CINXE.COM
Search results for: Euphrates river
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Euphrates river</title> <meta name="description" content="Search results for: Euphrates river"> <meta name="keywords" content="Euphrates river"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Euphrates river" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Euphrates river"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1050</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Euphrates river</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Iraq Water Resources Planning: Perspectives and Prognoses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari">Nadhir Al-Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20A.%20Ali"> Ammar A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Knutsson"> Sven Knutsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iraq" title="Iraq">Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigris%20River" title=" Tigris River"> Tigris River</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphrates%20River" title=" Euphrates River"> Euphrates River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/13502/iraq-water-resources-planning-perspectives-and-prognoses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amer%20Obaid%20Saud">Amer Obaid Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babylon%20governorate" title="Babylon governorate">Babylon governorate</a>, <a href="https://publications.waset.org/abstracts/search?q=Canadian%20version" title=" Canadian version"> Canadian version</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphrates%20river" title=" Euphrates river"> Euphrates river</a> </p> <a href="https://publications.waset.org/abstracts/21702/assessment-of-water-quality-of-euphrates-river-at-babylon-governorate-for-drinking-irrigation-and-general-using-water-quality-index-canadian-version-ccmewqi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Impact of Interface Soil Layer on Groundwater Aquifer Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20H.%20Kareem">Hayder H. Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunqi%20Pan"> Shunqi Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Najaf%20City" title="Al-Najaf City">Al-Najaf City</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20aquifer%20behaviour" title=" groundwater aquifer behaviour"> groundwater aquifer behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modelling" title=" groundwater modelling"> groundwater modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20soil%20layer" title=" interface soil layer"> interface soil layer</a>, <a href="https://publications.waset.org/abstracts/search?q=Visual%20MODFLOW" title=" Visual MODFLOW"> Visual MODFLOW</a> </p> <a href="https://publications.waset.org/abstracts/88148/impact-of-interface-soil-layer-on-groundwater-aquifer-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Evaluating Water Quality Index of Euphrates River South-West Part of Iraq, Najaf, Alhadaria by Using GIS Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abojassim">Ali Abojassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20Kadhim"> Nabeel Kadhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Jaber"> Adil Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hussein"> Ali Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality index (WQI) is valuable and unique rating to depict the total water quality status in a single term that is helpful for the selection of appropriate treatment technique to meet the concerned issues. Fifteen surface water samples were collected from the Euphrates river within AlHaydria is sub district of AL-Najaf (Iraq). The quality of surface water were evaluated by testing various physicochemical parameters such as pH, Total Dissolved Solid (TDS), , Calcium, Chloride, Sulphate and Electrical conductivity. The WQI for all samples were found in the range of 25.92 to 47.22. The highest value of WQI was observed in the Ali Hajj Hassan(SW4,SW8), El Haj Abdel Sayed (SW 10 to SW 12)and Hasan alsab(SW 14) sampling locations. Most of the water samples within study area were found good to moderate categories. most of the water samples for study area were found good as well as moderate categories <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title="water quality index">water quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq%20Standards%20for%20irrigation%20purpose%202012" title=" Iraq Standards for irrigation purpose 2012 "> Iraq Standards for irrigation purpose 2012 </a> </p> <a href="https://publications.waset.org/abstracts/127348/evaluating-water-quality-index-of-euphrates-river-south-west-part-of-iraq-najaf-alhadaria-by-using-gis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> River's Bed Level Changing Pattern Due to Sedimentation, Case Study: Gash River, Kassala, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Ali">Faisal Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasssan%20Saad%20Mohammed%20Hilmi"> Hasssan Saad Mohammed Hilmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Mohamed"> Mustafa Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamseddin%20Musa"> Shamseddin Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Gash rivers an ephemeral river, it usually flows from July to September, it has a braided pattern with high sediment content, of 15200 ppm in suspension, and 360 kg/sec as bed load. The Gash river bed has an average slope of 1.3 m/Km. The objectives of this study were: assessing the Gash River bed level patterns; quantifying the annual variations in Gash bed level; and recommending a suitable method to reduce the sediment accumulation on the Gash River bed. The study covered temporally the period 1905-2013 using datasets included the Gash river flows, and the cross sections. The results showed that there is an increasing trend in the river bed of 5 cm3 per year. This is resulted in changing the behavior of the flood routing and consequently the flood hazard is tremendously increased in Kassala city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20level" title="bed level">bed level</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20section" title=" cross section"> cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=gash%20river" title=" gash river"> gash river</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a> </p> <a href="https://publications.waset.org/abstracts/28631/rivers-bed-level-changing-pattern-due-to-sedimentation-case-study-gash-river-kassala-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R<sup>2</sup>) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20River" title=" Karkheh River"> Karkheh River</a>, <a href="https://publications.waset.org/abstracts/search?q=CLS%20method" title=" CLS method"> CLS method</a> </p> <a href="https://publications.waset.org/abstracts/76659/time-series-modelling-and-prediction-of-river-runoff-case-study-of-karkheh-river-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Economic Activities Associated with Extraction of Riverbed Materials in the Tinau River, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khet%20Raj%20Dahal">Khet Raj Dahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruva%20Dhital"> Dhruva Dhital</a>, <a href="https://publications.waset.org/abstracts/search?q=Chhatra%20Mani%20Sharma"> Chhatra Mani Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted during 2012 to 2013 in the selected reach of Tinau River, Nepal. The main objective of the study was to quantify employment and income generation from the extraction of construction materials from the river. A 10 km stretch of the river was selected for the study. Sample survey with a semi-structured questionnaire and field observation were the main tools used during field investigation. Extraction of riverbed materials from the banks, beds and floodplain areas of the river has provided many kinds of job opportunities for the people living in the vicinity of the river. It has also generated an adequate amount of revenues. The collected revenue has been invested for many kinds of social and infrastructures development for years. Though extraction of riverbed materials is beneficial for income and employment generation, it has also negative environmental impacts in and around the river. Furthermore, the study concluded that river bed extraction should be continued with special monitoring and evaluation in the areas where there is still room for extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=crusher%20plants" title=" crusher plants"> crusher plants</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20activities" title=" economic activities"> economic activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinau%20River" title=" Tinau River"> Tinau River</a> </p> <a href="https://publications.waset.org/abstracts/31962/economic-activities-associated-with-extraction-of-riverbed-materials-in-the-tinau-river-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">694</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Che%20Osmi">S. A. Che Osmi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20F.%20Wan%20Ishak"> W. M. F. Wan Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kim"> H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Azman"> M. A. Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ramli"> M. A. Ramli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EFDC" title="EFDC">EFDC</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20management" title=" river management"> river management</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDL" title=" TMDL"> TMDL</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20modelling" title=" water quality modelling"> water quality modelling</a> </p> <a href="https://publications.waset.org/abstracts/57750/development-of-total-maximum-daily-load-using-water-quality-modelling-as-an-approach-for-watershed-management-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Judging Restoration Success of Kamisaigo River Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Lopa">Rita Lopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukihiro%20Shimatani"> Yukihiro Shimatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this research is 880m extension development along the Kamisaigo River. The river is flowing tributary of grade 2 rivers Fukutsu City, Fukuoka Prefecture. This river is a small-scale urban river and the river was formerly a straight concrete sea wall construction. The river runs through National Highway No. 3 from the confluence of Saigo River. The study covers the river basin about 326 ha with a catchment area of 20.63 ha and 4,700 m3 capacity regulating pond. The river is not wide, shallow, and has a straight alignment with active (un-vegetated) river channel sinuosity (ratio of river length to valley length) ranging between 1 and 1.3. However, the alignment of the low-flow river channel does have meandering or sinuous characteristics. Flooding is likely to occur. It has become difficult to live in the environment for organisms of the river. Hydrophilic is very low (children cannot play). There is little connection with the local community. Overall, the Kamisaigo River watershed is heavily urbanized and from a morphological, biological and habitat perspective, Kamisaigo River functions marginally not well. For river improvement and maintenance of the Kamisaigo River, the workshop was conducted in the form of planning for the proposed model is presented by the Watershed Management Laboratory. This workshop showed the relationship between citizens, City Government, and University of mutual trust has been established, that have been made landscape, environment, usage, etc.: retaining wall maintenance, hydrophilic zone, landscape zone, nature walks zone: adjacent medical facilities and adjacent to large commercial facilities. Propose of Nature walks zone with point of the design: provide slope that the wheelchair can access and walking paths to enjoy the scenery, and summary of the Kamisaigo River workshop: creating a multi-model study and creation of natural rivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20restoration" title="river restoration">river restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20improvement" title=" river improvement"> river improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rivers" title=" natural rivers"> natural rivers</a>, <a href="https://publications.waset.org/abstracts/search?q=Saigo%20River" title=" Saigo River"> Saigo River</a> </p> <a href="https://publications.waset.org/abstracts/49147/judging-restoration-success-of-kamisaigo-river-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Applications of the Morphological Variability in River Management: A Study of West Rapti River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Partha%20Sarathi%20Mondal">Partha Sarathi Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Srabani%20Sanyal"> Srabani Sanyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different geomorphic agents produce a different landforms pattern. Similarly rivers also have a distinct and diverse landforms pattern. And even, within a river course different and distinct assemblage of landforms i.e. morphological variability are seen. These morphological variability are produced by different river processes. Channel and floodplain morphology helps to interpret river processes. Consequently morphological variability can be used as an important tool for assessing river processes, hydrological connectivity and river health, which will help us to draw inference about river processes and therefore, management of river health. The present study is documented on West Rapti river, a trans-boundary river flowing through Nepal and India, from its source to confluence with Ghaghra river in India. The river shows a significant morphological variability throughout its course. The present study tries to find out factors and processes responsible for the morphological variability of the river and in which way it can be applied in river management practices. For this purpose channel and floodplain morphology of West Rapti river was mapped as accurately as possible and then on the basis of process-form interactions, inferences are drawn to understand factors of morphological variability. The study shows that the valley setting of West Rapti river, in the Himalayan region, is confined and somewhere partly confined whereas, channel of the West Rapti river is single thread in most part of Himalayan region and braided in valley region. In the foothill region valley is unconfined and channel is braided, in middle part channel is meandering and valley is unconfined, whereas, channel is anthropogenically altered in the lower part of the course. Due to this the morphology of West Rapti river is highly diverse. These morphological variability are produced by different geomorphic processes. Therefore, for any river management it is essential to sustain these morphological variability so that the river could not cross the geomorphic threshold and environmental flow of the river along with the biodiversity of riparian region is maintained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20morphology" title="channel morphology">channel morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=floodplain%20morphology" title=" floodplain morphology"> floodplain morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphic%20threshold" title=" geomorphic threshold"> geomorphic threshold</a> </p> <a href="https://publications.waset.org/abstracts/60638/applications-of-the-morphological-variability-in-river-management-a-study-of-west-rapti-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Uranium and Thorium Measurements in the Water along Oum Er-Rabia River (Morocco)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Oufni">L. Oufni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amrane"> M. Amrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, different river water samples have been collected and analyzed from different locations along Oum Er-Rabia River in Morocco. The uranium (238U) and thorium (232Th) concentrations were investigated in the studied river and dam water samples using Solid State Nuclear Track Detector (SSNTD). Mean activity concentrations of uranium and thorium in water were found to be between 12 – 37 Bq m^-3 and 2-10 Bq m^-3, respectively. The pH measured at all river water samples was slightly alkaline and ranged from 7.5 to 8.75. The electrical conductivity ranged from 2790 to 794 µS cm^-1. It was found that uranium and thorium concentrations were correlated with some chemical parameters in Oum Er-Rabia River water. The uranium concentrations found in river water are insignificant from the radiological point of view. The recommended value for uranium in drinking water based on its toxicity given by the Federal Environment Agency. This corresponds to an activity concentration of 238U of 123.5 mBq L^-1. In none of the samples, the uranium activity exceeds this value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium" title="uranium">uranium</a>, <a href="https://publications.waset.org/abstracts/search?q=thorium" title=" thorium"> thorium</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=SSNTD" title=" SSNTD"> SSNTD</a> </p> <a href="https://publications.waset.org/abstracts/47873/uranium-and-thorium-measurements-in-the-water-along-oum-er-rabia-river-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reini%20S.%20Ilmiaty">Reini S. Ilmiaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20B.%20Al%20Amin"> Muhammad B. Al Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarino"> Sarino</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzamil%20Jariski"> Muzamil Jariski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modelling" title="flood modelling">flood modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-GeoRAS" title=" HEC-GeoRAS"> HEC-GeoRAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title=" inundation map"> inundation map</a> </p> <a href="https://publications.waset.org/abstracts/36622/simulation-of-flood-inundation-in-kedukan-river-using-hec-ras-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Heilong-Amur River: From Disputed Border to Brigde of Cooperation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wan%20Wang">Wan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Li"> Xing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the international river playing an increasingly important role in international relations, the border river between China and Russia has attracted more attention. During the history of Sino-Russian relations, Heilong-Amur River used to be a disputed border. The Sino-Russian transboundary water cooperation regarding the Heilong-Amur River started in 1950s and has obtained rapid improvement. In the 21st century, this cooperation has made substantial progress, which is worthy of a further study. However, this cooperation is facing with obstacles in aspects of economy, policy, implementation and mutual understandings. Under this circumstance, from the perspective of China, it is of necessity to realize these problems and take appropriate measures to promote the cooperation. The current Sino-Russian relations is conducive to transboundary water resources cooperation regarding the Heilong-Amur River and some measures adopted by China are already ongoing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperation" title=" cooperation"> cooperation</a>, <a href="https://publications.waset.org/abstracts/search?q=Heilong-Amur%20River" title=" Heilong-Amur River"> Heilong-Amur River</a>, <a href="https://publications.waset.org/abstracts/search?q=Russia" title=" Russia"> Russia</a> </p> <a href="https://publications.waset.org/abstracts/55387/heilong-amur-river-from-disputed-border-to-brigde-of-cooperation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Interaction between River and City Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Abshirini">Ehsan Abshirini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rivers as one of the most important topographic factors have played a strategic role not only on the appearance of cities but they also affect the structure and morphology of cities. In this paper author intends to find out how a city in its physical network interacts with a river flowing inside. The pilot study is Angers, a city in western France, in which it is influenced by the Maine River. To this purpose space syntax method integrating with GIS is used to extract the properties of physical form of cities in terms of global and local integration value, accessibility and choice value. Simulating the state of absence of river in this city and comparing the result to the current state of city according to the effect of river on the morphology of areas located in different banks of river is also part of interest in this paper. The results show that although a river is not comparable to the city based on size and the area occupied by, it has a significant effect on the form of the city in both global and local properties. In addition, this study endorses that tracking the effect of river-cities and their interaction to rivers in a hybrid of space syntax and GIS may lead researchers to improve their interpretation of physical form of these types of cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river-cities" title="river-cities">river-cities</a>, <a href="https://publications.waset.org/abstracts/search?q=Physical%20form" title=" Physical form"> Physical form</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20syntax%20properties" title=" space syntax properties"> space syntax properties</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20factor" title=" topographic factor"> topographic factor</a> </p> <a href="https://publications.waset.org/abstracts/37096/interaction-between-river-and-city-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Adetola%20Arojojoye">Oluwatosin Adetola Arojojoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Olajumoke%20Olufunlayo%20Alao"> Olajumoke Olufunlayo Alao</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Odigili"> Philip Odigili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleyele%20River" title=" Eleyele River"> Eleyele River</a> </p> <a href="https://publications.waset.org/abstracts/11142/antioxidant-responses-and-malondialdehyde-levels-in-african-cat-fish-clarias-gariepinus-from-eleyele-river-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ardabil" title="ardabil">ardabil</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20river" title=" Gharasou river"> Gharasou river</a> </p> <a href="https://publications.waset.org/abstracts/22653/flow-duration-curve-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilme%20Faridatul">Ilme Faridatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wu"> Bo Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20bank" title="river bank">river bank</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20and%20accretion" title=" erosion and accretion"> erosion and accretion</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20monitoring" title=" change monitoring"> change monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/57859/monitoring-the-change-of-padma-river-bank-at-faridpur-bangladesh-using-remote-sensing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> Modelling of Groundwater Resources for Al-Najaf City, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20H.%20Kareem">Hayder H. Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunqi%20Pan"> Shunqi Pan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Najaf%20city" title="Al-Najaf city">Al-Najaf city</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20modelling" title=" conceptual modelling"> conceptual modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20aquifer" title=" unconfined aquifer"> unconfined aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20MODFLOW" title=" visual MODFLOW"> visual MODFLOW</a> </p> <a href="https://publications.waset.org/abstracts/44596/modelling-of-groundwater-resources-for-al-najaf-city-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Pan">Jiajia Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Tao%20Shen"> Hung Tao Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze%20and%20thaw" title="freeze and thaw">freeze and thaw</a>, <a href="https://publications.waset.org/abstracts/search?q=riverbanks" title=" riverbanks"> riverbanks</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20model" title=" 2D model"> 2D model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a> </p> <a href="https://publications.waset.org/abstracts/131174/two-dimensional-modeling-of-seasonal-freeze-and-thaw-in-an-idealized-river-bank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Hydrological Revival Possibilities for River Assi: A Tributary of the River Ganga in the Middle Ganga Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Mishra">Anurag Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhat%20Kumar%20Singh"> Prabhat Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Ohri"> Anurag Ohri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Gaur"> Shishir Gaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Streams and rivulets are crucial in maintaining river networks and their hydrology, influencing downstream ecosystems, and connecting different watersheds of urban and rural areas. The river Assi, an urban river, once a lifeline for the locals, has degraded over time. Evidence, such as the presence of paleochannels and patterns of water bodies and settlements, suggests that the river Assi was initially an alluvial stream or rivulet that originated near Rishi Durvasha Ashram near Prayagraj, flowing approximately 120 km before joining the river Ganga at Assi ghat in Varanasi. Presently, a major challenge is that nearly 90% of its original channel has been silted and disappeared, with only the last 8 km retaining some semblance of a river. It is possible that initially, the river Assi branched off from the river Ganga and functioned as a Yazoo stream. In this study, paleochannels of the river Assi were identified using Landsat 5 imageries and SRTM DEM. The study employed the Normalized Difference Vegetation Seasonality Index (NDVSI) and Principal Component Analysis (PCA) of the Normalized Difference Vegetation Index (NDVI) to detect these paleochannels. The average elevation of the sub-basin at the Durvasha Rishi Ashram of river Assi is 96 meters, while it reduces to 80 meters near its confluence with the Ganga in Varanasi, resulting in a 16-meter elevation drop along its course. There are 81 subbasins covering an area of 83,241 square kilometers. It is possible that due to the increased resistance in the flow of river Assi near urban areas of Varanasi, a new channel, Morwa, has originated at an elevation of 87 meters, meeting river Varuna at an elevation of 79 meters. The difference in elevation is 8 meters. Furthermore, the study explored the possibility of restoring the paleochannel of the river Assi and nearby ponds and water bodies to improve the river's base flow and overall hydrological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=River%20Assi" title="River Assi">River Assi</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20river%20restoration" title=" small river restoration"> small river restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=paleochannel%20identification" title=" paleochannel identification"> paleochannel identification</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/182248/hydrological-revival-possibilities-for-river-assi-a-tributary-of-the-river-ganga-in-the-middle-ganga-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaiping%20Xu">Kaiping Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiju%20You"> Aiju You</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Hua"> Lei Hua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhejiang%20province" title="Zhejiang province">Zhejiang province</a>, <a href="https://publications.waset.org/abstracts/search?q=mountainous%20river" title=" mountainous river"> mountainous river</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20water%20demand" title=" ecological water demand"> ecological water demand</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaihua%20river" title=" Kaihua river"> Kaihua river</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/94998/study-on-ecological-water-demand-evaluation-of-typical-mountainous-rivers-in-zhejiang-province-taking-kaihua-river-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> Metal (Loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Jab%C5%82o%C5%84ska-Czapla">Magdalena Jabłońska-Czapla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work allowed gaining knowledge about redox and speciation changes of As, Cr, and Sb ionic forms in Klodnica River water. This kind of studies never has been conducted in this region of Poland. In study optimized and validated previously HPLC-ICP-MS methods for determination of As, Sb and Cr was used. Separation step was done using high-performance liquid chromatograph equipped with ion-exchange column followed by ICP-MS spectrometer detector. Preliminary studies included determination of the total concentration of As, Sb and Cr, pH, Eh, temperature and conductivity of the water samples. The study was conducted monthly from March to August 2014, at six points on the Klodnica River. The results indicate that exceeded at acceptable concentration of total Cr and Sb was observed in Klodnica River and we should qualify Klodnica River waters below the second purity class. In Klodnica River waters dominates oxidized antimony and arsenic forms, as well as the two forms of chromium Cr(VI) and Cr(III). Studies have also shown the methyl derivative of arsenic's presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimony" title="antimony">antimony</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-ICP-MS" title=" HPLC-ICP-MS"> HPLC-ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water" title=" river water"> river water</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/17250/metal-loids-speciation-using-hplc-icp-ms-technique-in-klodnica-river-upper-silesia-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghassan%20Al-Dulaimi">Ghassan Al-Dulaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20oxygen%20demand" title="biochemical oxygen demand">biochemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen" title=" dissolved oxygen"> dissolved oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thames%20river" title=" Thames river"> Thames river</a>, <a href="https://publications.waset.org/abstracts/search?q=QUAL2K%20model" title=" QUAL2K model"> QUAL2K model</a> </p> <a href="https://publications.waset.org/abstracts/158505/evaluation-of-biochemical-oxygen-demand-and-dissolved-oxygen-for-thames-river-by-using-stream-water-quality-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Modeling Sediment Yield of Jido River in the Rift Vally</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20%20Hailekrios%20Hailu">Dawit Hailekrios Hailu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title="sediment yield">sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a> </p> <a href="https://publications.waset.org/abstracts/183200/modeling-sediment-yield-of-jido-river-in-the-rift-vally" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20River" title="Gharasou River">Gharasou River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20management" title=" water flow management"> water flow management</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniformity%20distribution" title=" non-uniformity distribution"> non-uniformity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20flow%20requirement" title=" ecosystem flow requirement"> ecosystem flow requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20alteration" title=" hydraulic alteration"> hydraulic alteration</a> </p> <a href="https://publications.waset.org/abstracts/22677/hydrological-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Asim">Mohd Asim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nageswara%20Rao"> K. Nageswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20migration" title="river migration">river migration</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Yamuna" title=" river Yamuna"> river Yamuna</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20impacts" title=" anthropogenic impacts"> anthropogenic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=DSAS" title=" DSAS"> DSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Delhi-NCR" title=" Delhi-NCR"> Delhi-NCR</a> </p> <a href="https://publications.waset.org/abstracts/150261/anthropogenic-impact-on-migration-process-of-river-yamuna-in-delhi-ncr-using-geospatial-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kassahun%20Birhanu%20Tadesse">Kassahun Birhanu Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Megersa%20Olumana%20Dinka"> Megersa Olumana Dinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heteroscedasticity" title="heteroscedasticity">heteroscedasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=stationarity%20test" title=" stationarity test"> stationarity test</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20noise" title=" white noise"> white noise</a> </p> <a href="https://publications.waset.org/abstracts/82308/application-of-seasonal-autoregressive-integrated-moving-average-model-for-forecasting-monthly-flows-in-waterval-river-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Tanos">Péter Tanos</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zsef%20Kov%C3%A1cs"> József Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9la%20Anda"> Angéla Anda</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20V%C3%A1rb%C3%ADr%C3%B3"> Gábor Várbíró</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A1ndor%20Moln%C3%A1r"> Sándor Molnár</a>, <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20G%C3%A1bor%20Hatvani"> István Gábor Hatvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20periodicity%20water%20quality" title="annual periodicity water quality">annual periodicity water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20variability%20of%20periodic%20behavior" title=" spatiotemporal variability of periodic behavior"> spatiotemporal variability of periodic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Morlet%20wavelet%20spectrum%20analysis" title=" Morlet wavelet spectrum analysis"> Morlet wavelet spectrum analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=River%20Tisza" title=" River Tisza"> River Tisza</a> </p> <a href="https://publications.waset.org/abstracts/60822/periodicity-analysis-of-long-term-waterquality-data-series-of-the-hungarian-section-of-the-river-tisza-using-morlet-wavelet-spectrum-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Libo%20Jiang">Libo Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li"> Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongling%20Wu"> Rongling Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20regulatory%20network" title="gene regulatory network">gene regulatory network</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equation" title=" ordinary differential equation"> ordinary differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=LASSO" title=" LASSO"> LASSO</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20resistance" title=" saline resistance"> saline resistance</a> </p> <a href="https://publications.waset.org/abstracts/65286/ordinary-differentiation-equations-ode-reconstruction-of-high-dimensional-genetic-networks-through-game-theory-with-application-to-dissecting-tree-salt-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> Northern Westerrn Ghats of India Possess an Indigenous Fish Fauna: A Survey from Kudali River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Jamdade">R. A. Jamdade</a>, <a href="https://publications.waset.org/abstracts/search?q=Rokade%20A.%20C."> Rokade A. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deshpande%20V.%20Y."> Deshpande V. Y.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater fish fauna of Kudali River, a northern right bank tributary of the Krishna River Western Ghats of India was studied. It is one of the smallest tributary of Krishna river and never been explored for fish fauna assessment. It extends over 23 Kms having 22 fish species belonging to 15 genera and 7 families, of these 3 species are endemic to Western Ghats, 2 are globaly endangered and 2 near to be threatened. Downstream the Kudal locality, the river is under the influence of anthropogenic activities and over fishing, where conservation action plans are needed to be undertaken for conservation of endangered and near to be threatened fish fauna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater" title="freshwater">freshwater</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=fauna" title=" fauna"> fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20Ghats" title=" western Ghats"> western Ghats</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activity" title=" anthropogenic activity"> anthropogenic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/24106/northern-westerrn-ghats-of-india-possess-an-indigenous-fish-fauna-a-survey-from-kudali-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Euphrates%20river&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>