CINXE.COM
Search results for: interval type-2 fuzzy sets
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interval type-2 fuzzy sets</title> <meta name="description" content="Search results for: interval type-2 fuzzy sets"> <meta name="keywords" content="interval type-2 fuzzy sets"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interval type-2 fuzzy sets" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interval type-2 fuzzy sets"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2684</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interval type-2 fuzzy sets</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Poleshchuk">O. Poleshchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Komarov"> E. Komarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets" title="interval type-2 fuzzy sets">interval type-2 fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title=" fuzzy regression"> fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20interval" title=" weighted interval"> weighted interval</a> </p> <a href="https://publications.waset.org/abstracts/6138/a-fuzzy-nonlinear-regression-model-for-interval-type-2-fuzzy-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Some New Hesitant Fuzzy Sets Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Thakur">G. S. Thakur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, four new operators (O1, O2, O3, O4) are proposed, defined and considered to study the new properties and identities on hesitant fuzzy sets. These operators are useful for different operation on hesitant fuzzy sets. The various theorems are proved using the new operators. The study of the proposed new operators has opened a new area of research and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vague%20sets" title="vague sets">vague sets</a>, <a href="https://publications.waset.org/abstracts/search?q=hesitant%20fuzzy%20sets" title=" hesitant fuzzy sets"> hesitant fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20set" title=" intuitionistic fuzzy set"> intuitionistic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multisets" title=" fuzzy multisets "> fuzzy multisets </a> </p> <a href="https://publications.waset.org/abstracts/5174/some-new-hesitant-fuzzy-sets-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Application of Interval Valued Picture Fuzzy Set in Medical Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palash%20Dutta">Palash Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More frequently uncertainties are encountered in medical diagnosis and therefore it is the most important and interesting area of applications of fuzzy set theory. In this present study, an attempt has been made to extend Sanchez’s approach for medical diagnosis via interval valued picture fuzzy sets and exhibit the technique with suitable case studies. In this article, it is observed that a refusal can be expressed in the databases concerning the examined objects. The technique is performing diagnosis on the basis of distance measures and as a result, this approach makes it possible to introduce weights of all symptoms and consequently patient can be diagnosed directly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnosis" title="medical diagnosis">medical diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set" title=" fuzzy set"> fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=picture%20fuzzy%20set" title=" picture fuzzy set"> picture fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20valued%20picture%20fuzzy%20set" title=" interval valued picture fuzzy set"> interval valued picture fuzzy set</a> </p> <a href="https://publications.waset.org/abstracts/54935/application-of-interval-valued-picture-fuzzy-set-in-medical-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Talib%20Abbas%20Raza">Syed Talib Abbas Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Ahmed%20Jilani"> Tahseen Ahmed Jilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Abdullah"> Saleem Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20decision%20making" title="group decision making">group decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=interval-valued%20intuitionistic%20fuzzy%20soft%20set" title=" interval-valued intuitionistic fuzzy soft set"> interval-valued intuitionistic fuzzy soft set</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS" title=" TOPSIS"> TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=score%20function" title=" score function"> score function</a>, <a href="https://publications.waset.org/abstracts/search?q=criminology" title=" criminology"> criminology</a> </p> <a href="https://publications.waset.org/abstracts/21620/group-decision-making-through-interval-valued-intuitionistic-fuzzy-soft-set-topsis-method-using-new-hybrid-score-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Behind Fuzzy Regression Approach: An Exploration Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20B.%20Dulla">Lavinia B. Dulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach" title="fuzzy regression approach">fuzzy regression approach</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20fuzziness%20criterion" title=" minimum fuzziness criterion"> minimum fuzziness criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20regression" title=" interval regression"> interval regression</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a> </p> <a href="https://publications.waset.org/abstracts/139364/behind-fuzzy-regression-approach-an-exploration-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Jer%20Lin">Chih-Jer Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee"> Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-rheological%20fluid" title="electro-rheological fluid">electro-rheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20vibration%20control" title=" semi-active vibration control"> semi-active vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20absorber" title=" shock absorber"> shock absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20fuzzy%20control" title=" type 2 fuzzy control "> type 2 fuzzy control </a> </p> <a href="https://publications.waset.org/abstracts/7630/interval-type-2-fuzzy-vibration-control-of-an-erf-embedded-smart-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahabeddin%20Sotudian">Shahabeddin Sotudian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Fazel%20Zarandi"> M. H. Fazel Zarandi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20B.%20Turksen"> I. B. Turksen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20disease" title="hepatitis disease">hepatitis disease</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnosis" title=" medical diagnosis"> medical diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=type-I%20fuzzy%20logic" title=" type-I fuzzy logic"> type-I fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=type-II%20fuzzy%20logic" title=" type-II fuzzy logic"> type-II fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a> </p> <a href="https://publications.waset.org/abstracts/49654/from-type-i-to-type-ii-fuzzy-system-modeling-for-diagnosis-of-hepatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju%20Pandey">Manju Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Khare"> Nilay Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Shrivastava"> S. C. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LR%20fuzzy%20number" title="LR fuzzy number">LR fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20fuzzy%20number" title=" interval fuzzy number"> interval fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20number" title=" triangular fuzzy number"> triangular fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20fuzzy%20number" title=" trapezoidal fuzzy number"> trapezoidal fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=apex%20angle" title=" apex angle"> apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20apex%20angle" title=" left apex angle"> left apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20apex%20angle" title=" right apex angle"> right apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation%20operator" title=" aggregation operator"> aggregation operator</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20and%20geometric%20mean" title=" arithmetic and geometric mean"> arithmetic and geometric mean</a> </p> <a href="https://publications.waset.org/abstracts/18890/a-new-aggregation-operator-for-trapezoidal-fuzzy-numbers-based-on-the-geometric-means-of-the-left-and-right-line-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Complex Fuzzy Evolution Equation with Nonlocal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20El%20Allaoui">Abdelati El Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Melliani"> Said Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalla%20Saadia%20Chadli"> Lalla Saadia Chadli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20fuzzy%20evolution%20equations" title="Complex fuzzy evolution equations">Complex fuzzy evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20conditions" title=" nonlocal conditions"> nonlocal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20solution" title=" mild solution"> mild solution</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fuzzy%20semigroups" title=" complex fuzzy semigroups"> complex fuzzy semigroups</a> </p> <a href="https://publications.waset.org/abstracts/59900/complex-fuzzy-evolution-equation-with-nonlocal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Derivation of BCK\BCI-Algebras</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tumadhir%20Fahim%20M%20Alsulami">Tumadhir Fahim M Alsulami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of this paper builds on connecting between two important notions, fuzzy ideals of BCK-algebras and derivation of BCI-algebras. The result we got is a new concept called derivation fuzzy ideals of BCI-algebras. Followed by various results and important theorems on different types of ideals. In chapter 1: We presented the basic and fundamental concepts of BCK\ BCI- algebras as follows: BCK/BCI-algebras, BCK sub-algebras, bounded BCK-algebras, positive implicative BCK-algebras, commutative BCK-algebras, implicative BCK- algebras. Moreover, we discussed ideals of BCK-algebras, positive implicative ideals, implicative ideals and commutative ideals. In the last section of chapter 1 we proposed the notion of derivation of BCI-algebras, regular derivation of BCI-algebras and basic definitions and properties. In chapter 2: It includes 3 sections as follows: Section 1 contains elementary concepts of fuzzy sets and fuzzy set operations. Section 2 shows O. G. Xi idea, where he applies fuzzy sets concept to BCK-algebras and we studied fuzzy sub-algebras as well. Section 3 contains fuzzy ideals of BCK-algebras basic definitions, closed fuzzy ideals, fuzzy commutative ideals, fuzzy positive implicative ideals, fuzzy implicative ideals, fuzzy H-ideals and fuzzy p-ideals. Moreover, we investigated their concepts in diverse theorems and propositions. In chapter 3: The main concept of our thesis on derivation fuzzy ideals of BCI- algebras is introduced. Chapter 3 splits into 4 sections. We start with General definitions and important theorems on derivation fuzzy ideal theory in section 1. Section 2 and 3 contain derivations fuzzy p-ideals and derivations fuzzy H-ideals of BCI- algebras, several important theorems and propositions were introduced. The last section studied derivations fuzzy implicative ideals of BCI-algebras and it includes new theorems and results. Furthermore, we presented a new theorem that associate derivations fuzzy implicative ideals, derivations fuzzy positive implicative ideals and derivations fuzzy commutative ideals. These concepts and the new results were obtained and introduced in chapter 3 were submitted in two separated articles and accepted for publication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BCK" title="BCK">BCK</a>, <a href="https://publications.waset.org/abstracts/search?q=BCI" title=" BCI"> BCI</a>, <a href="https://publications.waset.org/abstracts/search?q=algebras" title=" algebras"> algebras</a>, <a href="https://publications.waset.org/abstracts/search?q=derivation" title=" derivation"> derivation</a> </p> <a href="https://publications.waset.org/abstracts/148017/derivation-of-bckbci-algebras" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> Knowledge Representation Based on Interval Type-2 CFCM Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Myung-Won">Lee Myung-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwak%20Keun-Chang"> Kwak Keun-Chang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IT2-FCM" title="IT2-FCM">IT2-FCM</a>, <a href="https://publications.waset.org/abstracts/search?q=IT2-CFCM" title=" IT2-CFCM"> IT2-CFCM</a>, <a href="https://publications.waset.org/abstracts/search?q=context-based%20fuzzy%20clustering" title=" context-based fuzzy clustering"> context-based fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro-fuzzy%20network" title=" adaptive neuro-fuzzy network"> adaptive neuro-fuzzy network</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20representation" title=" knowledge representation"> knowledge representation</a> </p> <a href="https://publications.waset.org/abstracts/28945/knowledge-representation-based-on-interval-type-2-cfcm-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2673</span> Fuzzy Control and Pertinence Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20F.%20J.%20Maia">Luiz F. J. Maia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20surface" title="control surface">control surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=Inverted%20pendulum" title=" Inverted pendulum"> Inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=pertinence%20functions" title=" pertinence functions"> pertinence functions</a> </p> <a href="https://publications.waset.org/abstracts/2467/fuzzy-control-and-pertinence-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2672</span> A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouafa%20Amira">Ouafa Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshe%20Zhang"> Jiangshe Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20entropy" title=" relative entropy"> relative entropy</a> </p> <a href="https://publications.waset.org/abstracts/96361/a-relative-entropy-regularization-approach-for-fuzzy-c-means-clustering-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2671</span> Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abder-Rahman%20Ali">Abder-Rahman Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ad%C3%A9la%C3%AFde%20Albouy-Kissi"> Adélaïde Albouy-Kissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Grand-Brochier"> Manuel Grand-Brochier</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviane%20Ladan-Marcus"> Viviane Ladan-Marcus</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Hoeffl"> Christine Hoeffl</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Marcus"> Claude Marcus</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Vacavant"> Antoine Vacavant</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Yves%20Boire"> Jean-Yves Boire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defuzzification" title="defuzzification">defuzzification</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20clustering" title=" fuzzy clustering"> fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=type-II%20fuzzy%20sets" title=" type-II fuzzy sets"> type-II fuzzy sets</a> </p> <a href="https://publications.waset.org/abstracts/32293/liver-lesion-extraction-with-fuzzy-thresholding-in-contrast-enhanced-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2670</span> Forecasting Free Cash Flow of an Industrial Enterprise Using Fuzzy Set Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Tkachenko">Elena Tkachenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Rogova"> Elena Rogova</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Koval"> Daria Koval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the ways of cash flows forecasting in the dynamic external environment. The so-called new reality in economy lowers the predictability of the companies’ performance indicators due to the lack of long-term steady trends in external conditions of development and fast changes in the markets. The traditional methods based on the trend analysis lead to a very high error of approximation. The macroeconomic situation for the last 10 years is defined by continuous consequences of financial crisis and arising of another one. In these conditions, the instruments of forecasting on the basis of fuzzy sets show good results. The fuzzy sets based models turn out to lower the error of approximation to acceptable level and to provide the companies with reliable cash flows estimation that helps to reach the financial stability. In the paper, the applicability of the model of cash flows forecasting based on fuzzy logic was analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cash%20flow" title="cash flow">cash flow</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20enterprise" title=" industrial enterprise"> industrial enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a> </p> <a href="https://publications.waset.org/abstracts/95525/forecasting-free-cash-flow-of-an-industrial-enterprise-using-fuzzy-set-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2669</span> A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Tavakkol">Behnam Tavakkol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithm" title="clustering algorithm">clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20methods" title=" fuzzy methods"> fuzzy methods</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20k-medoids" title=" kernel k-medoids"> kernel k-medoids</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20data" title=" uncertain data"> uncertain data</a> </p> <a href="https://publications.waset.org/abstracts/123501/a-fuzzy-kernel-k-medoids-algorithm-for-clustering-uncertain-data-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2668</span> General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Tamhankar">Rashmi Tamhankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhav%20Bapat"> Madhav Bapat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PERT" title="PERT">PERT</a>, <a href="https://publications.waset.org/abstracts/search?q=CPM" title=" CPM"> CPM</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20numbers" title=" triangular fuzzy numbers"> triangular fuzzy numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20activity%20times" title=" fuzzy activity times "> fuzzy activity times </a> </p> <a href="https://publications.waset.org/abstracts/28350/general-network-with-four-nodes-and-four-activities-with-triangular-fuzzy-number-as-activity-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2667</span> Using Interval Type-2 Fuzzy Controller for Diabetes Mellitus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20Mollaei">Nafiseh Mollaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reihaneh%20Kardehi%20Moghaddam"> Reihaneh Kardehi Moghaddam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In case of Diabetes Mellitus the controlling of insulin is very difficult. This illness is an incurable disease affecting millions of people worldwide. Glucose is a sugar which provides energy to the cells. Insulin is a hormone which supports the absorption of glucose. Fuzzy control strategy is attractive for glucose control because it mimics the first and second phase responses that the pancreas beta cells use to control glucose. We propose two control algorithms a type-1 fuzzy controller and an interval type-2 fuzzy method for the insulin infusion. The closed loop system has been simulated for different patients with different parameters, in present of the food intake disturbance and it has been shown that the blood glucose concentrations at a normoglycemic level of 110 mg/dl in the reasonable amount of time. This paper deals with type 1 diabetes as a nonlinear model, which has been simulated in MATLAB-SIMULINK environment. The novel model, termed the Augmented Minimal Model is used in the simulations. There are some uncertainties in this model due to factors such as blood glucose, daily meals or sudden stress. In addition to eliminate the effects of uncertainty, different control methods may be utilized. In this article, fuzzy controller performance were assessed in terms of its ability to track a normoglycemic set point (110 mg/dl) in response to a [0-10] g meal disturbance. Finally, the development reported in this paper is supposed to simplify the insulin delivery, so increasing the quality of life of the patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2" title="interval type-2">interval type-2</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20controller" title=" fuzzy controller"> fuzzy controller</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20augmented%20model" title=" minimal augmented model"> minimal augmented model</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/16955/using-interval-type-2-fuzzy-controller-for-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2666</span> Recruitment Model (FSRM) for Faculty Selection Based on Fuzzy Soft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Thakur">G. S. Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Fuzzy Soft Recruitment Model (FSRM) for faculty selection of MHRD technical institutions. The selection criteria are based on 4-tier flexible structure in the institutions. The Advisory Committee on Faculty Recruitment (ACoFAR) suggested nine criteria for faculty in the proposed FSRM. The model Fuzzy Soft is proposed with consultation of ACoFAR based on selection criteria. The Fuzzy Soft distance similarity measures are applied for finding best faculty from the applicant pool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20soft%20set" title="fuzzy soft set">fuzzy soft set</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20soft%20distance" title=" fuzzy soft distance"> fuzzy soft distance</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20soft%20similarity%20measures" title=" fuzzy soft similarity measures"> fuzzy soft similarity measures</a>, <a href="https://publications.waset.org/abstracts/search?q=ACoFAR" title=" ACoFAR"> ACoFAR</a> </p> <a href="https://publications.waset.org/abstracts/12838/recruitment-model-fsrm-for-faculty-selection-based-on-fuzzy-soft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2665</span> Effect of Eight Weeks Aerobic Training with Purslane Seeds on Peroxidant and Antioxidants Indicators in Women with Type2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Dehghan">Shima Dehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: imbalance between antioxidant defensive system and increasing production of free radicals caused oxidative stress that can be rolled in cellular damage and occurring some of diseases such as diabetes. The aim of current study was to investigate the effect of eight weeks aerobic training on peroxidant and antioxidants indicators in women with type2 diabetes. Methodology: thirty two inactive women with type 2 diabetes were randomly assigned into four groups: 1. control, 2. Aerobic training, 3. Purslane seed and 4. Aerobic training + Purslane seed groups. Subjects were asked to accomplish eight weeks aerobic training (50 min aerobic exercise, 3 days/week, for to achieve 65-75% maximum of heart rate). Also, subjects in certain groups received purslane seeds for eight weeks. Blood samples were obtained in two sets (one session and after 8 weeks). Data was analyzed using one way ANOVA. A significant difference was accepted at p < 0/05 level. Results: After eight weeks of aerobic training with purslane seeds supplementation, malon dyaldehyde (MDA) concentration in training group were significantly decreased (p < 0/000), but A difference significant was not found in control group. Superoxide dismutase (SOD) and catalase (CAT) concentrations in training group were significantly increased (p < 0/000), while difference significant wasnot found in control group. Conclusion: The finding of the current study indicates that disciplined aerobic training with purslane seeds supplementation can be caused improvement in peroxidant/antioxidant balance in women with type2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=purslane%20seed" title=" purslane seed"> purslane seed</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidant%2Fantioxidant%20balance" title=" peroxidant/antioxidant balance"> peroxidant/antioxidant balance</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes2" title=" diabetes2"> diabetes2</a> </p> <a href="https://publications.waset.org/abstracts/36364/effect-of-eight-weeks-aerobic-training-with-purslane-seeds-on-peroxidant-and-antioxidants-indicators-in-women-with-type2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2664</span> Fuzzy Ideal Topological Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Koam">Ali Koam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ibedou"> Ismail Ibedou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Abbas"> S. E. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20ideal" title="fuzzy ideal">fuzzy ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20separation%20axioms" title=" fuzzy separation axioms"> fuzzy separation axioms</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20compactness" title=" fuzzy compactness"> fuzzy compactness</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20connectedness" title=" fuzzy connectedness"> fuzzy connectedness</a> </p> <a href="https://publications.waset.org/abstracts/101746/fuzzy-ideal-topological-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2663</span> Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Hajiheydari">Nastaran Hajiheydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Soltani%20Delgosha"> Mohammad Soltani Delgosha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20decision%20making" title="group decision making">group decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20set" title=" intuitionistic fuzzy set"> intuitionistic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20entropy%20measure" title=" intuitionistic fuzzy entropy measure"> intuitionistic fuzzy entropy measure</a>, <a href="https://publications.waset.org/abstracts/search?q=vendor%20selection" title=" vendor selection"> vendor selection</a>, <a href="https://publications.waset.org/abstracts/search?q=VIKOR" title=" VIKOR"> VIKOR</a> </p> <a href="https://publications.waset.org/abstracts/95995/extended-intuitionistic-fuzzy-vikor-method-in-group-decision-making-the-case-of-vendor-selection-decision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2662</span> Prediction of Coronary Heart Disease Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elda%20Maraj">Elda Maraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shkelqim%20Kuka"> Shkelqim Kuka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20heart%20disease" title="coronary heart disease">coronary heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20toolbox" title=" fuzzy logic toolbox"> fuzzy logic toolbox</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20model" title=" prediction model"> prediction model</a> </p> <a href="https://publications.waset.org/abstracts/148911/prediction-of-coronary-heart-disease-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2661</span> Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kamrul%20Islam">A. K. M. Kamrul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Bouchachia"> Abdelhamid Bouchachia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suang%20Cang"> Suang Cang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongnian%20Yu"> Hongnian Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20time%20series%20%28fts%29" title="fuzzy time series (fts)">fuzzy time series (fts)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithm" title=" clustering algorithm"> clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20model" title=" hybrid forecasting model"> hybrid forecasting model</a> </p> <a href="https://publications.waset.org/abstracts/51515/fuzzy-time-series-forecasting-based-on-fuzzy-logical-relationships-pso-technique-and-automatic-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2660</span> Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousfi%20Abdelkader">Yousfi Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaker%20Abdelkader"> Chaker Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Bot%20Youcef"> Bot Youcef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20active%20power%20filter" title=" shunt active power filter"> shunt active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20logic%20controller%20%28T2FL%29" title=" interval type-2 fuzzy logic controller (T2FL)"> interval type-2 fuzzy logic controller (T2FL)</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20inverter" title=" multilevel inverter"> multilevel inverter</a> </p> <a href="https://publications.waset.org/abstracts/117014/power-quality-improvement-using-interval-type-2-fuzzy-logic-controller-for-five-level-shunt-active-power-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2659</span> Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yaman">S. Yaman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rostami"> S. Rostami </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=function%20tuner%20method%20%28FTM%29" title="function tuner method (FTM)">function tuner method (FTM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20modeling" title=" fuzzy modeling"> fuzzy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20PID%20controller" title=" fuzzy PID controller"> fuzzy PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title=" genetic algorithm (GA)"> genetic algorithm (GA)</a> </p> <a href="https://publications.waset.org/abstracts/50508/black-box-model-and-evolutionary-fuzzy-control-methods-of-coupled-tank-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2658</span> Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20T.%20Chen">Chen T. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20L.%20Cheng"> Hui L. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20multi-criteria%20decision-making" title="group multi-criteria decision-making">group multi-criteria decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20variables" title=" linguistic variables"> linguistic variables</a>, <a href="https://publications.waset.org/abstracts/search?q=hesitant%20fuzzy%20linguistic%20variables" title=" hesitant fuzzy linguistic variables"> hesitant fuzzy linguistic variables</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20function" title=" distance function"> distance function</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20consensus" title=" group consensus "> group consensus </a> </p> <a href="https://publications.waset.org/abstracts/123438/group-consensus-of-hesitant-fuzzy-linguistic-variables-for-decision-making-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2657</span> Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20M.%20Abdul%20Abbas"> Huda M. Abdul Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short%20term%20load%20forecasting" title="short term load forecasting">short term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20fuzzy%20logic%20systems" title=" type 2 fuzzy logic systems"> type 2 fuzzy logic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20systems%20engineering" title=" computer systems engineering"> computer systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/14301/iraqi-short-term-electrical-load-forecasting-based-on-interval-type-2-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2656</span> Approach to Formulate Intuitionistic Fuzzy Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang-Hsuan%20Chen">Liang-Hsuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shing%20Nien"> Sheng-Shing Nien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title="fuzzy sets">fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20number" title=" intuitionistic fuzzy number"> intuitionistic fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20regression" title=" intuitionistic fuzzy regression"> intuitionistic fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming%20method" title=" mathematical programming method"> mathematical programming method</a> </p> <a href="https://publications.waset.org/abstracts/123234/approach-to-formulate-intuitionistic-fuzzy-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2655</span> A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Gitinavard">Hossein Gitinavard</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Fazel%20Zarandi"> Mohammad Hossein Fazel Zarandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20supplier%20selection" title="green supplier selection">green supplier selection</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking%20approach" title=" ranking approach"> ranking approach</a>, <a href="https://publications.waset.org/abstracts/search?q=interval-valued%20hesitant%20fuzzy%20setting" title=" interval-valued hesitant fuzzy setting"> interval-valued hesitant fuzzy setting</a> </p> <a href="https://publications.waset.org/abstracts/49652/a-mixed-expert-evaluation-system-and-dynamic-interval-valued-hesitant-fuzzy-selection-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>