CINXE.COM
Search results for: scenario analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: scenario analysis</title> <meta name="description" content="Search results for: scenario analysis"> <meta name="keywords" content="scenario analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="scenario analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="scenario analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28563</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: scenario analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28563</span> Sustainable Electricity Generation Mix for Kenya from 2015 to 2035</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Maina">Alex Maina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mwenda%20Makathimo"> Mwenda Makathimo</a>, <a href="https://publications.waset.org/abstracts/search?q=Adwek%20George"> Adwek George</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Opiyo"> Charles Opiyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research entails the simulation of three possible power scenarios for Kenya from 2015 to 2035 using the Low Emissions Analysis Platform (LEAP). These scenarios represent the unfolding future electricity generation that will fully satisfy the demand while considering the following: energy security, power generation cost and impacts on the environment. These scenarios are Reference Scenario (RS), Nuclear Scenario (NS) and More Renewable Scenario (MRS). The findings obtained reveals that the most sustainable scenario while comparing the costs was found to be the coal scenario with a Net Present Value (NPV) of $30,052.67 million though it has the highest Green House Gases (GHGs) emissions. However, the More Renewable Scenario (MRS) had the least GHGs emissions but was found to be a most expensive scenario to implement with an NPV of $30,733.07 million. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title="energy security">energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20emissions%20analysis%20platform" title=" low emissions analysis platform"> low emissions analysis platform</a>, <a href="https://publications.waset.org/abstracts/search?q=net-present%20value" title=" net-present value"> net-present value</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/167494/sustainable-electricity-generation-mix-for-kenya-from-2015-to-2035" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28562</span> Techno-Economic Analysis of the Production of Aniline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharshini%20M.">Dharshini M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hema%20N.%20S."> Hema N. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aniline" title="aniline">aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrobenzene" title=" nitrobenzene"> nitrobenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20production%20cost" title=" unit production cost"> unit production cost</a> </p> <a href="https://publications.waset.org/abstracts/149349/techno-economic-analysis-of-the-production-of-aniline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28561</span> Numerical Simulation of Different Enhanced Oil Recovery (EOR) Scenarios on a Volatile Oil Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Tavakolpour">Soheil Tavakolpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhance Oil Recovery (EOR) can be considered as an undeniable action in reservoirs life period. Different kind of EOR methods are available, but suitable EOR method depends on reservoir properties, like rock and fluid properties. In this paper, we nominated fifth SPE’s Comparative Solution Projects (CSP) for testing different scenarios. We used seven EOR scenarios for this reservoir and we simulated it for 10 years after 2 years production without any injection. The first scenario is waterflooding for whole of the 10 years period. The second scenario is gas injection for ten years. The third scenario is Water-Alternation-Gas (WAG). In the next scenario, water injected for 4 years before starting WAG injection for the next 6 years. In the fifth scenario, water injected after 6 years WAG injection for 4 years. For sixth and last scenarios, all the things are similar to fourth and fifth scenarios, but gas injected instead of water. Results show that fourth scenario was the most efficient method for 10 years EOR, but it resulted very high water production. Fifth scenario was efficient too, with little water production in comparison to the fourth scenario. Gas injection was not economically attractive. In addition to high gas production, it produced less oil in comparison to other scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WAG" title="WAG">WAG</a>, <a href="https://publications.waset.org/abstracts/search?q=SPE%E2%80%99s%20comparative%20solution%20projects" title=" SPE’s comparative solution projects"> SPE’s comparative solution projects</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20scenarios" title=" EOR scenarios "> EOR scenarios </a> </p> <a href="https://publications.waset.org/abstracts/18561/numerical-simulation-of-different-enhanced-oil-recovery-eor-scenarios-on-a-volatile-oil-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28560</span> Case Study Approach Using Scenario Analysis to Analyze Unabsorbed Head Office Overheads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Iyer">K. C. Iyer</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gupta"> T. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Bindal"> Y. M. Bindal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Head office overhead (HOOH) is an indirect cost and is recovered through individual project billings by the contractor. Delay in a project impacts the absorption of HOOH cost allocated to that particular project and thus diminishes the expected profit of the contractor. This unabsorbed HOOH cost is later claimed by contractors as damages. The subjective nature of the available formulae to compute unabsorbed HOOH is the difficulty that contractors and owners face and thus dispute it. The paper attempts to bring together the rationale of various HOOH formulae by gathering contractor’s HOOH cost data on all of its project, using case study approach and comparing variations in values of HOOH using scenario analysis. The case study approach uses project data collected from four construction projects of a contractor in India to calculate unabsorbed HOOH costs from various available formulae. Scenario analysis provides further variations in HOOH values after considering two independent situations mainly scope changes and new projects during the delay period. Interestingly, one of the findings in this study reveals that, in spite of HOOH getting absorbed by additional works available during the period of delay, a few formulae depict an increase in the value of unabsorbed HOOH, neglecting any absorption by the increase in scope. This indicates that these formulae are inappropriate for use in case of a change to the scope of work. Results of this study can help both parties in deciding on an appropriate formula more objectively, considering the events on a project causing the delay and contractor's position in respect of obtaining new projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20and%20unabsorbed%20overheads" title="absorbed and unabsorbed overheads">absorbed and unabsorbed overheads</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20office%20overheads" title=" head office overheads"> head office overheads</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20analysis" title=" scenario analysis"> scenario analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scope%20variation" title=" scope variation"> scope variation</a> </p> <a href="https://publications.waset.org/abstracts/97343/case-study-approach-using-scenario-analysis-to-analyze-unabsorbed-head-office-overheads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28559</span> Behavior of Steel Moment Frames Subjected to Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungoo%20Kang">Hyungoo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20collision" title="vehicle collision">vehicle collision</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20collapse" title=" progressive collapse"> progressive collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a> </p> <a href="https://publications.waset.org/abstracts/52101/behavior-of-steel-moment-frames-subjected-to-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28558</span> Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehaiguene%20Madjid">Mehaiguene Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Meddi%20Mohamed"> Meddi Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20water" title="balance water">balance water</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20basin" title=" management basin"> management basin</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20scenario" title=" climate change scenario"> climate change scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=Upper%20and%20Middle%20Cheliff" title=" Upper and Middle Cheliff"> Upper and Middle Cheliff</a> </p> <a href="https://publications.waset.org/abstracts/35556/problems-of-water-resources-vulnerability-to-climate-change-modeling-with-software-weap-21-upper-and-middle-cheliff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28557</span> Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Y%20Al-Attraqchi">Ali Y Al-Attraqchi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rajeev"> P. Rajeev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Javad%20Hashemi"> M. Javad Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire" title="fire">fire</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20incremental%20dynamic%20analysis" title=" nonlinear incremental dynamic analysis"> nonlinear incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20collapse" title=" progressive collapse"> progressive collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20engineering" title=" structural engineering"> structural engineering</a> </p> <a href="https://publications.waset.org/abstracts/61232/probabilistic-robustness-assessment-of-structures-under-sudden-column-loss-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28556</span> Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianvito%20Colucci">Gianvito Colucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Di%20Cosmo"> Valeria Di Cosmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Matteo%20Nicoli"> Matteo Nicoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Orsola%20Maria%20Robasto"> Orsola Maria Robasto</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Savoldi"> Laura Savoldi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title="energy security">energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20system%20optimization%20models" title=" energy system optimization models"> energy system optimization models</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=open-source%20modeling" title=" open-source modeling"> open-source modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20analysis" title=" scenario analysis"> scenario analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TEMOA" title=" TEMOA"> TEMOA</a> </p> <a href="https://publications.waset.org/abstracts/153417/scenario-analysis-to-assess-the-competitiveness-of-hydrogen-in-securing-the-italian-energy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28555</span> Metaphor Scenarios of Translation: An Applied Linguistic Approach to Discourse Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeta%20Eduard%20Baltadzhyan">Elizabeta Eduard Baltadzhyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a stage of an investigation about the metaphorical conceptualization of translation in Bulgarian language. The material is a linguistic corpus consisting of 38 interviews with several generations Bulgarian translators and interpreters. The aim of this presentation is to inform about the results of the organization of the source concepts in scenarios that dominate the discursive manifestations of the source domains. The data show that, on the one hand, translators from different generations share some basic assignments of source and target domains, e. g. translation is a journey or translation is an artistic presentation. On the other hand, there are some specific scenarios motivated by significant changes in the socio-economic structure of the country and the valuation of the translator´s mission and work, e. g., the scenario of pleasure and addictive activity marks the generation that enjoy great support and stimulation from the socialist government, whereas the war scenario marks the generation during the Perestroika time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bulgarian%20language" title="Bulgarian language">Bulgarian language</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/70002/metaphor-scenarios-of-translation-an-applied-linguistic-approach-to-discourse-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28554</span> Layouting for Phase II of New Priok Project Using Adaptive Port Planning Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustarakh%20Gelfi">Mustarakh Gelfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Taneja"> Poonam Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiedo%20Vellinga"> Tiedo Vellinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Delon%20Hamonangan"> Delon Hamonangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The initial masterplan of New Priok in the Port of Tanjung Priok was developed in 2012 is being updated to cater to new developments and new demands. In the new masterplan (2017), Phase II of development will start from 2035-onwards, depending on the future conditions. This study is about creating a robust masterplan for Phase II, which will remain functional under future uncertainties. The methodology applied in this study is scenario-based planning in the framework of Adaptive Port Planning (APP). Scenario-based planning helps to open up the perspective of the future as a horizon of possibilities. The scenarios are built around two major uncertainties in a 2x2 matrix approach. The two major uncertainties for New Priok port are economics and sustainability awareness. The outcome is four plausible scenarios: Green Port, Business As Usual, Moderate Expansion, and No Expansion. Terminal needs in each scenario are analyzed through traffic analysis and identifying the key cargos and commodities. In conclusion, this study gives the wide perspective for Port of Tanjung Priok for the planning Phase II of the development. The port has to realize that uncertainties persevere and are very likely to influence the decision making as to the future layouts. Instead of ignoring uncertainty, the port needs to make the action plans to deal with these uncertainties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indonesia%20Port" title="Indonesia Port">Indonesia Port</a>, <a href="https://publications.waset.org/abstracts/search?q=port%27s%20layout" title=" port's layout"> port's layout</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20planning" title=" port planning"> port planning</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario-based%20planning" title=" scenario-based planning"> scenario-based planning</a> </p> <a href="https://publications.waset.org/abstracts/76467/layouting-for-phase-ii-of-new-priok-project-using-adaptive-port-planning-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28553</span> Popular eReaders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%20D.%20Gedeon">Tom D. Gedeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujala%20Rampaul"> Ujala Rampaul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of electronic consumer goods are most often done from the perspective of analysing the latest models, comparing their advantages and disadvantages with respect to price. This style of evaluation is often performed by one or a few product experts on a wide range of features that may not be applicable to each user. We instead used a scenario-based approach to evaluate a number of e-readers. The setting is similar to a user who is interested in a new product or technology and has allocated a limited budget. We evaluate the quality and usability of e-readers available within that budget range. This is based on the assumption of a rational market which prices older second hand devices the same as functionally equivalent new devices. We describe our evaluation and comparison of four branded eReaders, as the initial stage of a larger project. The scenario has a range of tasks approximating a busy person who does not bother to read the manual. We found that navigation within books to be the most significant differentiator between the eReaders in our scenario based evaluation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eReader" title="eReader">eReader</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20based" title=" scenario based"> scenario based</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20comparison" title=" price comparison"> price comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=Kindle" title=" Kindle"> Kindle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kobo" title=" Kobo"> Kobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nook" title=" Nook"> Nook</a>, <a href="https://publications.waset.org/abstracts/search?q=Sony" title=" Sony"> Sony</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title=" technology adoption"> technology adoption</a> </p> <a href="https://publications.waset.org/abstracts/29543/popular-ereaders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28552</span> The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Indati%20Mustapa">Siti Indati Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet"> Hussain Ali Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title="CO2 emission">CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20sector" title=" transportation sector"> transportation sector</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/13084/the-reduction-of-co2-emissions-level-in-malaysian-transportation-sector-an-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28551</span> Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyung%20Jung">Jaehyung Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiman%20Kim"> Kiman Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Heesang%20Eum"> Heesang Eum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom-up%20approach" title="bottom-up approach">bottom-up approach</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20%28GHG%29" title=" greenhouse gas (GHG)"> greenhouse gas (GHG)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/57212/estimation-of-greenhouse-gas-ghg-reductions-from-solar-cell-technology-using-bottom-up-approach-and-scenario-analysis-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28550</span> Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Chopra">Shruti Chopra</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Rao%20Vadi"> Vikas Rao Vadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Thing%20%28IoT%29" title="Internet of Thing (IoT)">Internet of Thing (IoT)</a>, <a href="https://publications.waset.org/abstracts/search?q=foresight%20analysis" title=" foresight analysis"> foresight analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario%20planning" title=" scenario planning"> scenario planning</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=policymaking" title=" policymaking"> policymaking</a> </p> <a href="https://publications.waset.org/abstracts/98501/challenges-for-iot-adoption-in-india-a-study-based-on-foresight-analysis-for-2025" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28549</span> Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Langevin">Melissa Langevin</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Ward"> Natalie Ward</a>, <a href="https://publications.waset.org/abstracts/search?q=Colleen%20Fitzgibbons"> Colleen Fitzgibbons</a>, <a href="https://publications.waset.org/abstracts/search?q=Christa%20Ramsey"> Christa Ramsey</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Hogue"> Melanie Hogue</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Theresa%20Lobos"> Anna Theresa Lobos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20events" title="adverse events">adverse events</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title=" pediatrics"> pediatrics</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20cause%20analysis" title=" root cause analysis"> root cause analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/101712/getting-it-right-before-implementation-using-simulation-to-optimize-recommendations-and-interventions-after-adverse-event-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28548</span> Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20A.%20Modi">Mukesh A. Modi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20nitrate" title=" high nitrate"> high nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=MODFLOW" title=" MODFLOW"> MODFLOW</a>, <a href="https://publications.waset.org/abstracts/search?q=MT3DMS" title=" MT3DMS"> MT3DMS</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification%20strategy" title=" denitrification strategy"> denitrification strategy</a> </p> <a href="https://publications.waset.org/abstracts/188995/application-of-groundwater-model-for-optimization-of-denitrification-strategies-to-minimize-public-health-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28547</span> Mobile Application Set to Empower SME Farmers in Peri-Urban Sydney Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hol">A. Hol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even in the well developed countries like Australia, Small to Medium Farmers do not often have the power over the market prices as they are more often than not set by the farming agents. This in turn creates problems as farmers only get to know for how much their produce has been sold for by the agents three to four weeks after the sale has taken the place. To see and identify if and how peri-urban Sydney farmers could be assisted, carefully selected group of peri-urban Sydney farmers of the stone fruit has been interviewed. Following the case based interviews collected data was analyzed in detail using the Scenario Based Transformation principles. Analyzed data was then used to create a most common transformation case. The case identified that a mobile web based system could be develop so that framers can monitor agent earnings and in turn gain more power over the markets. It is expected that after the system has been in action for six months to a year, farmers will become empowered and they will gain means to monitor the market and negotiate agent prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20applications" title="mobile applications">mobile applications</a>, <a href="https://publications.waset.org/abstracts/search?q=farming" title=" farming"> farming</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario-based%20analysis" title=" scenario-based analysis"> scenario-based analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario-based%20transformation" title=" scenario-based transformation"> scenario-based transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20empowerment" title=" user empowerment "> user empowerment </a> </p> <a href="https://publications.waset.org/abstracts/12900/mobile-application-set-to-empower-sme-farmers-in-peri-urban-sydney-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28546</span> A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Jaysaval">Vinod Kumar Jaysaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Agarwal"> Prateek Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title="airborne radar">airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20zone" title=" blind zone"> blind zone</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a> </p> <a href="https://publications.waset.org/abstracts/13998/a-generalized-model-for-performance-analysis-of-airborne-radar-in-clutter-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28545</span> Adaptation of the Scenario Test for Greek-speaking People with Aphasia: Reliability and Validity Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Charalambous">Marina Charalambous</a>, <a href="https://publications.waset.org/abstracts/search?q=Phivos%20Phylactou"> Phivos Phylactou</a>, <a href="https://publications.waset.org/abstracts/search?q=Thekla%20Elriz"> Thekla Elriz</a>, <a href="https://publications.waset.org/abstracts/search?q=Loukia%20Psychogios"> Loukia Psychogios</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Annoni"> Jean-Marie Annoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Evidence-based practices for the evaluation and treatment of people with aphasia (PWA) in Greek are mainly impairment-based. Functional and multimodal communication is usually under assessed and neglected by clinicians. This study explores the adaptation and psychometric testing of the Greek (GR) version of The Scenario Test. The Scenario Test assesses the everyday functional communication of PWA in an interactive multimodal communication setting with the support of an active communication facilitator. Aims: To define the reliability and validity of The Scenario Test GR and discuss its clinical value. Methods & Procedures: The Scenario Test-GR was administered to 54 people with chronic stroke (6+ months post-stroke): 32 PWA and 22 people with stroke without aphasia. Participants were recruited from Greece and Cyprus. All measures were performed in an interview format. Standard psychometric criteria were applied to evaluate reliability (internal consistency, test-retest, and interrater reliability) and validity (construct and known – groups validity) of the Scenario Test GR. Video analysis was performed for the qualitative examination of the communication modes used. Outcomes & Results: The Scenario Test-GR shows high levels of reliability and validity. High scores of internal consistency (Cronbach’s α = .95), test-retest reliability (ICC = .99), and interrater reliability (ICC = .99) were found. Interrater agreement in scores on individual items fell between good and excellent levels of agreement. Correlations with a tool measuring language function in aphasia (the Aphasia Severity Rating Scale of the Boston Diagnostic Aphasia Examination), a measure of functional communication (the Communicative Effectiveness Index), and two instruments examining the psychosocial impact of aphasia (the Stroke and Aphasia Quality of Life questionnaire and the Aphasia Impact Questionnaire) revealed good convergent validity (all ps< .05). Results showed good known – groups validity (Mann-Whitney U = 96.5, p < .001), with significantly higher scores for participants without aphasia compared to those with aphasia. Conclusions: The psychometric qualities of The Scenario Test-GR support the reliability and validity of the tool for the assessment of functional communication for Greek-speaking PWA. The Scenario Test-GR can be used to assess multimodal functional communication, orient aphasia rehabilitation goal setting towards the activity and participation level, and be used as an outcome measure of everyday communication. Future studies will focus on the measurement of sensitivity to change in PWA with severe non-fluent aphasia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20scenario%20test%20GR" title="the scenario test GR">the scenario test GR</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20communication%20assessment" title=" functional communication assessment"> functional communication assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=people%20with%20aphasia%20%28PWA%29" title=" people with aphasia (PWA)"> people with aphasia (PWA)</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20validation" title=" tool validation"> tool validation</a> </p> <a href="https://publications.waset.org/abstracts/145142/adaptation-of-the-scenario-test-for-greek-speaking-people-with-aphasia-reliability-and-validity-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28544</span> Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kimuli%20Ismail">Kimuli Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Lubwama"> Michael Lubwama</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Baptist%20Kirabira"> John Baptist Kirabira</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Sebbit"> Adam Sebbit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sustainability" title="Sustainability">Sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=Scenario%20Plannnig" title=" Scenario Plannnig"> Scenario Plannnig</a>, <a href="https://publications.waset.org/abstracts/search?q=Times-Veda%20Modelling" title=" Times-Veda Modelling"> Times-Veda Modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Policy%20Development" title=" Energy Policy Development"> Energy Policy Development</a> </p> <a href="https://publications.waset.org/abstracts/161661/energy-scenarios-for-greater-kampala-metropolitan-area-towards-a-sustainable-2050-a-times-veda-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28543</span> Establishment of Bit Selective Mode Storage Covert Channel in VANETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarpreet%20Singh">Amarpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimi%20Manchanda"> Kimi Manchanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intended for providing the security in the VANETS (Vehicular Ad hoc Network) scenario, the covert storage channel is implemented through data transmitted between the sender and the receiver. Covert channels are the logical links which are used for the communication purpose and hiding the secure data from the intruders. This paper refers to the Establishment of bit selective mode covert storage channels in VANETS. In this scenario, the data is being transmitted with two modes i.e. the normal mode and the covert mode. During the communication between vehicles in this scenario, the controlling of bits is possible through the optional bits of IPV6 Header Format. This implementation is fulfilled with the help of Network simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covert%20mode" title="covert mode">covert mode</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20mode" title=" normal mode"> normal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=OBU" title=" OBU"> OBU</a>, <a href="https://publications.waset.org/abstracts/search?q=on-board%20unit" title=" on-board unit"> on-board unit</a> </p> <a href="https://publications.waset.org/abstracts/40241/establishment-of-bit-selective-mode-storage-covert-channel-in-vanets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28542</span> India’s Energy System Transition, Survival of the Greenest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sudhakara%20Reddy">B. Sudhakara Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emissions" title="emissions">emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuels" title=" fossil fuels"> fossil fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20jobs" title=" green jobs"> green jobs</a>, <a href="https://publications.waset.org/abstracts/search?q=renewables" title=" renewables"> renewables</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a> </p> <a href="https://publications.waset.org/abstracts/29985/indias-energy-system-transition-survival-of-the-greenest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28541</span> Towards Safety-Oriented System Design: Preventing Operator Errors by Scenario-Based Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avi%20Harel">Avi Harel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most accidents are commonly attributed in hindsight to human errors, yet most methodologies for safety focus on technical issues. According to the Black Swan theory, this paradox is due to insufficient data about the ways systems fail. The article presents a study of the sources of errors, and proposes a methodology for utility-oriented design, comprising methods for coping with each of the sources identified. Accident analysis indicates that errors typically result from difficulties of operating in exceptional conditions. Therefore, following STAMP, the focus should be on preventing exceptions. Exception analysis indicates that typically they involve an improper account of the operational scenario, due to deficiencies in the system integration. The methodology proposes a model, which is a formal definition of the system operation, as well as principles and guidelines for safety-oriented system integration. The article calls to develop and integrate tools for recording and analysis of the system activity during the operation, required to implement validate the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accidents" title="accidents">accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=errors" title=" errors"> errors</a>, <a href="https://publications.waset.org/abstracts/search?q=exceptions" title=" exceptions"> exceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=risks" title=" risks"> risks</a> </p> <a href="https://publications.waset.org/abstracts/141005/towards-safety-oriented-system-design-preventing-operator-errors-by-scenario-based-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28540</span> Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Itissam%20Abuiziah">Itissam Abuiziah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20methods" title="analysis methods">analysis methods</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20devices" title=" protection devices"> protection devices</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20flow" title=" transient flow"> transient flow</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title=" water hammer"> water hammer</a> </p> <a href="https://publications.waset.org/abstracts/93916/transient-performance-evaluation-and-control-measures-for-oum-azza-pumping-station-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28539</span> Budget Impact Analysis of a Stratified Treatment Cascade for Hepatitis C Direct Acting Antiviral Treatment in an Asian Middle-Income Country through the Use of Compulsory and Voluntary Licensing Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirah%20Azzeri">Amirah Azzeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20H.%20Shabaruddin"> Fatiha H. Shabaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20McDonald"> Scott A. McDonald</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosmawati%20Mohamed"> Rosmawati Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maznah%20Dahlui"> Maznah Dahlui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to Sofosbuvir/Daclatasvir (SOF/DAC) is available through compulsory licensing, with future access to Sofosbuvir/Velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes, particularly for cirrhotic stages, but has higher drug acquisition costs compared to SOF/DAC. It has been proposed that a stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL. This study aimed to conduct a five-year budget impact analysis from the provider perspective of the proposed stratified treatment cascade for HCV treatment in Malaysia. Method: A disease progression model that was developed based on model-predicted HCV epidemiology data in Malaysia was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. The model projections estimated the annual numbers of patients in care and the numbers of patients to be initiated on DAA treatment nationally. Healthcare costs associated with DAA therapy and disease stage monitoring was included to estimate the downstream cost implications. For scenario B, the estimated treatment uptake of SOF/VEL for cirrhotic patients were 25%, 50%, 75%, 100% and 100% for 2018, 2019, 2020, 2021 and 2022 respectively. Healthcare costs were estimated based on standard clinical pathways for DAA treatment described in recent guidelines. All costs were reported in US dollars (conversion rate US$1=RM4.09, the price year 2018). Scenario analysis was conducted for 5% and 10% reduction of SOF/VEL acquisition cost anticipated from the competitive market pricing of generic DAA in Malaysia. Results: The stratified treatment cascade with SOF/VEL in Scenario B was found to be cost-saving compared to Scenario A. A substantial portion of the cost reduction was due to the costs associated with DAA therapy which resulted in USD 40 thousand (year 1) to USD 443 thousand (year 5) savings annually, with cumulative savings of USD 1.1 million after 5 years. Cost reductions for disease stage monitoring were seen in year three onwards which resulted in cumulative savings of USD 1.1 thousand. Scenario analysis estimated cumulative savings of USD 1.24 to USD 1.35 million when the acquisition cost of SOF/VEL was reduced. Conclusion: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can results in a budget impact reduction in overall healthcare expenditure in Malaysia compared to treatment with SOF/DAC. The better clinical efficacy with SOF/VEL is expected to halt patients’ HCV disease progression and may reduce downstream costs of treating advanced disease stages. The findings of this analysis may be useful to inform healthcare policies for HCV treatment in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title="Malaysia">Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20acting%20antiviral" title=" direct acting antiviral"> direct acting antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=compulsory%20licensing" title=" compulsory licensing"> compulsory licensing</a>, <a href="https://publications.waset.org/abstracts/search?q=voluntary%20licensing" title=" voluntary licensing"> voluntary licensing</a> </p> <a href="https://publications.waset.org/abstracts/100330/budget-impact-analysis-of-a-stratified-treatment-cascade-for-hepatitis-c-direct-acting-antiviral-treatment-in-an-asian-middle-income-country-through-the-use-of-compulsory-and-voluntary-licensing-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28538</span> Children’s Concept of Forgiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lida%20Landicho">Lida Landicho</a>, <a href="https://publications.waset.org/abstracts/search?q=Analiza%20R.%20Adarlo"> Analiza R. Adarlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Janine%20Mae%20V.%20Corpuz"> Janine Mae V. Corpuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20C.%20Villanueva"> Joan C. Villanueva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Testing the idea that the process of forgiveness is intrinsically different across diverse relationships, this study examined whether forgiveness can already be facilitated by children ages 4-6. Two different intervention sessions which consists of 40 children (half heard stories about unfair blame and half heard stories about a double standard (between subjects variable) was completed. Investigators performed experimental analyses to examine the role of forgiveness in social and familial context. Results indicated that forgiveness can already be facilitated by children. Children see scenarios on double standard to be more unfair than normal scenarios (Scenario 2 (double standard) (M=7.54) Scenario 1 (unfair blame) (M=4.50), Scenario 4 (double standard) (M=7.) Scenario 3 (getting blamed for something the friend did) (M=6.80)p <.05.The findings confirmed that children were generally willing to grant forgiveness to a mother even though she was unfair, but less so to a friend. Correlations between sex, age and forgiveness were analyzed. Significant relationships was found on scenarios presented and caring task scores (rxy= -.314).Their tendency to forgive was related to dispositional and situational factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forgiveness" title="forgiveness">forgiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20and%20dispositional%20factors" title=" situational and dispositional factors"> situational and dispositional factors</a>, <a href="https://publications.waset.org/abstracts/search?q=familial%20context" title=" familial context"> familial context</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20context" title=" social context"> social context</a> </p> <a href="https://publications.waset.org/abstracts/17866/childrens-concept-of-forgiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28537</span> Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olesya%20Bolkhovskaya">Olesya Bolkhovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Davydov"> Alexey Davydov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Maltsev"> Alexander Maltsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title="antenna array">antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20detection" title=" signal detection"> signal detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ToA" title=" ToA"> ToA</a>, <a href="https://publications.waset.org/abstracts/search?q=AoA%20estimation" title=" AoA estimation"> AoA estimation</a> </p> <a href="https://publications.waset.org/abstracts/11917/comparative-analysis-of-two-approaches-to-joint-signal-detection-toa-and-aoa-estimation-in-multi-element-antenna-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28536</span> Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davi%20Marinho%20de%20Araujo%20Falc%C3%A3o">Davi Marinho de Araujo Falcão</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20Moreira%20Salles"> Ronaldo Moreira Salles</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Henrique%20Maranh%C3%A3o"> Paulo Henrique Maranhão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DTN" title="DTN">DTN</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20function" title=" discriminant function"> discriminant function</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemic%20protocol" title=" epidemic protocol"> epidemic protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=tactical%20messages" title=" tactical messages"> tactical messages</a>, <a href="https://publications.waset.org/abstracts/search?q=warship%20scenario" title=" warship scenario"> warship scenario</a> </p> <a href="https://publications.waset.org/abstracts/141488/impact-evaluation-of-discriminant-analysis-on-epidemic-protocol-in-warshipss-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28535</span> Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinazo%20Onyeka%20Eziuzo">Chinazo Onyeka Eziuzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFAST" title=" OpenFAST"> OpenFAST</a> </p> <a href="https://publications.waset.org/abstracts/158261/simulation-and-control-of-the-flywheel-system-in-the-rotor-of-a-wind-turbine-using-simulink-and-openfast-for-assessing-the-effect-on-the-mechanical-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28534</span> Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Heidari">L. Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalili%20Ghazizade"> M. Jalili Ghazizade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IWM%20software" title="IWM software">IWM software</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Maku" title=" Maku"> Maku</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20management" title=" municipal solid waste management"> municipal solid waste management</a> </p> <a href="https://publications.waset.org/abstracts/73084/municipal-solid-waste-management-using-life-cycle-assessment-approach-case-study-of-maku-city-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=952">952</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=953">953</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=scenario%20analysis&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>