQDs, was analyzed. The results indicated that the interaction of quantum dots with the bioinspired films is modulated by the lipid composition. The properties of the normal cell monolayer were not significantly altered, whereas for the tumorigenic cell monolayer models, the films presented significant alteration. The images therefore exhibited a stronger effect of CdSe MSQDs on the models representing cancerous cells. As important implication of these findings, one may envisage for new bioinspired surfaces based on molecular recognition for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomembrane" title="biomembrane">biomembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir%20monolayers" title=" langmuir monolayers"> langmuir monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=surfaces" title=" surfaces"> surfaces</a> </p> <a href="https://publications.waset.org/abstracts/55263/quantum-dots-incorporated-in-biomembrane-models-for-cancer-marker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Application of Whole-Cell Luminescent Biosensors for Assessing Bactericidal Properties of Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuliya%20Y.%20Gavrichenko">Yuliya Y. Gavrichenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: The increasing bacterial resistance to almost all the available antibiotics has encouraged scientists to search for alternative sources of antibacterial agents. Nowadays, it is known that many plant secondary metabolites have diverse biological activity. These compounds can be potentially active against human bacterial and viral infections. Extended research has been carried out to explore the use of the luminescent bacterial test as a rapid, accurate and inexpensive method to assess the antibacterial properties and to predict the biological activity spectra for plant origin substances. Method: Botanical material of fifteen species was collected from their natural and cultural habitats on the Crimean peninsula. The aqueous extracts of following plants were tested: Robinia pseudoacacia L., Sideritis comosa, Cotinus coggygria Scop., Thymus serpyllum L., Juglans regia L., Securigera varia L., Achillea millefolium L., Phlomis taurica, Corylus avellana L., Sambucus nigra L., Helichrysum arenarium L., Glycyrrhiza glabra L., Elytrigia repens L., Echium vulgare L., Conium maculatum L. The test was carried out using luminous strains of marine bacteria Photobacterium leiognathi, which was isolated from the Sea of Azov as well as four Escherichia coli MG1655 recombinant strains harbouring Vibrio fischeri luxCDABE genes. Results: The bactericidal capacity of plant extracts showed significant differences in the study. Cotinus coggygria, Phlomis taurica, Juglans regia L. proved to be the most toxic to P. leiognathi. (EC50 = 0.33 g dried plant/l). Glycyrrhiza glabra L., Robinia pseudoacacia L., Sideritis comosa and Helichrysum arenarium L. had moderate inhibitory effects (EC50 = 3.3 g dried plant/l). The rest of the aqueous extracts have decreased the luminescence of no more than 50% at the lowest concentration (16.5 g dried plant/l). Antibacterial activity of herbal extracts against constitutively luminescent E. coli MG1655 (pXen7-lux) strain was observed at approximately the same level as for P. leiognathi. Cotinus coggygria and Conium maculatum L. extracts have increased light emission in the mutant E. coli MG1655 (pFabA-lux) strain which is associated with cell membranes damage. Sideritis comosa, Phlomis taurica, Juglans regia induced SOS response in E. coli (pColD-lux) strain. Glycyrrhiza glabra L. induced protein damage response in E. coli MG1655 (pIbpA-lux) strain. Conclusion: The received results have shown that the plants’ extracts had nonspecific antimicrobial effects against both E. coli (pXen7-lux) and P. leiognathi biosensors. Mutagenic, cytotoxic and protein damage effects have been observed. In general, the bioluminescent inhibition test result correlated with the traditional use of screened plants. It leads to the following conclusion that whole-cell luminescent biosensors could be the indicator of overall plants antibacterial capacity. The results of the investigation have shown a possibility of bioluminescent method in medicine and pharmacy as an approach to research the antibacterial properties of medicinal plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20property" title="antibacterial property">antibacterial property</a>, <a href="https://publications.waset.org/abstracts/search?q=bioluminescence" title=" bioluminescence"> bioluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-cell%20biosensors" title=" whole-cell biosensors"> whole-cell biosensors</a> </p> <a href="https://publications.waset.org/abstracts/103713/the-application-of-whole-cell-luminescent-biosensors-for-assessing-bactericidal-properties-of-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Effectiveness of Essential Oils as Inhibitors of Quorum Sensing Activity Using Biomonitor Strain Chromobacterium Violaceum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Cabarkapa">Ivana Cabarkapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomicic"> Zorica Tomicic</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivera%20Duragic"> Olivera Duragic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimicrobial resistance represents one of the major challenges facing humanity in the last decades. Increasing antibiotic-resistant pathogens indicates the need for the development of alternative antibacterial drugs and new treatment strategies. One of the innovative emerging treatments in overcoming multidrug-resistant pathogens certainly represents the inhibition anti-quorum sensing system. For most of the food-borne pathogens, the expression of the virulence depends on their capability communication with other members of the population by means of quorum sensing (QS). QS represents a specific way of bacterial intercellular communication, which enabled owing to their ability to detect and to respond to cell population density by gene regulation. QS mechanisms are responsible for controls the pathogenesis, virulence luminescence, motility, sporulation and biofilm formation of many organisms by regulating gene expression. Therefore, research in this field is being an attractive target for the development of new natural antibacterial agents. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Considering the importance of quorum sensing during bacterial pathogenesis, this research has been focused on evaluation anti - QS properties of four essential oils (EOs) Origanum heracleoticum, Origanum vulgare, Thymus vulgare, and Thymus serpyllum, using biomonitor strain of Chromobacterium violaceum CV026. Tests conducted on Luria Bertani agar supplemented with N hexanol DL homoserine lacton (HHL) 10µl/50ml of agar. The anti-QS potential of the EOs was assayed in a range of concentrations of 200 – 0.39 µl/ml using the disc diffusion method. EOs of Th. vulgaris and T. serpyllum were exhibited anti-QS activity indicated by a non- pigmented ring with a dilution-dependent manner. The lowest dilution of EOs T. vulgaris and T. serpyllum in which they exhibited visually detectable inhibition of violacein synthesis was 6.25 µl/ml for both tested EOs. EOs of O. heracleoticum and O. vulgare were displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by the outer non-pigmented ring, in a concentration-dependent manner. The lowest dilution of EOs of O. heracleoticum and O. vulgare in which exhibited visually detectable inhibition of violacein synthesis was 1.56 and 3.25 µl/ml, respectively. Considering that, the main constituents of the tested EOs represented by monoterpenes (carvacrol, thymol, γ-terpinene, and p-cymene), anti - QS properties of tested EOs can be mainly attributed to their activity. In particular, from the scientific literature, carvacrol and thymol show a sub-inhibitory effect against foodborne pathogens. Previous studies indicated that sub-lethal concentrations of carvacrol reduced the mobility of bacteria due to the ability of interference using QS mechanism between the bacterial cells, and thereby reducing the ability of biofilm formation The precise mechanism by which carvacrol inhibits biofilm formation is still not fully understood. Our results indicated that EOs displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by an outer non- pigmented ring with visually detectable inhibition of violacein. Preliminary results suggest that EOs represent a promising alternative for effective control of the emergence and spread of resistant pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-quorum%20sensing%20activity" title="anti-quorum sensing activity">anti-quorum sensing activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromobacterium%20violaceum" title=" Chromobacterium violaceum"> Chromobacterium violaceum</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=violacein" title=" violacein"> violacein</a> </p> <a href="https://publications.waset.org/abstracts/118341/effectiveness-of-essential-oils-as-inhibitors-of-quorum-sensing-activity-using-biomonitor-strain-chromobacterium-violaceum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Biocellulose as Platform for the Development of Multifunctional Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkal%20Gutierrez">Junkal Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hernane%20S.%20Barud"> Hernane S. Barud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidney%20J.%20L.%20Ribeiro"> Sidney J. L. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Tercjak"> Agnieszka Tercjak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title="bacterial cellulose">bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20copolymer" title=" block copolymer"> block copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20characterization%20techniques" title=" advanced characterization techniques"> advanced characterization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/56612/biocellulose-as-platform-for-the-development-of-multifunctional-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence&amp;page=3" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=luminescence&amp;page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item disabled"><span class="page-link">&rsaquo;</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10