CINXE.COM

Satz des Pythagoras – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Satz des Pythagoras – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"17737d50-0212-46a2-ac76-05ea3d3c9be5","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Satz_des_Pythagoras","wgTitle":"Satz des Pythagoras","wgCurRevisionId":250610983,"wgRevisionId":250610983,"wgArticleId":4851,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"], "wgCategories":["Wikipedia:Exzellent","Dreiecksgeometrie","Satz (Ebene Geometrie)"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Satz_des_Pythagoras","wgRelevantArticleId":4851,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":250610983,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true, "wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11518","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready", "mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession", "wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/1200px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1297"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/800px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="865"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/640px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="692"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Satz des Pythagoras – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Satz_des_Pythagoras"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Satz_des_Pythagoras"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Satz_des_Pythagoras rootpage-Satz_des_Pythagoras skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> <div id="mw-indicator-topicon-Vorlage_Exzellent" class="mw-indicator"><div class="mw-parser-output"><div class="noprint"><span typeof="mw:File"><a href="#Vorlage_Exzellent" title="Dies ist ein als exzellent ausgezeichneter Artikel."><img alt="Dies ist ein als exzellent ausgezeichneter Artikel." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/15px-Qsicon_Exzellent.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/23px-Qsicon_Exzellent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/30px-Qsicon_Exzellent.svg.png 2x" data-file-width="24" data-file-height="24" /></a></span></div></div></div> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Satz des Pythagoras</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><figure class="mw-default-size mw-halign-right" typeof="mw:File/Frameless"><a href="/wiki/Datei:01-Rechtwinkliges_Dreieck-Pythagoras.svg" class="mw-file-description" title="Satz des Pythagoras"><img alt="Satz des Pythagoras" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/260px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png" decoding="async" width="260" height="281" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/390px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/01-Rechtwinkliges_Dreieck-Pythagoras.svg/520px-01-Rechtwinkliges_Dreieck-Pythagoras.svg.png 2x" data-file-width="370" data-file-height="400" /></a><figcaption>Satz des Pythagoras</figcaption></figure> <p>Der <b>Satz des Pythagoras</b> (auch als <i>pythagoreischer Lehrsatz</i> und als <i>Hypotenusensatz</i><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> bezeichnet) ist einer der fundamentalen <a href="/wiki/Satz_(Mathematik)" title="Satz (Mathematik)">Sätze</a> der <a href="/wiki/Euklidische_Geometrie" title="Euklidische Geometrie">euklidischen Geometrie</a>. Er besagt, dass in allen ebenen <a href="/wiki/Rechtwinkliges_Dreieck" title="Rechtwinkliges Dreieck">rechtwinkligen Dreiecken</a> die Summe der <a href="/wiki/Fl%C3%A4cheninhalt" title="Flächeninhalt">Flächeninhalte</a> der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> die <a href="/wiki/L%C3%A4nge_(Mathematik)" title="Länge (Mathematik)">Längen</a> der am <a href="/wiki/Rechter_Winkel" title="Rechter Winkel">rechten Winkel</a> anliegenden Seiten, der <a href="/wiki/Kathete" class="mw-redirect" title="Kathete">Katheten</a>, und ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> die Länge der dem rechten Winkel gegenüberliegenden Seite, der <a href="/wiki/Hypotenuse" class="mw-redirect" title="Hypotenuse">Hypotenuse</a>, so besagt der Satz, dass die sogenannte <i>pythagoreische Gleichung</i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span></dd></dl> <p>gilt. </p><p>Der Satz ist nach <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras von Samos</a> benannt, der als Erster dafür einen <a href="/wiki/Beweis_(Mathematik)" title="Beweis (Mathematik)">mathematischen Beweis</a> gefunden haben soll, was allerdings in der Forschung umstritten ist. Die Aussage des Satzes war schon lange vor der Zeit des Pythagoras in <a href="/wiki/Babylon" title="Babylon">Babylon</a> und Indien bekannt, es gibt jedoch keinen Nachweis dafür, dass man dort auch einen Beweis hatte. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Mathematische_Aussage"><span class="tocnumber">1</span> <span class="toctext">Mathematische Aussage</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Verwendung"><span class="tocnumber">2</span> <span class="toctext">Verwendung</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Längen_im_rechtwinkligen_Dreieck"><span class="tocnumber">2.1</span> <span class="toctext">Längen im rechtwinkligen Dreieck</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Reziproke_Längen_im_rechtwinkligen_Dreieck"><span class="tocnumber">2.2</span> <span class="toctext">Reziproke Längen im rechtwinkligen Dreieck</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Pythagoreische_Tripel"><span class="tocnumber">2.3</span> <span class="toctext">Pythagoreische Tripel</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Euklidischer_Abstand"><span class="tocnumber">2.4</span> <span class="toctext">Euklidischer Abstand</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-7"><a href="#Beweise"><span class="tocnumber">3</span> <span class="toctext">Beweise</span></a> <ul> <li class="toclevel-2 tocsection-8"><a href="#Beweis_nach_Euklid"><span class="tocnumber">3.1</span> <span class="toctext">Beweis nach Euklid</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Beweis_durch_Addition_abgeleiteter_Flächeninhalte"><span class="tocnumber">3.2</span> <span class="toctext">Beweis durch Addition abgeleiteter Flächeninhalte</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Beweis_durch_Ergänzung"><span class="tocnumber">3.3</span> <span class="toctext">Beweis durch Ergänzung</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Beweis_durch_Scherung"><span class="tocnumber">3.4</span> <span class="toctext">Beweis durch Scherung</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Beweis_durch_Parkettierung"><span class="tocnumber">3.5</span> <span class="toctext">Beweis durch Parkettierung</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Beweis_mit_Ähnlichkeiten"><span class="tocnumber">3.6</span> <span class="toctext">Beweis mit Ähnlichkeiten</span></a></li> <li class="toclevel-2 tocsection-14"><a href="#Beweis_der_Umkehrung"><span class="tocnumber">3.7</span> <span class="toctext">Beweis der Umkehrung</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-15"><a href="#Verallgemeinerungen_und_Abgrenzung"><span class="tocnumber">4</span> <span class="toctext">Verallgemeinerungen und Abgrenzung</span></a> <ul> <li class="toclevel-2 tocsection-16"><a href="#Kosinussatz"><span class="tocnumber">4.1</span> <span class="toctext">Kosinussatz</span></a></li> <li class="toclevel-2 tocsection-17"><a href="#Verallgemeinerung_von_Thabit_ibn_Qurra"><span class="tocnumber">4.2</span> <span class="toctext">Verallgemeinerung von Thabit ibn Qurra</span></a></li> <li class="toclevel-2 tocsection-18"><a href="#Flächensatz_von_Pappus"><span class="tocnumber">4.3</span> <span class="toctext">Flächensatz von Pappus</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Ähnliche_Figuren,_errichtet_über_den_Seiten_des_rechtwinkligen_Dreiecks"><span class="tocnumber">4.4</span> <span class="toctext">Ähnliche Figuren, errichtet über den Seiten des rechtwinkligen Dreiecks</span></a></li> <li class="toclevel-2 tocsection-20"><a href="#Skalarprodukträume"><span class="tocnumber">4.5</span> <span class="toctext">Skalarprodukträume</span></a></li> <li class="toclevel-2 tocsection-21"><a href="#Weitere_Verallgemeinerungen"><span class="tocnumber">4.6</span> <span class="toctext">Weitere Verallgemeinerungen</span></a></li> <li class="toclevel-2 tocsection-22"><a href="#Unterschiede_in_der_nichteuklidischen_Geometrie"><span class="tocnumber">4.7</span> <span class="toctext">Unterschiede in der nichteuklidischen Geometrie</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-23"><a href="#Geschichte"><span class="tocnumber">5</span> <span class="toctext">Geschichte</span></a> <ul> <li class="toclevel-2 tocsection-24"><a href="#Babylon_und_Indien"><span class="tocnumber">5.1</span> <span class="toctext">Babylon und Indien</span></a></li> <li class="toclevel-2 tocsection-25"><a href="#China"><span class="tocnumber">5.2</span> <span class="toctext">China</span></a></li> <li class="toclevel-2 tocsection-26"><a href="#Die_umstrittene_Rolle_des_Pythagoras"><span class="tocnumber">5.3</span> <span class="toctext">Die umstrittene Rolle des Pythagoras</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-27"><a href="#Literarische_Rezeption"><span class="tocnumber">6</span> <span class="toctext">Literarische Rezeption</span></a></li> <li class="toclevel-1 tocsection-28"><a href="#Veranschaulichung"><span class="tocnumber">7</span> <span class="toctext">Veranschaulichung</span></a></li> <li class="toclevel-1 tocsection-29"><a href="#Verwandte_Themen"><span class="tocnumber">8</span> <span class="toctext">Verwandte Themen</span></a></li> <li class="toclevel-1 tocsection-30"><a href="#Literatur"><span class="tocnumber">9</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-31"><a href="#Weblinks"><span class="tocnumber">10</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-32"><a href="#Einzelnachweise"><span class="tocnumber">11</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Mathematische_Aussage">Mathematische Aussage</h2></div> <p>Der Satz des Pythagoras lässt sich folgendermaßen formulieren: </p> <dl><dd><i>Sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> die Seitenlängen eines rechtwinkligen Dreiecks, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> die Längen der Katheten sind und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> die Länge der Hypotenuse ist, so gilt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span>.</i></dd></dl> <p>In geometrischer Deutung ist demnach in einem rechtwinkligen Dreieck die Summe der Flächen der beiden <a href="/wiki/Quadrat" title="Quadrat">Quadrate</a> über den Katheten gleich der Fläche des Quadrats über der Hypotenuse. </p><p>Die Umkehrung des Satzes gilt ebenso: </p> <dl><dd><i>Gilt die Gleichung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span> in einem Dreieck mit den Seitenlängen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>, so ist dieses Dreieck rechtwinklig, wobei der rechte Winkel der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> gegenüberliegt.</i></dd></dl> <p>Eng verwandt mit dem Satz des Pythagoras sind der <a href="/wiki/H%C3%B6hensatz" title="Höhensatz">Höhensatz</a> und der <a href="/wiki/Kathetensatz" class="mw-redirect" title="Kathetensatz">Kathetensatz</a>. Diese beiden Sätze und der Satz des Pythagoras bilden zusammen die <a href="/wiki/Satzgruppe_des_Pythagoras" title="Satzgruppe des Pythagoras">Satzgruppe des Pythagoras</a>. Der unten beschriebene <a href="/wiki/Kosinussatz" title="Kosinussatz">Kosinussatz</a> ist eine Verallgemeinerung des pythagoreischen Satzes. </p> <div class="mw-heading mw-heading2"><h2 id="Verwendung">Verwendung</h2></div> <div class="mw-heading mw-heading3"><h3 id="Längen_im_rechtwinkligen_Dreieck"><span id="L.C3.A4ngen_im_rechtwinkligen_Dreieck"></span>Längen im rechtwinkligen Dreieck</h3></div> <p>Aus dem Satz des Pythagoras folgt direkt, dass die Länge der Hypotenuse gleich der <a href="/wiki/Quadratwurzel" title="Quadratwurzel">Quadratwurzel</a> aus der <a href="/wiki/Summe" title="Summe">Summe</a> der Kathetenquadrate ist, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fedf2f36b06db4bed9920046bd74c332c99ea4a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.605ex; height:3.509ex;" alt="{\displaystyle c={\sqrt {a^{2}+b^{2}}}}"></span>.</dd></dl> <p>Eine einfache und wichtige Anwendung des Satzes ist, aus zwei bekannten Seiten eines rechtwinkligen Dreiecks die dritte zu berechnen. Dies ist durch Umformung der Gleichung für alle Seiten möglich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}a&amp;={\sqrt {c^{2}-b^{2}}}\\b&amp;={\sqrt {c^{2}-a^{2}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}a&amp;={\sqrt {c^{2}-b^{2}}}\\b&amp;={\sqrt {c^{2}-a^{2}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d535b95ac8198459e8d43593d8c64720b9f773e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.589ex; height:7.176ex;" alt="{\displaystyle {\begin{aligned}a&amp;={\sqrt {c^{2}-b^{2}}}\\b&amp;={\sqrt {c^{2}-a^{2}}}\end{aligned}}}"></span></dd></dl> <p>Die Umkehrung des Satzes kann dazu verwendet werden, zu überprüfen, ob ein gegebenes Dreieck rechtwinklig ist. Dazu wird getestet, ob die Gleichung des Satzes für die Seiten bei dem gegebenen Dreieck zutrifft. Es reicht also allein die Kenntnis der Seitenlängen eines gegebenen Dreiecks, um daraus zu schließen, ob es rechtwinklig ist oder nicht: </p> <ul><li>Sind die Seitenlängen z.&#160;B. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span>, dann ergibt sich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3^{2}+4^{2}=9+16=25=5^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>9</mn> <mo>+</mo> <mn>16</mn> <mo>=</mo> <mn>25</mn> <mo>=</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3^{2}+4^{2}=9+16=25=5^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08c87857d4ec74da597b3f316faa5c7cc61d1f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:27.439ex; height:2.843ex;" alt="{\displaystyle 3^{2}+4^{2}=9+16=25=5^{2}}"></span>, und daher ist das Dreieck rechtwinklig.</li> <li>Sind die Seitenlängen z.&#160;B. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 6}"></span>, dann ergibt sich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4^{2}+5^{2}=16+25=41\neq 6^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>16</mn> <mo>+</mo> <mn>25</mn> <mo>=</mo> <mn>41</mn> <mo>&#x2260;<!-- ≠ --></mo> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4^{2}+5^{2}=16+25=41\neq 6^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c922b57f177a4b78b2d29af4bae80036bb887d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.601ex; height:3.176ex;" alt="{\displaystyle 4^{2}+5^{2}=16+25=41\neq 6^{2}}"></span>, und daher ist das Dreieck nicht rechtwinklig.</li></ul> <p>Aus dem Satz des Pythagoras folgt, dass in einem rechtwinkligen Dreieck die Hypotenuse länger als jede der Katheten und kürzer als deren Summe ist. Letzteres ergibt sich auch aus der <a href="/wiki/Dreiecksungleichung#Für_allgemeine_Dreiecke" title="Dreiecksungleichung">Dreiecksungleichung</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Reziproke_Längen_im_rechtwinkligen_Dreieck"><span id="Reziproke_L.C3.A4ngen_im_rechtwinkligen_Dreieck"></span>Reziproke Längen im rechtwinkligen Dreieck</h3></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Inverser_Satz_des_Pythagoras" title="Inverser Satz des Pythagoras">Inverser Satz des Pythagoras</a></i></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg/460px-01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg.png" decoding="async" width="460" height="179" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg/690px-01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg/920px-01_Rechtwinkliges_Dreieck-inverser_Satz-3.svg.png 2x" data-file-width="641" data-file-height="250" /></a><figcaption>Beweis mit Hilfe <a href="/wiki/%C3%84hnlichkeitss%C3%A4tze" title="Ähnlichkeitssätze">ähnlicher Dreiecke</a>: Reziproker Satz des Pythagoras,<sup id="cite_ref-Claudi_Alsina_2-0" class="reference"><a href="#cite_note-Claudi_Alsina-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> die Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\triangle {_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\triangle {_{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c02dd5325f5cccbbda4659afe903b7297e49fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.863ex; height:2.509ex;" alt="{\displaystyle A\triangle {_{1}}}"></span> des Ausgangsdreiecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span> entspricht <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {ch}{2}}={\tfrac {ab}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>c</mi> <mi>h</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {ch}{2}}={\tfrac {ab}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ebab4c04335db2c359a7ac94afd7fcc8e08dad4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.004ex; height:3.676ex;" alt="{\displaystyle {\tfrac {ch}{2}}={\tfrac {ab}{2}}}"></span>.</figcaption></figure> <p>Aus dem Satz des Pythagoras folgt als direkte Anwendung der <b>reziproke Satz des Pythagoras</b>: </p><p>Sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> die Längen der Katheten und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> die Länge der Höhe auf der Hypotenuse in einem rechtwinkligen Dreieck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span>, dann sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a73eee36a0adfebbfd4520cce02dd7625d0ac9dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.066ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{a}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea76afe40f2d2831e768f5810adfea19db57d3cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:1.999ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{b}}}"></span> die Kathetenlängen und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a11fdecf28d2c4d99b41a7feaa098f175db62bd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.175ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{h}}}"></span> die Hypotenusenlänge eines zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span> ähnlichen rechtwinkligen Dreiecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'B'C'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'B'C'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd38dba73f9da63e1c7709de40805d82cd55c255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.359ex; height:2.509ex;" alt="{\displaystyle A&#039;B&#039;C&#039;}"></span>. </p><p>Somit folgt: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a413cbc4bc610e521b03aa3605abacb37ed9b554" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.176ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"></span>. </p><p>Wegen der Rechtwinkligkeit gilt für die Flächenmaßzahl des Dreiecks ABC die Gleichheit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {ab}{2}}={\frac {ch}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mi>h</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {ab}{2}}={\frac {ch}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/980ea6da20dfbcd980d02d219dc5fa14b015d398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.344ex; height:5.343ex;" alt="{\displaystyle {\frac {ab}{2}}={\frac {ch}{2}}}"></span> oder <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\frac {ab}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\frac {ab}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98153c4efc62e81e327311ff3269c7aaa79b9caf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.169ex; height:5.509ex;" alt="{\displaystyle c={\frac {ab}{h}}}"></span>. </p><p>Durch Division der Pythagorasgleichung auf beiden Seiten durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d1f49f5316dd7b0849f4fbdcb0db942e77ce99c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.336ex; height:2.676ex;" alt="{\displaystyle a^{2}b^{2}}"></span> und Einsetzen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {ab}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {ab}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/871414eb816e9e20f4c7cf695217ddccea3fb2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.063ex; height:5.509ex;" alt="{\displaystyle {\frac {ab}{h}}}"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> ergibt sich die Aussage des Satzes aus folgender Äquivalenzkette: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}\Leftrightarrow {\frac {1}{b^{2}}}+{\frac {1}{a^{2}}}={\frac {c^{2}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {\frac {a^{2}b^{2}}{h^{2}}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}\Leftrightarrow {\frac {1}{b^{2}}}+{\frac {1}{a^{2}}}={\frac {c^{2}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {\frac {a^{2}b^{2}}{h^{2}}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13515ca22fced46a1e9258235ad56c355f1bed88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:72.592ex; height:7.676ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}\Leftrightarrow {\frac {1}{b^{2}}}+{\frac {1}{a^{2}}}={\frac {c^{2}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {\frac {a^{2}b^{2}}{h^{2}}}{a^{2}b^{2}}}\Leftrightarrow {\frac {1}{a^{2}}}+{\frac {1}{b^{2}}}={\frac {1}{h^{2}}}}"></span><sup id="cite_ref-Claudi_Alsina_2-1" class="reference"><a href="#cite_note-Claudi_Alsina-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pythagoreische_Tripel">Pythagoreische Tripel</h3></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Pythagoreisches_Tripel" title="Pythagoreisches Tripel">Pythagoreisches Tripel</a></i></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Frameless"><a href="/wiki/Datei:Dreieck_rechtwinklig_1.svg" class="mw-file-description" title="Dreieck rechtwinklig 1"><img alt="Dreieck rechtwinklig 1" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Dreieck_rechtwinklig_1.svg/220px-Dreieck_rechtwinklig_1.svg.png" decoding="async" width="220" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Dreieck_rechtwinklig_1.svg/330px-Dreieck_rechtwinklig_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Dreieck_rechtwinklig_1.svg/440px-Dreieck_rechtwinklig_1.svg.png 2x" data-file-width="512" data-file-height="421" /></a><figcaption>Dreieck rechtwinklig 1</figcaption></figure> <p>Unter allen Dreiergruppen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae973a762a92b9cd3eafe7f283890ccfa9b887e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.111ex; height:2.843ex;" alt="{\displaystyle (a,b,c)}"></span>, die die Gleichung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span> erfüllen, gibt es unendlich viele, bei denen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> jeweils <a href="/wiki/Ganze_Zahl" title="Ganze Zahl">ganze Zahlen</a> sind. Diese Dreiergruppen werden pythagoreische Tripel genannt. Das einfachste dieser Tripel besteht aus den Zahlen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 3}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span>. Die beiden kurzen Seiten bilden einen rechten Winkel. </p><p>Der <a href="/wiki/Gro%C3%9Fer_fermatscher_Satz" class="mw-redirect" title="Großer fermatscher Satz">große fermatsche Satz</a> besagt, dass die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-te Potenz einer Zahl, wenn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e71ac55b9fbf1e9f341b946cda63d61d3ef2cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;2}"></span> ist, nicht als Summe zweier Potenzen des gleichen Grades dargestellt werden kann. Gemeint sind ganze Grundzahlen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa3bd11995e996e9da521e70b3feabceaee5d22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.616ex; height:2.676ex;" alt="{\displaystyle \neq 0}"></span> und natürliche Hochzahlen. Allgemein gesprochen bedeutet dies: </p> <dl><dd><i>Die Gleichung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{n}+b^{n}=c^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{n}+b^{n}=c^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2e31ced64b8cef38ab186ec86755ecc47c861f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.828ex; height:2.509ex;" alt="{\displaystyle a^{n}+b^{n}=c^{n}}"></span> besitzt für <a href="/wiki/Ganze_Zahl" title="Ganze Zahl">ganzzahlige</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6852f4130a580e7e8144783b603e8096651f60d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.563ex; height:2.676ex;" alt="{\displaystyle a,b,c\neq 0}"></span> und <a href="/wiki/Nat%C3%BCrliche_Zahl" title="Natürliche Zahl">natürliche Zahlen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e71ac55b9fbf1e9f341b946cda63d61d3ef2cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;2}"></span> keine Lösung.</i><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Das ist erstaunlich, weil es für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\leq 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\leq 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/924163899587ffb962098c00cf6a02e206ce6a4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\leq 2}"></span> unendlich viele Lösungen gibt. Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span> sind dies die pythagoreischen Zahlentripel. </p><p>Trotz seiner einfachen Formulierung gilt der Beweis des großen fermatschen Satzes, der erst 1995 erbracht werden konnte,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> als außerordentlich schwierig. </p> <div class="mw-heading mw-heading3"><h3 id="Euklidischer_Abstand">Euklidischer Abstand</h3></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">Euklidischer Abstand</a></i></div> <p>Der Satz von Pythagoras liefert eine Formel für den <a href="/wiki/Abstand" title="Abstand">Abstand</a> zweier <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkte</a> in einem <a href="/wiki/Kartesisches_Koordinatensystem" title="Kartesisches Koordinatensystem">kartesischen Koordinatensystem</a>. Sind zwei Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c296094af9a1c665425debeac5eaab99a37a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc74086e56542bd28b46a84faaee3cebdd4a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{1},y_{1})}"></span> in einer <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> gegeben, dann ist ihr Abstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c8be57c4eff7d9475516fc024de16cfc62ef14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:29.832ex; height:4.843ex;" alt="{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}}}}"></span></dd></dl> <p>gegeben. Hierbei wird ausgenutzt, dass die <a href="/wiki/Koordinatenachse" title="Koordinatenachse">Koordinatenachsen</a> senkrecht zueinander liegen. Diese Formel kann auch auf mehr als zwei Dimensionen erweitert werden und liefert dann den <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">euklidischen Abstand</a>. Zum Beispiel gilt im dreidimensionalen <a href="/wiki/Euklidischer_Raum" title="Euklidischer Raum">euklidischen Raum</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z_{1}-z_{0})^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z_{1}-z_{0})^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6f5d8585e0b9d54bfc848d4e672a34640b2f731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:42.647ex; height:4.843ex;" alt="{\displaystyle c={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}+(z_{1}-z_{0})^{2}}}}"></span>.</dd></dl> <p>Das entspricht auch dem Betrag bzw. der Länge des durch die beiden Punkte definierten <a href="/wiki/Vektor" title="Vektor">Vektors</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Beweise">Beweise</h2></div> <p>Für den Satz sind mehrere hundert Beweise bekannt,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> womit er wohl der meistbewiesene mathematische Satz ist. <a href="/wiki/Elisha_Scott_Loomis" title="Elisha Scott Loomis">Elisha Scott Loomis</a> führt in einem zuerst 1927 erschienenen Buch 371 Beweise auf.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Mario Gerwig<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> führt in einer Überarbeitung und Ergänzung der Loomis-Sammlung rund 365 verschiedene Beweise auf, wobei er Loomis rund 360 Beweise zuordnet und eine ganze Reihe von Fehlern, darunter auch die Aufnahme offensichtlich falscher Beweise. Exemplarisch werden im Folgenden sechs geometrische Beweise vorgestellt. Ein siebter Beweis aus dem Jahr 1875 von <a href="/wiki/James_A._Garfield" title="James A. Garfield">James A.&#160;Garfield</a> findet sich unter <a href="/wiki/Beweis_des_Satzes_des_Pythagoras_nach_Garfield" title="Beweis des Satzes des Pythagoras nach Garfield">Beweis des Satzes des Pythagoras nach Garfield</a>, der dem <a class="mw-selflink-fragment" href="#Beweis_durch_Ergänzung"><i>Beweis durch Ergänzung</i></a> stark ähnelt. </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_nach_Euklid">Beweis nach Euklid</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagoras_proof_by_euclid.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Pythagoras_proof_by_euclid.svg/310px-Pythagoras_proof_by_euclid.svg.png" decoding="async" width="310" height="336" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Pythagoras_proof_by_euclid.svg/465px-Pythagoras_proof_by_euclid.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Pythagoras_proof_by_euclid.svg/620px-Pythagoras_proof_by_euclid.svg.png 2x" data-file-width="632" data-file-height="685" /></a><figcaption>Beweis nach Euklid: schraffierte Dreiecke sind kongruent, gleich farbene Vierecke flächengleich</figcaption></figure> <p><a href="/wiki/Euklid" title="Euklid">Euklid</a> beschreibt den Satz des Pythagoras mit dem folgenden Beweis im ersten Buch seiner <a href="/wiki/Elemente_(Euklid)" title="Elemente (Euklid)">Elemente</a> in der Proposition 47.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Dort beweist er zunächst den <a href="/wiki/Kathetensatz" class="mw-redirect" title="Kathetensatz">Kathetensatz</a> mit Hilfe kongruenter Dreiecke, aus welchem dann unmittelbar der Satz des Pythagoras folgt. Der Beweis benutzt nicht die Theorie der Proportionen, die Euklid im Buch 5 der Elemente entwickelt, sondern kommt allein mit den Sätzen des ersten Buches der Elemente aus und ist von konstruktiver Natur. </p><p>Für ein Dreieck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span> mit rechtem Winkel in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CBLF}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>B</mi> <mi>L</mi> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CBLF}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbcad726aeac6fbcb229205cedfa0bf0e017657f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.854ex; height:2.176ex;" alt="{\displaystyle CBLF}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ACKD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> <mi>K</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ACKD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b641c3a2b6f88af1891830526a10bb58c51173c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.5ex; height:2.176ex;" alt="{\displaystyle ACKD}"></span> die Quadrate über den Katheten und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> der Fußpunkt der Höhe von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>. Des Weiteren sind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle MNJA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>N</mi> <mi>J</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle MNJA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aca0b565bd2d8a385178c5fdeb12554efe6ae82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.72ex; height:2.176ex;" alt="{\displaystyle MNJA}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle NHBJ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>H</mi> <mi>B</mi> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle NHBJ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68840a73a1c7afd5e965c32c826bc8305c3af6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.363ex; height:2.176ex;" alt="{\displaystyle NHBJ}"></span> Rechtecke über der Hypotenuse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span> deren längere Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle JN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle JN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb06ff7d10aec28e31f0d2ec70f67b7ec6d73356" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.535ex; height:2.176ex;" alt="{\displaystyle JN}"></span> die Länge der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span> besitzt. Nun sind die Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AMC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>M</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AMC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db3beff7bc6bbb4063ddc76710518a1bf5575e73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.952ex; height:2.176ex;" alt="{\displaystyle AMC}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f713069ead1e61a3b6b2e4dbf6d7b45988513ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.431ex; height:2.176ex;" alt="{\displaystyle ABD}"></span> nach dem zweiten <a href="/wiki/Kongruenzsatz" title="Kongruenzsatz">Kongruenzsatz</a> (SWS) kongruent, da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle MAC=\angle BAC+90^{\circ }=\angle BAD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>M</mi> <mi>A</mi> <mi>C</mi> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>C</mi> <mo>+</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle MAC=\angle BAC+90^{\circ }=\angle BAD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e2c935cdf6f72be8824b150ef6d81eb97908da1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:34.107ex; height:2.509ex;" alt="{\displaystyle \angle MAC=\angle BAC+90^{\circ }=\angle BAD}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |AD|=|AC|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |AD|=|AC|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42437c520a3712ad790b1cbec5f994cc85f6df70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.863ex; height:2.843ex;" alt="{\displaystyle |AD|=|AC|}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |AB|=|AM|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |AB|=|AM|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22eed42599d982af7ff08bce2406a2b85cac8965" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.378ex; height:2.843ex;" alt="{\displaystyle |AB|=|AM|}"></span> gilt. Zudem gilt, dass die Fläche des Dreiecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AMC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>M</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AMC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db3beff7bc6bbb4063ddc76710518a1bf5575e73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.952ex; height:2.176ex;" alt="{\displaystyle AMC}"></span> die Hälfte der Fläche des Rechtecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle MNJA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>N</mi> <mi>J</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle MNJA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aca0b565bd2d8a385178c5fdeb12554efe6ae82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.72ex; height:2.176ex;" alt="{\displaystyle MNJA}"></span> beträgt, da dessen Grundseite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span> und die Rechteckseite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AM}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AM}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14612d61c481c5020a2205c9fcf2b3ffb44bdb79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.185ex; height:2.176ex;" alt="{\displaystyle AM}"></span> gleich lang sind und die Länge seiner Höhe von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> der Länge der anderen Rechteckseite entspricht. Aufgrund eines entsprechenden Arguments folgt, dass die Fläche des Dreiecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f713069ead1e61a3b6b2e4dbf6d7b45988513ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.431ex; height:2.176ex;" alt="{\displaystyle ABD}"></span> der Hälfte der Fläche des Kathetenquadrates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ACKD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> <mi>K</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ACKD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b641c3a2b6f88af1891830526a10bb58c51173c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.5ex; height:2.176ex;" alt="{\displaystyle ACKD}"></span> entspricht. Wegen der Kongruenz der Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AMC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>M</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AMC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db3beff7bc6bbb4063ddc76710518a1bf5575e73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.952ex; height:2.176ex;" alt="{\displaystyle AMC}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f713069ead1e61a3b6b2e4dbf6d7b45988513ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.431ex; height:2.176ex;" alt="{\displaystyle ABD}"></span> bedeutet dies aber, dass dann auch das Kathetenquadrat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ACKD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> <mi>K</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ACKD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b641c3a2b6f88af1891830526a10bb58c51173c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.5ex; height:2.176ex;" alt="{\displaystyle ACKD}"></span> flächengleich mit dem Rechteck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle MNJA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>N</mi> <mi>J</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle MNJA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aca0b565bd2d8a385178c5fdeb12554efe6ae82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.72ex; height:2.176ex;" alt="{\displaystyle MNJA}"></span> ist. Analog lässt sich mit Hilfe der kongruenten Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CHB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>H</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CHB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/932243e11ff20d320b5aad7a535344a7e6514c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.594ex; height:2.176ex;" alt="{\displaystyle CHB}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABL}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABL}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f20ddce768551cd94812ca81af091f40e7e63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.09ex; height:2.176ex;" alt="{\displaystyle ABL}"></span> zeigen, dass das zweite Kathetenquadrat <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CBLF}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>B</mi> <mi>L</mi> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CBLF}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbcad726aeac6fbcb229205cedfa0bf0e017657f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.854ex; height:2.176ex;" alt="{\displaystyle CBLF}"></span> flächengleich mit dem Rechteck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle NHBJ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>H</mi> <mi>B</mi> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle NHBJ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68840a73a1c7afd5e965c32c826bc8305c3af6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.363ex; height:2.176ex;" alt="{\displaystyle NHBJ}"></span> ist. Damit hat man den Kathetensatz bewiesen. Der Satz des Pythagoras folgt dann sofort, da das Hypotenusenquadrat sich aus den Rechtecken <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle MNJA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>N</mi> <mi>J</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle MNJA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aca0b565bd2d8a385178c5fdeb12554efe6ae82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.72ex; height:2.176ex;" alt="{\displaystyle MNJA}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle NHBJ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>H</mi> <mi>B</mi> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle NHBJ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68840a73a1c7afd5e965c32c826bc8305c3af6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.363ex; height:2.176ex;" alt="{\displaystyle NHBJ}"></span> zusammensetzt. </p><p>Es gibt noch einen weiteren Beweis des Satzes von Pythagoras in den Elementen in Buch 6, Proposition 31 (siehe unten).<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Er benutzt statt Quadraten zueinander ähnliche Rechtecke auf den drei Seiten, ist formal einfacher als der Beweis im ersten Buch durch Verwendung der Theorie der Proportionen, die erst von <a href="/wiki/Eudoxos_von_Knidos" title="Eudoxos von Knidos">Eudoxos von Knidos</a> streng begründet wurde. Pythagoras kann beide Beweise aller Wahrscheinlichkeit nach nicht gekannt haben, da sie einem fortgeschritteneren Verständnis der Geometrie entsprechen<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Proklos" title="Proklos">Proklos</a> schrieb die Beweise in seinem Kommentar zu den Elementen explizit Euklid zu und drückte seine Bewunderung für beide Beweise aus. </p><p>Euklid gibt in der letzten Proposition 48 von Buch 1 zusätzlich eine Umkehrung des Satzes von Pythagoras, indem er zeigt, dass aus der Gleichheit der Fläche des Hypotenusenquadrats mit der der Summe der Kathetenquadrate folgt, dass einer der Winkel des Dreiecks ein rechter Winkel ist.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>Der erste Beweis (I, 47) wird wegen der Form der Hilfslinien in der zugehörigen Figur im englischen Sprachraum gelegentlich auch <i>windmill</i> (Windmühle) genannt,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Arthur_Schopenhauer" title="Arthur Schopenhauer">Arthur Schopenhauer</a> nahm den ersten Beweis von Euklid als Beispiel für dessen in seiner Sicht willkürliche und wenig anschauliche Vorgehensweise (<i>„Oft werden, wie im Pythagoreischen Lehrsatze, Linien gezogen, ohne dass man weiss warum: hinterher zeigt sich,dass es Schlingen waren, die sich unerwartet zuziehen“</i>, und so die Zustimmung Lernenden erzwingen, <i>„der nun verwundert zugeben muß , was ihm seinem inneren Zusammenhang nach völlig unbegreiflich bleibt“</i>)<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> verteidigte den Beweis dagegen in einer Erwiderung auf Schopenhauers Kritik als besonders anschaulich und demonstrierte dies in seiner <i>Elementarmathematik vom höheren Standpunkt</i>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_durch_Addition_abgeleiteter_Flächeninhalte"><span id="Beweis_durch_Addition_abgeleiteter_Fl.C3.A4cheninhalte"></span>Beweis durch Addition abgeleiteter Flächeninhalte</h3></div> <div style="float:right;"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagoras-2a.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Pythagoras-2a.gif/247px-Pythagoras-2a.gif" decoding="async" width="247" height="247" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Pythagoras-2a.gif/371px-Pythagoras-2a.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Pythagoras-2a.gif/494px-Pythagoras-2a.gif 2x" data-file-width="590" data-file-height="590" /></a><figcaption>Bild 2: Addition abgeleiteter Flächeninhalte aus dem <i>Zhoubi suanjing</i></figcaption></figure></div><div style="float:right;"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Satz_des_Pythagoras,_Zhoubi_suanjing.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg/240px-01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg.png" decoding="async" width="240" height="247" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg/360px-01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg/480px-01_Satz_des_Pythagoras%2C_Zhoubi_suanjing.svg.png 2x" data-file-width="290" data-file-height="298" /></a><figcaption>Bild 1: Beweis durch Addition abgeleiteter Flächeninhalte aus dem <i>Zhoubi suanjing</i></figcaption></figure></div> <p>Der in den beiden nebenstehenden Bildern auf unterschiedlicher Weise verdeutlichte <i>Beweis durch Addition abgeleiteter Flächeninhalte</i>,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> stammt aus dem chinesischen Werk <a href="/wiki/Zhoubi_suanjing" title="Zhoubi suanjing">Zhoubi suanjing</a>, übersetzt <i>Klassische Arithmetik des <a href="/wiki/Gnomon" title="Gnomon">Gnomon</a> und die Kreisbahnen des Himmels</i> (es wird heute angenommen, das Werk „stamme frühestens aus dem späten 4. Jahrhundert v. Chr.“).<sup id="cite_ref-Schreiber_18-0" class="reference"><a href="#cite_note-Schreiber-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Darin kommt das allgemein bekannte rechtwinklige Dreieck mit den Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3,\;4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3,\;4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d554b649e097fba0205ab0ad7e456c5cb527867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.004ex; height:2.509ex;" alt="{\displaystyle 3,\;4}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> zur Anwendung. </p><p>Nach dem Zeichnen eines Quadrats (Bild 1) und dessen Unterteilung in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee716ec61382a6b795092c0edd859d12e64cbba8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 7}"></span> x <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 7=49}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>7</mn> <mo>=</mo> <mn>49</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 7=49}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb5641d2325dc09488629b0b323ab814f2675185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.586ex; height:2.176ex;" alt="{\displaystyle 7=49}"></span> Einheitsquadrate, wird das rechtwinklige Ausgangsdreieck (rot) mit den Katheten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a0be4b8203e824561fa22ea831a2d86f2f028c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;" alt="{\displaystyle a=3}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d63e1be76f1c81e4d7d9b4355ba9a715dbd4ca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.258ex; height:2.176ex;" alt="{\displaystyle b=4}"></span> und mit der sich ergebenden Hypotenuse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> anhand des Gitters eingetragen. Darüber hinaus werden drei, dem Ausgangsdreieck gleichende Dreiecke so platziert, dass die Hypotenusen ein inneres Quadrat ergeben und demzufolge ein zentrales Einheitsquadrat (gelb) mit dem Flächeninhalt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =1^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =1^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd52ab8840ca36f8d572beba55132a8d52f65a9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.67ex; height:2.676ex;" alt="{\displaystyle =1^{2}}"></span> umgrenzen. Ein auf das innere Quadrat eingezeichnetes Gitter, das dem äußeren gleicht und mit den Hypotenusen einen <a href="/wiki/Rechter_Winkel" title="Rechter Winkel">rechten Winkel</a> einschließt, liefert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> x <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5=25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>=</mo> <mn>25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5=25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26bd63dad70cfe9c2e2b784773cc85c67ec891cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.586ex; height:2.176ex;" alt="{\displaystyle 5=25}"></span> Einheitsquadrate. </p><p>Der Flächeninhalt des inneren Quadrats mit den vier Dreiecken und dem zentralen Einheitsquadrat entspricht <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\cdot {\tfrac {3\cdot 4}{2}}+1=25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\cdot {\tfrac {3\cdot 4}{2}}+1=25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684109c3c8392c2eaf57ba9dd18a9aacc878212a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.205ex; height:3.676ex;" alt="{\displaystyle 4\cdot {\tfrac {3\cdot 4}{2}}+1=25}"></span> Einheitsquadraten. Die gesamte Anzahl der (gelben) Einheitsquadrate ergibt sich aus den <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 49}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>49</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 49}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e854adb3d39762b45aea9e0b4df5188127c7a74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 49}"></span> Einheitsquadraten des äußeren Quadrats abzüglich der vier Dreiecksflächen des inneren Quadrats; dies bringt ebenfalls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 49-4\cdot {\tfrac {3\cdot 4}{2}}=25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>49</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 49-4\cdot {\tfrac {3\cdot 4}{2}}=25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/621bba71c6c4875b43b6c78455d58315caa3bd96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.368ex; height:3.676ex;" alt="{\displaystyle 49-4\cdot {\tfrac {3\cdot 4}{2}}=25}"></span> Einheitsquadrate. </p><p>Die Seitenlänge des inneren Quadrats ist die Hypotenuse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5e8f9eb465084d3a00a24026b80652b74ef58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.654ex; height:2.009ex;" alt="{\displaystyle c,}"></span> somit gilt als allgemeine Formel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=4\cdot {\frac {a\cdot b}{2}}+\left(a-b\right)^{2}=a^{2}+b^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=4\cdot {\frac {a\cdot b}{2}}+\left(a-b\right)^{2}=a^{2}+b^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5050fff271cb115557380ca049826334520356" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.437ex; height:5.343ex;" alt="{\displaystyle c^{2}=4\cdot {\frac {a\cdot b}{2}}+\left(a-b\right)^{2}=a^{2}+b^{2}.}"></span><sup id="cite_ref-Schreiber_18-1" class="reference"><a href="#cite_note-Schreiber-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Werte für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> eingesetzt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=4\cdot {\frac {3\cdot 4}{2}}+\left(3-4\right)^{2}=3^{2}+4^{2}=25\;[\mathrm {FE} ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>25</mn> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=4\cdot {\frac {3\cdot 4}{2}}+\left(3-4\right)^{2}=3^{2}+4^{2}=25\;[\mathrm {FE} ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc3b4fe1fbe238c15b4cd02c4887e8943f1bb5c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.546ex; height:5.176ex;" alt="{\displaystyle c^{2}=4\cdot {\frac {3\cdot 4}{2}}+\left(3-4\right)^{2}=3^{2}+4^{2}=25\;[\mathrm {FE} ]}"></span>&#160;(Flächeneinheiten)&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=5\;[\mathrm {LE} ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>5</mn> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=5\;[\mathrm {LE} ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbfc76c882ce3c7564f3fffd877584e84d4fc90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.242ex; height:2.843ex;" alt="{\displaystyle c=5\;[\mathrm {LE} ]}"></span>&#160;(Längeneinheiten)</dd></dl> <p>Die Animation (Bild 2) verdeutlicht dies auf vergleichbarer Art und Weise. </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_durch_Ergänzung"><span id="Beweis_durch_Erg.C3.A4nzung"></span>Beweis durch Ergänzung</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagoraserg%C3%A4nzung.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Pythagoraserg%C3%A4nzung.svg/220px-Pythagoraserg%C3%A4nzung.svg.png" decoding="async" width="220" height="103" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Pythagoraserg%C3%A4nzung.svg/330px-Pythagoraserg%C3%A4nzung.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Pythagoraserg%C3%A4nzung.svg/440px-Pythagoraserg%C3%A4nzung.svg.png 2x" data-file-width="750" data-file-height="350" /></a><figcaption>Positionierung von vier Dreiecken in einem Quadrat mit der Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span></figcaption></figure> <p>In ein <a href="/wiki/Quadrat" title="Quadrat">Quadrat</a> mit der Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span> werden vier <a href="/wiki/Kongruenz_(Geometrie)" title="Kongruenz (Geometrie)">kongruente</a> rechtwinklige Dreiecke mit den Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> (Hypotenuse) eingelegt. Dies kann auf zwei Arten geschehen, wie im Diagramm dargestellt ist. </p><p>Die Flächen des linken und des rechten Quadrates sind gleich (Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span>). Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>, das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und einem mit Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>. Die Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f3386a00382ce857fb0b3b04b9fa2bbe5cfae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.676ex;" alt="{\displaystyle c^{2}}"></span> entspricht also der Summe der Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f564e5dc0b6e68af32ca8614e972f5b36e944a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.284ex; height:2.676ex;" alt="{\displaystyle a^{2}}"></span> und der Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acf98b04bfc723606ebb4a7942fa3ab94becd2ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.052ex; height:2.676ex;" alt="{\displaystyle b^{2}}"></span>, also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span>.</dd></dl> <p>Eine algebraische Lösung ergibt sich aus dem linken Bild des Diagramms. Das große Quadrat hat die Seitenlänge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span> und somit die Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ceb5efe73b6089f83653aacb8db72a3dcc0d49b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.931ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}}"></span>. Zieht man von dieser Fläche die vier Dreiecke ab, die jeweils eine Fläche von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {ab}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {ab}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24a8c780e6b10449a41b7800139bf2e24c03e879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.411ex; height:3.676ex;" alt="{\displaystyle {\tfrac {ab}{2}}}"></span> (also insgesamt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbab03eaf02d30993294767bd40ec3bad6c524b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.39ex; height:2.176ex;" alt="{\displaystyle 2ab}"></span>) haben, so bleibt die Fläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f3386a00382ce857fb0b3b04b9fa2bbe5cfae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.676ex;" alt="{\displaystyle c^{2}}"></span> übrig. Es ist also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}=2ab+c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}=2ab+c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b3184024224b85b59ec4ab6fce98d37f3085dd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.321ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}=2ab+c^{2}}"></span>.</dd></dl> <p>Auflösen der Klammer liefert </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+2ab+b^{2}=2ab+c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+2ab+b^{2}=2ab+c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f079c218c294262526c5b3a6a2f85a133c61c7cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.796ex; height:2.843ex;" alt="{\displaystyle a^{2}+2ab+b^{2}=2ab+c^{2}}"></span>.</dd></dl> <p>Zieht man nun auf beiden Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbab03eaf02d30993294767bd40ec3bad6c524b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.39ex; height:2.176ex;" alt="{\displaystyle 2ab}"></span> ab, bleibt der Satz des Pythagoras übrig. </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_durch_Scherung">Beweis durch Scherung</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif/220px-Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif" decoding="async" width="220" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif/330px-Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif/440px-Visual_proof_of_the_Pythagorean_theorem_by_area-preserving_shearing.gif 2x" data-file-width="600" data-file-height="708" /></a><figcaption>Scherung der Kathetenquadrate</figcaption></figure> <p>Eine Möglichkeit ist die <a href="/wiki/Scherung_(Geometrie)" title="Scherung (Geometrie)">Scherung</a> der Kathetenquadrate in das Hypotenusenquadrat. Unter Scherung eines Rechtecks versteht man in der Geometrie die Überführung des Rechtecks in ein Parallelogramm unter Beibehaltung der Höhe. Bei der Scherung ist das sich ergebende Parallelogramm zu dem Ausgangsrechteck flächengleich. Über zwei Scherungen können die beiden kleineren Quadrate dann in zwei Rechtecke umgewandelt werden, die zusammen genau in das große Quadrat passen. </p><p>Beim exakten Beweis muss dann noch über die <a href="/wiki/Kongruenz_(Geometrie)" title="Kongruenz (Geometrie)">Kongruenzsätze</a> im Dreieck nachgewiesen werden, dass die kleinere Seite der sich ergebenden Rechtecke jeweils dem betreffenden Hypotenusenabschnitt entspricht. Wie üblich wurden in der Animation die Höhe mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> und die Hypotenusenabschnitte mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953a97b9fe7d257c9666fb3cf6bf75380295e2cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:3.362ex; height:2.009ex;" alt="{\displaystyle p,q}"></span> bezeichnet. </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_durch_Parkettierung">Beweis durch Parkettierung</h3></div> <div style="float:right;"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagorasparkett_Pythagorasfigur.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Pythagorasparkett_Pythagorasfigur.svg/180px-Pythagorasparkett_Pythagorasfigur.svg.png" decoding="async" width="180" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Pythagorasparkett_Pythagorasfigur.svg/270px-Pythagorasparkett_Pythagorasfigur.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Pythagorasparkett_Pythagorasfigur.svg/360px-Pythagorasparkett_Pythagorasfigur.svg.png 2x" data-file-width="210" data-file-height="211" /></a><figcaption><i> Figur 2</i></figcaption></figure></div> <div style="float:right;"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagorasparkett.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Pythagorasparkett.svg/235px-Pythagorasparkett.svg.png" decoding="async" width="235" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Pythagorasparkett.svg/353px-Pythagorasparkett.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Pythagorasparkett.svg/470px-Pythagorasparkett.svg.png 2x" data-file-width="380" data-file-height="295" /></a><figcaption><i>Figur 1</i></figcaption></figure></div> <p>Die gesamte Ebene lässt sich mit zwei verschiedenen Sorten von jeweils flächengleichen Quadraten <a href="/wiki/Parkettierung" title="Parkettierung">parkettieren</a>. Jedes der grünen Quadrate habe den Flächeninhalt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f564e5dc0b6e68af32ca8614e972f5b36e944a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.284ex; height:2.676ex;" alt="{\displaystyle a^{2}}"></span>, jedes der gelben Quadrate den Flächeninhalt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acf98b04bfc723606ebb4a7942fa3ab94becd2ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.052ex; height:2.676ex;" alt="{\displaystyle b^{2}}"></span> und jedes der rot umrandeten Quadrate den Flächeninhalt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f3386a00382ce857fb0b3b04b9fa2bbe5cfae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.676ex;" alt="{\displaystyle c^{2}}"></span>. </p><p>Da einerseits die grünen und die gelben Quadrate zusammen und andererseits die rot umrandeten Quadrate jeweils die gesamte Ebene parkettieren, muss <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span> gelten.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Figur 1</i> zeigt die Parkettierung mit Kathetenquadraten (grün und gelb) bzw. mit Hypotenusenquadraten (rot umrandet). In <i>Figur 2</i> ist in einem Parkettierungsausschnitt die Pythagorasfigur eingezeichnet. Das an der Kathete gespiegelte grüne Kathetenquadrat ist gestrichelt als Teil der Parkettierung eingezeichnet. </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_mit_Ähnlichkeiten"><span id="Beweis_mit_.C3.84hnlichkeiten"></span>Beweis mit Ähnlichkeiten</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagoras_through_similarity2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Pythagoras_through_similarity2.svg/220px-Pythagoras_through_similarity2.svg.png" decoding="async" width="220" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Pythagoras_through_similarity2.svg/330px-Pythagoras_through_similarity2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Pythagoras_through_similarity2.svg/440px-Pythagoras_through_similarity2.svg.png 2x" data-file-width="431" data-file-height="454" /></a><figcaption>Ähnlichkeit der Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BCD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BCD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89e9a67408451aa307e2ef7aa7eb1326750357da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.455ex; height:2.176ex;" alt="{\displaystyle BCD}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ADC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>D</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ADC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf61c97343879671242ed828f9cc95f98bed097" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.434ex; height:2.176ex;" alt="{\displaystyle ADC}"></span></figcaption></figure> <p>Es ist nicht unbedingt notwendig, zum Beweis des Satzes von Pythagoras (explizit) Flächen heranzuziehen. Geometrisch eleganter ist es, Ähnlichkeiten zu verwenden. Sobald man sich durch Berechnung der Winkelsummen im Dreieck überzeugt hat, dass die beiden Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> im unteren Bild gleich groß sein müssen, sieht man, dass die Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BCD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BCD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89e9a67408451aa307e2ef7aa7eb1326750357da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.455ex; height:2.176ex;" alt="{\displaystyle BCD}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ADC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>D</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ADC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf61c97343879671242ed828f9cc95f98bed097" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.434ex; height:2.176ex;" alt="{\displaystyle ADC}"></span> ähnlich sind. Der Beweis des Satzes von Pythagoras ergibt sich dann wie im Bild gezeigt, dabei beweist man auch den <a href="/wiki/Kathetensatz_des_Euklid" class="mw-redirect" title="Kathetensatz des Euklid">Kathetensatz</a> und die Addition beider Varianten des Kathetensatzes ergibt den Satz des Pythagoras selbst. Diese Herleitung lässt sich anschaulich mit der Ähnlichkeit der Quadrate und der Ähnlichkeit deren angrenzenden Dreiecke erklären. Da deren Fläche proportional zur Fläche der jeweils anliegenden Quadrate ist, repräsentiert die Gleichung </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CBD+ACD=ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>B</mi> <mi>D</mi> <mo>+</mo> <mi>A</mi> <mi>C</mi> <mi>D</mi> <mo>=</mo> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CBD+ACD=ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee76a6be2489086e39541f148effe427b71ed2ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:22.101ex; height:2.343ex;" alt="{\displaystyle CBD+ACD=ABC}"></span></dd></dl> <p>den Satz: Die Flächen der Dreiecke CBD, ACD und ABC sind wegen Ähnlichkeit proportional zu den Quadraten über den Kanten und bestimmen sich daher zu <i>q</i>·<i>a</i><sup>2</sup>, <i>q</i>·<i>b</i><sup>2</sup> und <i>q</i>·<i>c</i><sup>2</sup> mit einem unbekannten Faktor <i>q</i> ungleich Null. Das sich die ersten beiden zum dritten, vollen Dreieck ergänzen, gilt </p> <dl><dd><i>q</i>·<i>a</i><sup>2</sup> + <i>q</i>·<i>b</i><sup>2</sup> = <i>q</i>·<i>c</i><sup>2</sup>.</dd></dl> <p>Da <i>q</i> von Null verschieden ist, können wir diese Gleichung auf beiden Seiten durch <i>q</i> teilen und erhalten die gewünschte Beziehung. Es ist also gar nicht nötig, <i>q</i> zu berechnen, was die Beweisführung stark vereinfacht. Diesen bis dahin offenbar unbekannten Beweis soll <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> im Alter von zwölf Jahren gefunden haben.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Ebenso kann in der Figur rechts eine Parallele zu AB von der Höhe h auf die Seite a gezogen werden, was weitere ähnliche Dreiecke und unendlich viele Beweismöglichkeiten liefert.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Beweis_der_Umkehrung">Beweis der Umkehrung</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01-Pythagoras-Beweis_d._Umkehrung.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/01-Pythagoras-Beweis_d._Umkehrung.svg/290px-01-Pythagoras-Beweis_d._Umkehrung.svg.png" decoding="async" width="290" height="175" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/01-Pythagoras-Beweis_d._Umkehrung.svg/435px-01-Pythagoras-Beweis_d._Umkehrung.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/01-Pythagoras-Beweis_d._Umkehrung.svg/580px-01-Pythagoras-Beweis_d._Umkehrung.svg.png 2x" data-file-width="362" data-file-height="219" /></a><figcaption>Beweis der Umkehrung<br /><b>Links:</b> Gewähltes Ausgangsdreieck erfüllt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bace667e8cfea3ef573af86a1f3e72984b10755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}=a^{2}+b^{2}}"></span><br /><b>Rechts:</b> Rechtwinkliges Dreieck, dessen Längen der Katheten entsprechen den Seitenlängen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> des Ausgangsdreiecks</figcaption></figure> <p>Die Umkehrung des Satzes lässt sich auf verschiedene Arten beweisen, ein besonders einfacher Beweis ergibt sich jedoch, wenn man den Satz des Pythagoras selbst zum Beweis seiner Umkehrung heranzieht. </p><p>Zu einem beliebigen Dreieck, dessen Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span> die Bedingung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bace667e8cfea3ef573af86a1f3e72984b10755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}=a^{2}+b^{2}}"></span> erfüllen, konstruiert man ein zweites Dreieck. Dieses besitzt einen rechten Winkel, dessen Schenkellängen den Seitenlängen von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> entsprechen. Nach dem Satz des Pythagoras beträgt nun die Länge der Hypotenuse in diesem zweiten Dreieck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/460372bc2a2886a1a99b9280394eb32ec5c4fea4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.5ex; height:3.509ex;" alt="{\displaystyle {\sqrt {a^{2}+b^{2}}}}"></span> und entspricht damit der Länge der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> des Ausgangsdreiecks. Somit besitzen die beiden Dreiecke die gleichen Seitenlängen und sind aufgrund des ersten <a href="/wiki/Kongruenzsatz" title="Kongruenzsatz">Kongruenzsatzes</a> (SSS) kongruent. Damit sind dann aber auch ihre Winkel gleich, das heißt, auch das Ausgangsdreieck besitzt einen rechten Winkel, der der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> gegenüberliegt. </p> <div class="mw-heading mw-heading2"><h2 id="Verallgemeinerungen_und_Abgrenzung">Verallgemeinerungen und Abgrenzung</h2></div> <div class="mw-heading mw-heading3"><h3 id="Kosinussatz">Kosinussatz</h3></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→&#160;</span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Kosinussatz" title="Kosinussatz">Kosinussatz</a></i></div> <p>Der <a href="/wiki/Kosinussatz" title="Kosinussatz">Kosinussatz</a> ist eine Verallgemeinerung des Satzes von Pythagoras für beliebige Dreiecke: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cdot \cos \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cdot \cos \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bab786d75dd46fad1de51953d088b06b0deb06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.006ex; height:3.176ex;" alt="{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cdot \cos \gamma }"></span>,</dd></dl> <p>wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> der Winkel zwischen den Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> ist. Der Kosinussatz unterscheidet sich also durch den <a href="/wiki/Term" title="Term">Term</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2ab\cdot \cos \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2ab\cdot \cos \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73426b0d1c8ef42011a787040b7f46b09b0df260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.638ex; height:2.676ex;" alt="{\displaystyle -2ab\cdot \cos \gamma }"></span> vom Satz des Pythagoras. Da der <a href="/wiki/Kosinus" class="mw-redirect" title="Kosinus">Kosinus</a> von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c326d317eddef3ad3e6625e018a708e290a039f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.343ex;" alt="{\displaystyle 90^{\circ }}"></span> gleich null ist, fällt dieser Term bei einem rechten Winkel weg, und es ergibt sich als Spezialfall der Satz des Pythagoras. Gilt umgekehrt in einem Dreieck die Beziehung </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bace667e8cfea3ef573af86a1f3e72984b10755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}=a^{2}+b^{2}}"></span>,</dd></dl> <p>so muss <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2ab\cdot \cos \gamma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2ab\cdot \cos \gamma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b58576b59acd7449ec08f53bc757dbf4d9e7cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.899ex; height:2.676ex;" alt="{\displaystyle -2ab\cdot \cos \gamma =0}"></span> sein, woraus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ed45556d3a8174ad5d5a4b3f9e0451024aba9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.74ex; height:2.843ex;" alt="{\displaystyle \gamma =90^{\circ }}"></span> folgt, und daher ist das Dreieck rechtwinklig. Für <a href="/wiki/Spitzwinkliges_Dreieck" title="Spitzwinkliges Dreieck">spitzwinklige Dreiecke</a> gilt entsprechend </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}&lt;a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}&lt;a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2671fdd852b08b71073ae13a845feffe022a9da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}&lt;a^{2}+b^{2}}"></span></dd></dl> <p>und für <a href="/wiki/Stumpfwinkliges_Dreieck" title="Stumpfwinkliges Dreieck">stumpfwinklige Dreiecke</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}&gt;a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&gt;</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}&gt;a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f30e552d3b51bb22ea01310fd5e5480ddf64832e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}&gt;a^{2}+b^{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Verallgemeinerung_von_Thabit_ibn_Qurra">Verallgemeinerung von Thabit ibn Qurra</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Thabit_ibn_quorra1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Thabit_ibn_quorra1.svg/330px-Thabit_ibn_quorra1.svg.png" decoding="async" width="330" height="389" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Thabit_ibn_quorra1.svg/495px-Thabit_ibn_quorra1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Thabit_ibn_quorra1.svg/660px-Thabit_ibn_quorra1.svg.png 2x" data-file-width="856" data-file-height="1009" /></a><figcaption>Verallgemeinerung von Thabit ibn Qurra:<br />Gleichfarbige Rechtecke sind flächengleich,<br />gleichfarbige Winkel sind gleich groß,<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\triangle ABC\sim \triangle AEC\sim \triangle FBC\\\Rightarrow \,&amp;a^{2}=rc,\,b^{2}=sc\\\Rightarrow \,&amp;a^{2}+b^{2}=c(r+s)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>E</mi> <mi>C</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>F</mi> <mi>B</mi> <mi>C</mi> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>r</mi> <mi>c</mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>s</mi> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\triangle ABC\sim \triangle AEC\sim \triangle FBC\\\Rightarrow \,&amp;a^{2}=rc,\,b^{2}=sc\\\Rightarrow \,&amp;a^{2}+b^{2}=c(r+s)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f779fd40154f152b9b2dc84f5c513fc63452fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:31.687ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}&amp;\triangle ABC\sim \triangle AEC\sim \triangle FBC\\\Rightarrow \,&amp;a^{2}=rc,\,b^{2}=sc\\\Rightarrow \,&amp;a^{2}+b^{2}=c(r+s)\end{aligned}}}"></span></figcaption></figure> <p>Eine auf <a href="/wiki/Thabit_ibn_Qurra" title="Thabit ibn Qurra">Thabit ibn Qurra</a> zurückgehende Verallgemeinerung liefert zu den Quadraten über zwei Seiten eines beliebigen Dreiecks ein Rechteck über der dritten Seite, dessen Fläche der Summe der beiden Quadratflächen entspricht.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>Zu einem beliebigen Dreieck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/821677f03b63c3c2e448dffc2ae9c8eea31d9d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.339ex; height:2.176ex;" alt="{\displaystyle \triangle ABC}"></span> mit Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"></span>, Winkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> und Höhe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9669379a3a9b8c55e7876c2371ccbc6e21b654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.691ex; height:2.176ex;" alt="{\displaystyle CD}"></span> konstruiert man ein gleichschenkliges Dreieck <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CFE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>F</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CFE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26602ce0a9694248adaf2e0514751d5e5a223e4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.283ex; height:2.176ex;" alt="{\displaystyle CFE}"></span> dessen Basis auf der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> liegt und das <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9669379a3a9b8c55e7876c2371ccbc6e21b654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.691ex; height:2.176ex;" alt="{\displaystyle CD}"></span> als Höhe besitzt. Darüber hinaus besitzen seine beiden Basiswinkel die gleiche Größe wie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>, sofern <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> ein spitzer Winkel ist. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> hingegen ein stumpfer Winkel, so sollen die Basiswinkel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 180^{\circ }-\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 180^{\circ }-\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1583ea4b39c36ea3989ea3f47b19802f102fe183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.644ex; height:2.843ex;" alt="{\displaystyle 180^{\circ }-\gamma }"></span> betragen. Ferner wird der Eckpunkt des gleichschenkligen Dreiecks, der auf derselben Seite von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9669379a3a9b8c55e7876c2371ccbc6e21b654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.691ex; height:2.176ex;" alt="{\displaystyle CD}"></span> wie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> liegt, mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> bezeichnet und der andere Eckpunkt auf derselben Seite wie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. Dies gilt jedoch nur im Falle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma &lt;90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>&lt;</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma &lt;90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68027f7276dee07d3b1b53a24b5db02fbad42bba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.74ex; height:2.843ex;" alt="{\displaystyle \gamma &lt;90^{\circ }}"></span>, für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma &gt;90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>&gt;</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma &gt;90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2043be16ce90da1c3fffb46ab9c0509a8827f3a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.74ex; height:2.843ex;" alt="{\displaystyle \gamma &gt;90^{\circ }}"></span> vertauscht man stattdessen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. Im Fall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ed45556d3a8174ad5d5a4b3f9e0451024aba9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.74ex; height:2.843ex;" alt="{\displaystyle \gamma =90^{\circ }}"></span> fällt das gleichschenklige Dreieck mit der Höhe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9669379a3a9b8c55e7876c2371ccbc6e21b654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.691ex; height:2.176ex;" alt="{\displaystyle CD}"></span> zusammen und die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> dementsprechend mit dem Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>. Definiert man nun <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=|AE|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=|AE|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60859e8cc3aab344aea6c47c42f72b58fc692212" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.96ex; height:2.843ex;" alt="{\displaystyle r=|AE|}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=|BF|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=|BF|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5d43278e43b3e282443c189dc66d910ff7b0309" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.987ex; height:2.843ex;" alt="{\displaystyle s=|BF|}"></span>, so gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(r+s)=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(r+s)=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce7402f683be38e1ae662a4f3d9e9b503b01fde2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.07ex; height:3.176ex;" alt="{\displaystyle c(r+s)=a^{2}+b^{2}}"></span></dd></dl> <p>Für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =90^{\circ }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msup> <mn>90</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =90^{\circ }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ed45556d3a8174ad5d5a4b3f9e0451024aba9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.74ex; height:2.843ex;" alt="{\displaystyle \gamma =90^{\circ }}"></span> gilt dabei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=r+s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=r+s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c8915ce3e5f983a454916a195409ae6fca0afc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.085ex; height:2.176ex;" alt="{\displaystyle c=r+s}"></span> und die obige Gleichung liefert den Satz des Pythagoras. </p><p>Die Aussage lässt sich analog zum Satz des Pythagoras direkt über ähnliche Dreiecke beweisen, wobei hier die Dreiecke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/821677f03b63c3c2e448dffc2ae9c8eea31d9d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.339ex; height:2.176ex;" alt="{\displaystyle \triangle ABC}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle AEC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>E</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle AEC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a5891e24d2dd7d03279ad208b83bb2235ac55bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.351ex; height:2.176ex;" alt="{\displaystyle \triangle AEC}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle FBC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>F</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle FBC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efeb9e655db756c9c0587832efc60c708cf473ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.337ex; height:2.176ex;" alt="{\displaystyle \triangle FBC}"></span> ähnlich sind.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>Aufgrund von </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2ab\cos(\gamma )=a^{2}+b^{2}-c^{2}=c(r+s)-c^{2}=c(r+s-c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2ab\cos(\gamma )=a^{2}+b^{2}-c^{2}=c(r+s)-c^{2}=c(r+s-c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e35bfa4736c5560992bf4eae909c0edf01aa66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.673ex; height:3.176ex;" alt="{\displaystyle 2ab\cos(\gamma )=a^{2}+b^{2}-c^{2}=c(r+s)-c^{2}=c(r+s-c)}"></span></dd></dl> <p>liefert Qurras Verallgemeinerung auch eine geometrische Darstellung des Korrekturterms im Kosinussatz als ein Rechteck, das zu dem Quadrat über der Seite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> hinzugefügt oder von ihm abgetrennt wird, um eine Fläche zu erhalten, die der Summe der Flächen der Quadrate über den Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> entspricht. </p> <div class="mw-heading mw-heading3"><h3 id="Flächensatz_von_Pappus"><span id="Fl.C3.A4chensatz_von_Pappus"></span>Flächensatz von Pappus</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Pappus_area_theorem_proof2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Pappus_area_theorem_proof2.svg/240px-Pappus_area_theorem_proof2.svg.png" decoding="async" width="240" height="271" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Pappus_area_theorem_proof2.svg/360px-Pappus_area_theorem_proof2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Pappus_area_theorem_proof2.svg/480px-Pappus_area_theorem_proof2.svg.png 2x" data-file-width="346" data-file-height="391" /></a><figcaption>Dunkelgraue Fläche = hellgraue Fläche<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |ABDE|+|ACFG|=|BCLM|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>B</mi> <mi>D</mi> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mi>C</mi> <mi>F</mi> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mi>C</mi> <mi>L</mi> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |ABDE|+|ACFG|=|BCLM|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f50b46b71a0c76786e9ea291294f7ec6b23027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.659ex; height:2.843ex;" alt="{\displaystyle |ABDE|+|ACFG|=|BCLM|}"></span></figcaption></figure> <p>Eine weitere Verallgemeinerung auf beliebige Dreiecke liefert die <a href="/wiki/Fl%C3%A4chenformel_von_Pappus" title="Flächenformel von Pappus">Flächenformel von Pappus</a>. Hier ergibt sich aus zwei beliebigen Parallelogrammen über zwei Seiten eines beliebigen Dreiecks ein eindeutig bestimmtes Parallelogramm über der dritten Seite des Dreiecks, dessen Fläche der Summe der Flächen der beiden Ausgangsparallelogramme entspricht. Sind die beiden Ausgangsparallelogramme Quadrate, so erhält man im Falle eines rechtwinkligen Dreiecks ein Quadrat über der dritten Seite und damit den Satz des Pythagoras. </p><p>Das Parallelogramm über der dritten Seiten erhält man, indem man die beiden Seiten der Ausgangsparallelogramme, die parallel zu den Dreiecksseiten sind, verlängert und deren Schnittpunkt mit dem Eckpunkt des Dreiecks, der auch auf beiden Parallelogrammen liegt, verbindet. Diese Verbindungsstrecke liefert das zweite Seitenpaar des Parallelogramms über der dritten Seite (siehe Zeichnung).<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ähnliche_Figuren,_errichtet_über_den_Seiten_des_rechtwinkligen_Dreiecks"><span id=".C3.84hnliche_Figuren.2C_errichtet_.C3.BCber_den_Seiten_des_rechtwinkligen_Dreiecks"></span>Ähnliche Figuren, errichtet über den Seiten des rechtwinkligen Dreiecks</h3></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Pythagoras-similar_triangles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/01_Pythagoras-similar_triangles.svg/205px-01_Pythagoras-similar_triangles.svg.png" decoding="async" width="205" height="193" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/01_Pythagoras-similar_triangles.svg/308px-01_Pythagoras-similar_triangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/01_Pythagoras-similar_triangles.svg/410px-01_Pythagoras-similar_triangles.svg.png 2x" data-file-width="234" data-file-height="220" /></a><figcaption>Bild 1: Flächen von ähnlichen Dreiecken<br />Es gilt: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B=C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B=C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a90a14f5ad55c95d2a36b7c16ca319c73f9bd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.212ex; height:2.343ex;" alt="{\displaystyle A+B=C}"></span></figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Pythagoras-regular_pentagons.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/01_Pythagoras-regular_pentagons.svg/370px-01_Pythagoras-regular_pentagons.svg.png" decoding="async" width="370" height="480" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/01_Pythagoras-regular_pentagons.svg/555px-01_Pythagoras-regular_pentagons.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/01_Pythagoras-regular_pentagons.svg/740px-01_Pythagoras-regular_pentagons.svg.png 2x" data-file-width="429" data-file-height="556" /></a><figcaption>Bild 2: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,\;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,\;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed23246542b8cd3fec05ea404cd81034fcbe78a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.186ex; height:2.509ex;" alt="{\displaystyle A,\;B}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> bezeichnen die Flächen der Fünfecke, ähnlichen Dreiecke und Kreise<br />Es gilt jeweils: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B=C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B=C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a90a14f5ad55c95d2a36b7c16ca319c73f9bd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.212ex; height:2.343ex;" alt="{\displaystyle A+B=C}"></span></figcaption></figure> <p>Eine Verallgemeinerung des Satzes des Pythagoras mithilfe von drei zueinander <a href="/wiki/%C3%84hnlichkeit_(Geometrie)" title="Ähnlichkeit (Geometrie)">ähnlichen Figuren</a> über den Dreieckseiten (neben den bereits bekannten <a href="/wiki/Quadrat" title="Quadrat">Quadraten</a>) war bereits <a href="/wiki/Hippokrates_von_Chios" title="Hippokrates von Chios">Hippokrates von Chios</a> im 5.&#160;Jahrhundert v.&#160;Chr. bekannt<sup id="cite_ref-Thomas_Heath_27-0" class="reference"><a href="#cite_note-Thomas_Heath-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> und wurde, wahrscheinlich zweihundert Jahre später, von <a href="/wiki/Euklid" title="Euklid">Euklid</a> in seinem Werk <a href="/wiki/Elemente_(Euklid)" title="Elemente (Euklid)">Elemente</a> aufgenommen: </p> <div class="Vorlage_Zitat" style="margin:1em 40px;"> <div style="margin:1em 0;"><blockquote style="margin:0;"> <p>„Im rechtwinkligen Dreieck ist die gradlinige Figur über der Hypotenuse gleich den ähnlichen und ähnlich errichteten Figuren über den Katheten zusammen.“ </p> </blockquote> </div><div class="cite" style="margin:-1em 0 1em 1em;">– <cite style="font-style:normal">Euklid: <i>Elemente.</i> VI.31.</cite><sup id="cite_ref-Euklid_29-0" class="reference"><a href="#cite_note-Euklid-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></div></div> <p>Errichtet man über den drei Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,\;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,\;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c747ea5fdf635321385220fd12675e9c1257a02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.906ex; height:2.509ex;" alt="{\displaystyle a,\;b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> des ursprünglichen Dreiecks jeweils eine zu den beiden anderen ähnliche Figur (Bild&#160;1) mit den Flächen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,\;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,\;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed23246542b8cd3fec05ea404cd81034fcbe78a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.186ex; height:2.509ex;" alt="{\displaystyle A,\;B}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64528f031cdbe1f52bdaf4ba7a8401108c0d2dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C,}"></span> dann gilt wegen ihrer Ähnlichkeit: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>B</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ef6fc3825913e16509589447a0b488383ae799c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.102ex; height:5.676ex;" alt="{\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}}"></span></dd></dl> <p>Stellt man <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> in der Form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {C\cdot a^{2}}{c^{2}}},\ B={\frac {C\cdot b^{2}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {C\cdot a^{2}}{c^{2}}},\ B={\frac {C\cdot b^{2}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8aedd088e8e54f1d318eb37fc0f7ec0e9a018290" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.218ex; height:6.009ex;" alt="{\displaystyle A={\frac {C\cdot a^{2}}{c^{2}}},\ B={\frac {C\cdot b^{2}}{c^{2}}}}"></span></dd></dl> <p>dar, so erhält man für die Summe: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B={\frac {a^{2}}{c^{2}}}\cdot C+{\frac {b^{2}}{c^{2}}}\cdot C={\frac {a^{2}+b^{2}}{c^{2}}}\cdot C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B={\frac {a^{2}}{c^{2}}}\cdot C+{\frac {b^{2}}{c^{2}}}\cdot C={\frac {a^{2}+b^{2}}{c^{2}}}\cdot C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09986a23d11d20f0904a74391fcbd299a9ec1f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:39.751ex; height:6.009ex;" alt="{\displaystyle A+B={\frac {a^{2}}{c^{2}}}\cdot C+{\frac {b^{2}}{c^{2}}}\cdot C={\frac {a^{2}+b^{2}}{c^{2}}}\cdot C}"></span></dd></dl> <p>Nach dem Satz des Pythagoras <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span> wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f3386a00382ce857fb0b3b04b9fa2bbe5cfae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.061ex; height:2.676ex;" alt="{\displaystyle c^{2}}"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14fc28103c5d2aa9276728469f82c9f415f4b257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.176ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}}"></span> eingesetzt und somit ergibt sich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B=C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>=</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B=C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a90a14f5ad55c95d2a36b7c16ca319c73f9bd61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.212ex; height:2.343ex;" alt="{\displaystyle A+B=C}"></span></dd></dl> <p>Während Euklids Beweis nur für <a href="/wiki/Konvexe_Menge" title="Konvexe Menge">konvexe</a> <a href="/wiki/Polygon" title="Polygon">Polygone</a> (Vielecke) gilt,<sup id="cite_ref-Euklid_29-1" class="reference"><a href="#cite_note-Euklid-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> ist der Satz auch für konkave Polygone und sogar für ähnliche Figuren mit gekrümmten Grenzen gültig, wobei auch diese Figuren aus einer betreffenden Seite des ursprünglichen Dreiecks hervorgehen.<sup id="cite_ref-Thomas_Heath_27-1" class="reference"><a href="#cite_note-Thomas_Heath-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Die im Bild&#160;2 dargestellten Flächen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,\ B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,\ B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b040b4498bdd2f4827536efbda6b0555cd12fb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.122ex; height:2.509ex;" alt="{\displaystyle A,\ B}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> der <a href="/wiki/Kreis" title="Kreis">Kreise</a> entstehen aus den Seiten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,\ b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,\ b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66f1ee115a3502c7a9127dcd302156a054a6f01c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.842ex; height:2.509ex;" alt="{\displaystyle a,\ b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> der <a href="/wiki/F%C3%BCnfeck" title="Fünfeck">Fünfecke</a>. </p><p>Um zu verdeutlichen, dass Kreise bzw. <a href="/wiki/Halbkreis" title="Halbkreis">Halbkreise</a><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> allein, d.&#160;h. ohne Vielecke über den Seiten, zur Verallgemeinerung herangezogen werden können, erweitert man den Satz des Pythagoras mit der <a href="/wiki/Kreiszahl" title="Kreiszahl">Kreiszahl</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08e6f1d7ecc994ec947971981fff0091c45552ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.624ex; height:1.676ex;" alt="{\displaystyle \pi :}"></span> </p><p>Aus dem Satz mit Quadraten </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}=a^{2}+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}=a^{2}+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bace667e8cfea3ef573af86a1f3e72984b10755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle c^{2}=a^{2}+b^{2}}"></span></dd></dl> <p>wird, mit den entsprechenden Seitenlängen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,\;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,\;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c747ea5fdf635321385220fd12675e9c1257a02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.906ex; height:2.509ex;" alt="{\displaystyle a,\;b}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> als Radien, eine Verallgemeinerung mit Kreisen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\cdot \pi =a^{2}\cdot \pi +b^{2}\cdot \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\cdot \pi =a^{2}\cdot \pi +b^{2}\cdot \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55bfce8b253c7416d99cc69bed81009ad5759a98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.369ex; height:2.843ex;" alt="{\displaystyle c^{2}\cdot \pi =a^{2}\cdot \pi +b^{2}\cdot \pi }"></span></dd></dl> <p>bzw. eine Verallgemeinerung mit Halbkreisen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\cdot c^{2}\cdot \pi ={\frac {1}{2}}\cdot \left(a^{2}\cdot \pi +b^{2}\cdot \pi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\cdot c^{2}\cdot \pi ={\frac {1}{2}}\cdot \left(a^{2}\cdot \pi +b^{2}\cdot \pi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528a80c8956b7378a08510d2ed80b32b12cefc42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.854ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2}}\cdot c^{2}\cdot \pi ={\frac {1}{2}}\cdot \left(a^{2}\cdot \pi +b^{2}\cdot \pi \right)}"></span></dd></dl> <p>Die Grundidee hinter dieser Verallgemeinerung ist, dass die Fläche einer ebenen Figur <a href="/wiki/Proportionalit%C3%A4t" title="Proportionalität">proportional</a> zum Quadrat jeder linearen <a href="/wiki/Dimension_(Mathematik)" title="Dimension (Mathematik)">Dimension</a> und insbesondere proportional zum Quadrat der Länge jeder Seite ist. </p> <div class="mw-heading mw-heading3"><h3 id="Skalarprodukträume"><span id="Skalarproduktr.C3.A4ume"></span>Skalarprodukträume</h3></div> <p>Abstrahiert man vom gewöhnlichen <a href="/wiki/Euklidische_Geometrie" title="Euklidische Geometrie">euklidischen Raum</a> zu allgemeinen <a href="/wiki/Skalarproduktraum" class="mw-redirect" title="Skalarproduktraum">Skalarprodukträumen</a>, also <a href="/wiki/Vektorraum" title="Vektorraum">Vektorräumen</a> mit einem <a href="/wiki/Skalarprodukt" title="Skalarprodukt">Skalarprodukt</a>, dann gilt: </p><p>Sind zwei Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> zueinander <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a>, ist also ihr Skalarprodukt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u,v\rangle =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/387ba1508966878a7437d870071b2057ae4a27fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.561ex; height:2.843ex;" alt="{\displaystyle \langle u,v\rangle =0}"></span>, dann gilt aufgrund der <a href="/wiki/Lineare_Abbildung" title="Lineare Abbildung">Linearität</a> des Skalarprodukts </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +\langle u,v\rangle +\langle v,u\rangle +\langle v,v\rangle =\langle u,u\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>u</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>u</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +\langle u,v\rangle +\langle v,u\rangle +\langle v,v\rangle =\langle u,u\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840b36ee1b7bf328a1eca1e92d5e33ba1481388c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:89.73ex; height:3.176ex;" alt="{\displaystyle \|u+v\|^{2}=\langle u+v,u+v\rangle =\langle u,u\rangle +\langle u,v\rangle +\langle v,u\rangle +\langle v,v\rangle =\langle u,u\rangle +\langle v,v\rangle =\|u\|^{2}+\|v\|^{2}}"></span>,</dd></dl> <p>wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113f0d8fe6108fc1c5e9802f7c3f634f5480b3d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.004ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|}"></span> die von dem Skalarprodukt <a href="/wiki/Skalarproduktnorm" title="Skalarproduktnorm">induzierte Norm</a> bezeichnet. </p><p>Bezieht man diesen Satz wiederum auf den euklidischen Raum, dann stehen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> für die Katheten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> eines rechtwinkligen Dreiecks. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|u+v\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|u+v\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f2c4352de9b018ab014a5e800d2d56ab5a07ae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.623ex; height:2.843ex;" alt="{\displaystyle \|u+v\|}"></span> steht für die Länge der Hypotenuse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. </p><p>Diese Verallgemeinerung des Satzes des Pythagoras findet sich auch in abstrakten mathematischen Strukturen, etwa unendlichdimensionalen Funktionenräumen wieder. Die Umkehrung gilt ebenfalls. Trifft die Gleichung zu, so sind die beiden Vektoren orthogonal zueinander. Der Satz lässt sich noch weiter verallgemeinern. Ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{u_{1},\dotsc ,u_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{u_{1},\dotsc ,u_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12a3c7384430840e4da899cb5227e76c0529a88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.435ex; height:2.843ex;" alt="{\displaystyle \{u_{1},\dotsc ,u_{n}\}}"></span> ein <a href="/wiki/Orthogonalsystem" title="Orthogonalsystem">Orthogonalsystem</a> bestehend aus paarweise orthogonalen Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9837644700489d04d977da272524cd5fda36f3d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.418ex; height:2.009ex;" alt="{\displaystyle u_{k}}"></span>, dann folgt durch wiederholte Anwendung obigen Arguments: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\sum _{k=1}^{n}u_{k}\right\|^{2}=\sum _{k=1}^{n}\|u_{k}\|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\sum _{k=1}^{n}u_{k}\right\|^{2}=\sum _{k=1}^{n}\|u_{k}\|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbe8cc1824813f437bd5323d14373d01a3ace942" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.178ex; height:7.676ex;" alt="{\displaystyle \left\|\sum _{k=1}^{n}u_{k}\right\|^{2}=\sum _{k=1}^{n}\|u_{k}\|^{2}}"></span></dd></dl> <p>Die entsprechende Aussage gilt sogar für unendliche Summen, wenn man eine <a href="/wiki/Folge_(Mathematik)" title="Folge (Mathematik)">Folge</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c91922eed6cbd3023b03f99fd88c482bc6fbda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (u_{k})}"></span> von Vektoren betrachtet, die alle zueinander orthogonal sind. Konvergiert nun die <a href="/wiki/Reihe_(Mathematik)" title="Reihe (Mathematik)">Reihe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{k=1}^{\infty }u_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{k=1}^{\infty }u_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4620b9c2d62a9581deed47501190b318d50799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.449ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{k=1}^{\infty }u_{k}}"></span>, so konvergiert auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{k=1}^{\infty }\|u_{k}\|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{k=1}^{\infty }\|u_{k}\|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b72d6986bfde70ad8380c19930ca093495e8887" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.828ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{k=1}^{\infty }\|u_{k}\|^{2}}"></span> und es gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\sum _{k=1}^{\infty }u_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|u_{k}\|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\sum _{k=1}^{\infty }u_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|u_{k}\|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3c9cd2cf5f5622f00f39e644e56910b02712faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.178ex; height:7.676ex;" alt="{\displaystyle \left\|\sum _{k=1}^{\infty }u_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|u_{k}\|^{2}}"></span></dd></dl> <p>Der Beweis der zweiten Behauptung folgt dabei aus der <a href="/wiki/Stetige_Funktion" title="Stetige Funktion">Stetigkeit</a> des Skalarprodukts. Eine weitere Verallgemeinerung führt zur <a href="/wiki/Parsevalsche_Gleichung" title="Parsevalsche Gleichung">Parsevalschen Gleichung</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Weitere_Verallgemeinerungen">Weitere Verallgemeinerungen</h3></div> <p>Ebenfalls als Verallgemeinerungen des Satzes des Pythagoras können der <a href="/wiki/Schenkeltransversalensatz" title="Schenkeltransversalensatz">Schenkeltransversalensatz</a>, der <a href="/wiki/Satz_von_Stewart#Anwendungen" title="Satz von Stewart">Satz von Stewart</a>, der <a href="/wiki/Satz_von_Ptolem%C3%A4us" title="Satz von Ptolemäus">Satz von Ptolemäus</a>, der <a href="/wiki/Satz_von_Carnot_(Lote)" title="Satz von Carnot (Lote)">Satz von Carnot über Lote am Dreieck</a> und der <a href="/wiki/Satz_von_der_britischen_Flagge" title="Satz von der britischen Flagge">Satz von der britischen Flagge</a> gelten. Letzterer stellt sowohl eine Verallgemeinerung in der Ebene als auch im Raum dar. Die pythagoreische Gleichung ist darüber hinaus auch in der <a href="/wiki/Apollonios-Gleichung" title="Apollonios-Gleichung">Apollonios-Gleichung</a> enthalten. </p><p>Ein räumliches Analogon ist der <a href="/wiki/Satz_von_de_Gua" title="Satz von de Gua">Satz von de Gua</a>. Hier werden das rechtwinklige Dreieck durch ein rechtwinkliges <a href="/wiki/Tetraeder" title="Tetraeder">Tetraeder</a> und die Seitenlängen durch die <a href="/wiki/Fl%C3%A4cheninhalt" title="Flächeninhalt">Flächeninhalte</a> der Seitenflächen ersetzt. Sowohl der Satz des Pythagoras als auch der Satz von de Gua sind Spezialfälle eines <a href="/wiki/Simplex_(Mathematik)#Simplexe_mit_einer_rechtwinkligen_Ecke" title="Simplex (Mathematik)">allgemeinen Satzes über n-Simplexe mit einer rechtwinkligen Ecke</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Unterschiede_in_der_nichteuklidischen_Geometrie">Unterschiede in der nichteuklidischen Geometrie</h3></div> <p><a href="/wiki/Nichteuklidische_Geometrie" title="Nichteuklidische Geometrie">Nichteuklidische Geometrien</a> sind Geometrien, in denen das <a href="/wiki/Parallelenaxiom" title="Parallelenaxiom">Parallelenaxiom</a> nicht gilt. Ein Beispiel hierfür ist die <a href="/wiki/Sph%C3%A4rische_Geometrie" title="Sphärische Geometrie">Geometrie der Kugeloberfläche</a>. Dort gilt der Satz des Pythagoras nicht mehr, da in solchen Geometrien der <a href="/wiki/Innenwinkel#Mathematische_Sätze" title="Innenwinkel">Innenwinkelsatz</a> nicht gilt, also die <a href="/wiki/Winkelsumme" title="Winkelsumme">Winkelsumme</a> eines Dreiecks von 180° verschieden ist. Ein anderes Beispiel ist der „<a href="/wiki/Raumkr%C3%BCmmung" title="Raumkrümmung">gekrümmte</a>“ Raum der <a href="/wiki/Allgemeine_Relativit%C3%A4tstheorie" title="Allgemeine Relativitätstheorie">Allgemeinen Relativitätstheorie</a> <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einsteins</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Geschichte">Geschichte</h2></div> <div class="mw-heading mw-heading3"><h3 id="Babylon_und_Indien">Babylon und Indien</h3></div> <p>Bereits auf einer <a href="/wiki/Babylonien" title="Babylonien">babylonischen</a> <a href="/wiki/Keilschrift" title="Keilschrift">Keilschrifttafel</a>,<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> die in die Zeit der <a href="/wiki/Hammurabi-Dynastie" class="mw-redirect" title="Hammurabi-Dynastie">Hammurabi-Dynastie</a> datiert wird (ca. 1829 bis ca. 1530 v.&#160;Chr.), findet sich eine geometrische Problemstellung mit Lösung, bei der der Satz zur Berechnung von Längen (im <a href="/wiki/Sexagesimalsystem" title="Sexagesimalsystem">Sexagesimalsystem</a>) verwendet wurde:<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="margin-left:2em;"> <p>Ein Balken, 0;30 (= 30/60 GAR = 1/2 GAR ≈ 3&#160;m lang)<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><br /> Von oben ist er 0;6 (= 6/60 GAR) herabgekommen.<br /> Von unten was hat er sich entfernt?<br /> 0;30 (= 30/60) quadriere, 0;15 (= 900/3600 = 15/60) siehst du.<br /> 0;6 (= 6/60) von 0;30 (= 30/60) abgezogen, 0;24 (= 24/60) siehst du.<br /> 0;24 (= 24/60) quadriere, 0;9,36 (= 576/3600) siehst du.<br /> 0;9,36 (= 576/3600) von 0;15 (= 900/3600) ziehe ab, 0;5,24 (= 324/3600) siehst du.<br /> 0;5,24 (= 324/3600) hat was als Quadratwurzel? 0;18 (= 18/60).<br /> 0;18 (= 18/60 GAR) am Boden hat er sich entfernt. </p> </div> <p>Daraus ergibt sich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0;18^{2}=0;30^{2}-0;24^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>;</mo> <msup> <mn>18</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>;</mo> <msup> <mn>30</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> <mo>;</mo> <msup> <mn>24</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0;18^{2}=0;30^{2}-0;24^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958c2e1d9e20e5522e9f3e47c1e6d00d625dca28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.665ex; height:3.009ex;" alt="{\displaystyle 0;18^{2}=0;30^{2}-0;24^{2}}"></span>, also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}=c^{2}-b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}=c^{2}-b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbef1f9bff9bc7e882ed1228cbc39d5e73d60ff5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}=c^{2}-b^{2}}"></span> und weiter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef0a5a4b8ab98870ae5d6d7c7b4dfe3fb6612e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.336ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}}"></span>.</dd></dl> <p>Ein Interesse der Babylonier an einem <a href="/wiki/Beweis_(Mathematik)" title="Beweis (Mathematik)">mathematischen Beweis</a> geht jedoch aus den Quellen nicht hervor. </p><p>Die Keilschrifttafel <a href="/wiki/Plimpton_322" title="Plimpton 322">Plimpton 322</a> enthält außerdem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea331af19ed2ccc36bb864409b6c305e18cff30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 15}"></span> verschiedene pythagoreische Tripel, unter anderem </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (56,90,106)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>56</mn> <mo>,</mo> <mn>90</mn> <mo>,</mo> <mn>106</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (56,90,106)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376ca1f887e8a48b53226e63d9f90df0a1e3ccf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.014ex; height:2.843ex;" alt="{\displaystyle (56,90,106)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (119,120,169)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>119</mn> <mo>,</mo> <mn>120</mn> <mo>,</mo> <mn>169</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (119,120,169)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568bfd38a60009813e63fa68acc510d83aa69353" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.339ex; height:2.843ex;" alt="{\displaystyle (119,120,169)}"></span> sowie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (12709,13500,18541)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>12709</mn> <mo>,</mo> <mn>13500</mn> <mo>,</mo> <mn>18541</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (12709,13500,18541)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8eeeda95920fdb911905a1b0e2939c4f37ae476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.314ex; height:2.843ex;" alt="{\displaystyle (12709,13500,18541)}"></span>,</dd></dl> <p>was auf ein Verfahren zur Berechnung solcher Tripel schließen lässt. </p><p>In indischen <i><a href="/wiki/Sulbasutra" title="Sulbasutra">Sulbasutras</a></i> („Schurregeln“ bzw. „Leitfäden zur Meßkunst“), die ungefähr vom 6. bis zum 4.&#160;Jahrhundert v.&#160;Chr. entstanden, finden sich einige pythagoreische Tripel. Außerdem wurde auch der Lehrsatz dort schon allgemein ausgesprochen und benutzt.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Wie er begründet wurde, ist nicht sicher.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="China">China</h3></div> <p>Der Satz war im antiken China als <i>Satz der Gougu</i> (勾股定理) bekannt. In der Schrift <i><a href="/wiki/Zhoubi_suanjing" title="Zhoubi suanjing">Zhoubi suanjing</a></i> („Arithmetischer Klassiker des Zhou-Gnomons“), die ungefähr vom 1.&#160;Jahrhundert v.&#160;Chr. bis zum 6.&#160;Jahrhundert n.&#160;Chr. entstand,<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> wird mit der sogenannten „Hypotenusen-Figur“ <i>(Xian-tu)</i><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> ein dort am Beispiel des rechtwinkligen Dreiecks <i>(gougu)</i> mit den Seiten 3, 4 und 5 gegebener Beweis des Satzes veranschaulicht.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Auch im <i><a href="/wiki/Jiu_Zhang_Suanshu" title="Jiu Zhang Suanshu">Jiu Zhang Suanshu</a></i> („Neun Bücher arithmetischer Technik“, 1.&#160;Jahrhundert n.&#160;Chr.), dem klassischen mathematischen Werk Chinas mit einer Sammlung von 263 Problemstellungen, ihren Lösungen und den Lösungswegen, wird er angewendet. <a href="/wiki/Liu_Hui" title="Liu Hui">Liu Hui</a> (3.&#160;Jahrhundert n.&#160;Chr.) gab wohl in seinem Kommentar zu den „Neun Büchern“ im neunten Kapitel einen Zerlegungsbeweis an.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Die_umstrittene_Rolle_des_Pythagoras">Die umstrittene Rolle des Pythagoras</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Pythagorean_theorem,_Vaticanus_Palatinus_graecus_95.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg/220px-Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg" decoding="async" width="220" height="324" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg/330px-Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg/440px-Pythagorean_theorem%2C_Vaticanus_Palatinus_graecus_95.jpg 2x" data-file-width="1826" data-file-height="2689" /></a><figcaption>Der Satz des Pythagoras in der byzantinischen mathematischen Sammelhandschrift Rom, <a href="/wiki/Biblioteca_Apostolica_Vaticana" class="mw-redirect" title="Biblioteca Apostolica Vaticana">Biblioteca Apostolica Vaticana</a>, Vaticanus Palatinus graecus 95, <a href="/wiki/Folium" title="Folium">fol.</a> 40<a href="/wiki/Recto" title="Recto">r</a> (13./14.&#160;Jahrhundert)</figcaption></figure> <p>Die Benennung des Satzes nach dem griechischen Philosophen <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a> (6.&#160;Jahrhundert v.&#160;Chr.) ist erst in späteren Quellen bezeugt. Daher ist in der Forschung die Frage nach der Rolle des Pythagoras stark umstritten. Verschiedene Hypothesen kommen in Betracht: </p> <ul><li>Pythagoras übernahm den Satz von den Babyloniern, seine Rolle war nur die eines Vermittlers orientalischen Wissens an die Griechen. Antiken Quellen zufolge unternahm er eine Ägyptenreise, er soll sogar in Babylonien gewesen sein, doch ist die Glaubwürdigkeit der Berichte über seine Reisen umstritten.</li> <li>Pythagoras hat den Satz unabhängig von der orientalischen Mathematik entdeckt und auch erstmals bewiesen. Diese Ansicht war in der Antike verbreitet.</li> <li>Pythagoras verdankte die Kenntnis des Sachverhalts orientalischen Quellen, war aber der erste, der einen Beweis dafür fand. Tatsächlich waren Babylonier und Ägypter anscheinend nur an der Anwendung des Satzes für praktische Zwecke, nicht an einem allgemeingültigen Beweis interessiert. So enthält beispielsweise das älteste bekannte Rechenbuch der Welt, das ägyptische Rechenbuch des Ahmes (auch <i><a href="/wiki/Papyrus_Rhind" title="Papyrus Rhind">Papyrus Rhind</a></i>) aus dem 17.&#160;Jahrhundert v.&#160;Chr., bereits komplizierte Aufgaben, es fehlt jedoch jede Verallgemeinerung, es wird nicht definiert und bewiesen.</li> <li>Pythagoras kannte einen der einfacheren Beweise, zum Beispiel einen Beweis vom Zerlegungstyp und für den Spezialfall eines Dreiecks mit einem rechten und zwei 45-Grad-Winkeln.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></li> <li>Pythagoras hat in der Geschichte des Satzes keine Rolle gespielt; erst spätere <a href="/wiki/Pythagoreer" title="Pythagoreer">Pythagoreer</a> haben möglicherweise den ersten Beweis gefunden.</li></ul> <p>Der historisch nachweisbare Zusammenhang von Pythagoras zu dem ihm zugeschriebenen Theorem ist nach <a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">Bartel Leendert van der Waerden</a><sup id="cite_ref-waerden_45-0" class="reference"><a href="#cite_note-waerden-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> sehr zweifelhaft, und auch <a href="/wiki/Thomas_Heath" title="Thomas Heath">Thomas Heath</a> sieht nur schwache historische Belege für die Zuschreibung.<sup id="cite_ref-Heath_46-0" class="reference"><a href="#cite_note-Heath-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> Gegensätzliche Positionen vertreten zum Beispiel die Wissenschaftshistoriker <a href="/wiki/Walter_Burkert" title="Walter Burkert">Walter Burkert</a> und <a href="/wiki/Leonid_Zhmud" title="Leonid Zhmud">Leonid Zhmud</a>. Burkert zieht allenfalls eine Vermittlerrolle des Pythagoras in Betracht, Zhmud schreibt ihm mathematische Leistungen wie den Beweis des Satzes zu und betont seine Eigenständigkeit gegenüber der orientalischen Mathematik.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Euklid" title="Euklid">Euklid</a>, der in der zweiten Hälfte des 4.&#160;Jahrhunderts v.&#160;Chr. in seinem berühmten Werk <a href="/wiki/Elemente_(Euklid)" title="Elemente (Euklid)"><i>Elemente</i></a> das mathematische Wissen seiner Zeit zusammentrug, bot einen Beweis,<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> brachte den Satz aber nicht namentlich mit Pythagoras in Zusammenhang. <a href="/wiki/Proklos" title="Proklos">Proklos</a> schrieb dazu im 5. Jahrhundert n. Chr. in seinem Kommentar zu Euklids Elementen: „Wenn wir denen zuhören, die sich gerne mit Geschichte befassen finden wir, dass sie dieses Theorem Pythagoras zuschreiben und sagen, er hätte dafür einen Ochsen geopfert“,<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-waerden_45-1" class="reference"><a href="#cite_note-waerden-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> was zeigt, dass die Zuschreibung an Pythagoras damals verbreitet war. Auch <a href="/wiki/Plutarch" title="Plutarch">Plutarch</a>,<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Cicero" class="mw-redirect" title="Cicero">Cicero</a> und <a href="/wiki/Vitruv" title="Vitruv">Vitruv</a><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> berichten von Pythagoras Opferung eines Ochsen, mit unterschiedlichen Versionen zur Ursache – bei Vitruv ist es die Entdeckung eines rechtwinkligen Dreiecks mit den Seitenlängen 3, 4, 5, also einem <a href="/wiki/Pythagoreisches_Tripel" title="Pythagoreisches Tripel">pythagoreischen Tripel</a>, Cicero (<i>De natura deorum</i>, Buch 3, 88) gibt keine genaueren Hinweise auf die zugrundeliegende geometrische Entdeckung.<sup id="cite_ref-Heath_46-1" class="reference"><a href="#cite_note-Heath-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>Der älteste Beleg dafür, dass der Satz mit Pythagoras in Verbindung gebracht wurde, ist ein <a href="/wiki/Epigramm" title="Epigramm">Epigramm</a> eines Apollodoros, der möglicherweise mit dem Philosophen Apollodoros von Kyzikos zu identifizieren ist; in diesem Fall stammen die Verse aus der zweiten Hälfte des 4.&#160;Jahrhunderts v.&#160;Chr. Der Text lautet:<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="margin-left:2em;" class="poem"> <p>Als Pythagoras einst die berühmte Zeichnung gefunden,<br /> Brachte als Opfer er dar herrliche Stiere dem Gott. </p> </div> <p>Apollodoros gibt nicht an, welche „berühmte“ Zeichnung oder Figur er meint, doch spätere Autoren, darunter <a href="/wiki/Diogenes_Laertios" title="Diogenes Laertios">Diogenes Laertios</a>, der im 3.&#160;Jahrhundert die beiden Verse zitierte, gingen davon aus, dass es sich um den „Satz des Pythagoras“ handelt. Diese Überlieferung, wonach Pythagoras einem Gott zum Dank dafür, dass dieser ihm die Erkenntnis eingab, ein Rinderopfer darbrachte, steht – wie schon Cicero bemerkte – in Widerspruch zu dem von zahlreichen antiken Quellen überlieferten Umstand, dass Pythagoras und die Pythagoreer Tieropfer grundsätzlich ablehnten.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Literarische_Rezeption">Literarische Rezeption</h2></div> <p><a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a> schrieb in seinem <i>Mysterium cosmographicum</i> (Kapitel 13) von 1597: <i>Die Geometrie hat zwei große Schätze: der eine ist der Satz des Pythagoras, der andere die Teilung der Linie in das extreme und mittlere Verhältnis</i><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> (dabei ist mit dem zweiten Schatz der <a href="/wiki/Goldener_Schnitt" title="Goldener Schnitt">Goldene Schnitt</a> gemeint). Die Verbindung dieser beiden Sätze sind im <a href="/wiki/Kepler-Dreieck" title="Kepler-Dreieck">Kepler-Dreieck</a> ersichtlich. </p><p>Der Philosoph <a href="/wiki/Thomas_Hobbes" title="Thomas Hobbes">Thomas Hobbes</a> begann, wie sein Biograph <a href="/wiki/John_Aubrey" title="John Aubrey">John Aubrey</a> berichtete, mit 40 Jahren ernsthaft Mathematik zu studieren, nachdem er in einer Bibliothek ein Exemplar von Euklids Elementen auf der Seite des Beweises des Satzes von Pythagoras (Elemente, I, 47) aufgeschlagen fand, dies auf Anhieb nicht glauben wollte und sich von einer Proposition zur nächsten in den Elementen las, bis er von dessen Wahrheit überzeugt wurde. Anschließend fasste er eine Neigung zur Mathematik.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Hans_Christian_Andersen" title="Hans Christian Andersen">Hans Christian Andersen</a> verfasste 1831 einen Beweis des Satzes des Pythagoras in Gedichtform mit dem Titel <i><a href="/wiki/Formens_evige_Magie_(Et_poetisk_Spilf%C3%A6gterie)" class="mw-redirect" title="Formens evige Magie (Et poetisk Spilfægterie)">Formens evige Magie (Et poetisk Spilfægterie)</a>.</i><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Adelbert_von_Chamisso" title="Adelbert von Chamisso">Adelbert von Chamisso</a> schrieb 1836 in seinem Gedicht <i>Vom Pythagoräischen Lehrsatz</i>: <i>Die Wahrheit, sie besteht in Ewigkeit / Wenn erst die blöde Welt ihr Licht erkannt / Der Lehrsatz, nach Pythagoras benannt / Gilt heute, wie er galt zu seiner Zeit</i>.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> Zu dem mythischen Opfer von hundert Ochsen, die Pythagoras angeblich als Dank für seine Entdeckung geopfert haben soll, fährt er in satirischer Weise fort: <i>Die Ochsen seit dem Tage, wenn sie wittern / Daß eine neue Wahrheit sich enthülle / Erheben ein unendliches Gebrülle</i>. <i>Pythagoras erfüllt sie mit Entsetzen / Und machtlos, sich dem Licht zu widersetzen / Verschließen sie die Augen und erzittern.</i> </p><p>Der Mathematiker und Schriftsteller <a href="/wiki/Lewis_Carroll" title="Lewis Carroll">Lewis Carroll</a> schrieb ähnlich Chamisso 1890<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup>: <i>Aber weder 30 Jahre noch 30 Jahrhunderte beeinflussen die Klarheit oder den Charm geometrischer Wahrheiten. Ein Theorem wie „Das Quadrat der Hypotenuse eines rechtwinkligen Dreiecks ist gleich der Summe der Quadrate der Seiten“ ist heute von so blendender Schönheit wie an dem Tag, als Pythagoras es als Erster entdeckte.</i> </p> <div class="mw-heading mw-heading2"><h2 id="Veranschaulichung">Veranschaulichung</h2></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01-Satz_des_Pythagoras-W.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/01-Satz_des_Pythagoras-W.gif/290px-01-Satz_des_Pythagoras-W.gif" decoding="async" width="290" height="292" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/78/01-Satz_des_Pythagoras-W.gif 1.5x" data-file-width="350" data-file-height="353" /></a><figcaption>Prinzipskizze eines Anschauungsobjektes</figcaption></figure> <p>Sehr verbreitet sind Anschauungsobjekte, die mit Hilfe von Flüssigkeiten den Satz des Pythagoras beschreiben. Die nebenstehende animierte <a href="/wiki/Prinzipskizze" title="Prinzipskizze">Prinzipskizze</a> ist quasi die Vorderansicht eines drehbar gelagerten Exponates des Science-Centers <a href="/wiki/Ph%C3%A6no" title="Phæno">phæno</a> in Wolfsburg.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> An den Seiten des mittigen rechtwinkligen Dreiecks sind flache durchsichtige Behälter mit der Tiefe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> angebracht. Deren quadratische Grundflächen sind gleich den Flächen der Kathetenquadrate bzw. des Hypotenusenquadrates. Die Behälter sind deshalb mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6672f393fc0a73ee16f71f1ececd7e46644dae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.803ex; height:2.676ex;" alt="{\displaystyle a^{2}\cdot t}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ac3fa07e2be123e12c158c79e50ebef6d67c6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.571ex; height:2.676ex;" alt="{\displaystyle b^{2}\cdot t}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958bc7f7192dab0db2a22cff21ad8c142582f48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.58ex; height:2.676ex;" alt="{\displaystyle c^{2}\cdot t}"></span> bezeichnet. Ist das Exponat in seiner Ausgangsstellung (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958bc7f7192dab0db2a22cff21ad8c142582f48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.58ex; height:2.676ex;" alt="{\displaystyle c^{2}\cdot t}"></span> unten), fließt das in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6672f393fc0a73ee16f71f1ececd7e46644dae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.803ex; height:2.676ex;" alt="{\displaystyle a^{2}\cdot t}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ac3fa07e2be123e12c158c79e50ebef6d67c6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.571ex; height:2.676ex;" alt="{\displaystyle b^{2}\cdot t}"></span> randvoll gefüllte blaue Wasser über die Ecken des Dreiecks <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> restlos ab und füllt somit vollständig <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958bc7f7192dab0db2a22cff21ad8c142582f48e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.58ex; height:2.676ex;" alt="{\displaystyle c^{2}\cdot t}"></span>. Daraus folgt </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}\cdot t+b^{2}\cdot t=c^{2}\cdot t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}\cdot t+b^{2}\cdot t=c^{2}\cdot t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f97b243e9d985868507707f0a312a922e6cee425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.892ex; height:2.843ex;" alt="{\displaystyle a^{2}\cdot t+b^{2}\cdot t=c^{2}\cdot t}"></span>,</dd></dl> <p>geteilt durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> ergibt es </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}=c^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}=c^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90b56b985c78deb115014efe90ce634d73dd51fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.983ex; height:2.843ex;" alt="{\displaystyle a^{2}+b^{2}=c^{2}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Verwandte_Themen">Verwandte Themen</h2></div> <ul><li><a href="/wiki/Pythagoreische_Addition" title="Pythagoreische Addition">Pythagoreische Addition</a> – die Wurzel aus der Summe der Quadrate mehrerer Werte</li> <li><a href="/wiki/Trigonometrischer_Pythagoras" title="Trigonometrischer Pythagoras">Trigonometrischer Pythagoras</a> – die Übertragung des Satzes auf die Winkelfunktionen Sinus und Cosinus</li> <li><a href="/wiki/M%C3%B6ndchen_des_Hippokrates" title="Möndchen des Hippokrates">Möndchen des Hippokrates</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2></div> <ul><li>Thomas Benesch: <i>Mathematik im Alltag.</i> <a href="/wiki/Oldenbourg_Verlag" class="mw-redirect" title="Oldenbourg Verlag">Oldenbourg Verlag</a>, München/Wien 2008, <a href="/wiki/Spezial:ISBN-Suche/9783486583908" class="internal mw-magiclink-isbn">ISBN 978-3-486-58390-8</a>.</li> <li>Anna M. Fraedrich: <i>Die Satzgruppe des Pythagoras.</i> <a href="/wiki/Spektrum_Akademischer_Verlag" class="mw-redirect" title="Spektrum Akademischer Verlag">Spektrum Akademischer Verlag</a>, Heidelberg 1994, <a href="/wiki/Spezial:ISBN-Suche/3860256696" class="internal mw-magiclink-isbn">ISBN 3-86025-669-6</a>.</li> <li>Mario Gerwig: <i>Der Satz des Pythagoras in 365 Beweisen.</i> Springer Spektrum, Berlin 2021, <a href="/wiki/Spezial:ISBN-Suche/9783662628867" class="internal mw-magiclink-isbn">ISBN 978-3-662-62886-7</a></li> <li>Dietmar Herrmann: <i>Die antike Mathematik. Geschichte der Mathematik in Alt-Griechenland und im Hellenismus.</i> Springer Spektrum, Berlin 2020, <a href="/wiki/Spezial:ISBN-Suche/9783662613948" class="internal mw-magiclink-isbn">ISBN 978-3-662-61394-8</a> [darin: S. 41–67]</li> <li>Hans Schupp: <i>Elementargeometrie.</i> UTB, Stuttgart 1977, <a href="/wiki/Spezial:ISBN-Suche/3506991892" class="internal mw-magiclink-isbn">ISBN 3-506-99189-2</a>, S. 114–118.</li> <li><a href="/wiki/Alexander_K._Dewdney" title="Alexander K. Dewdney">Alexander K. Dewdney</a>: <i>Reise in das Innere der Mathematik.</i> <a href="/wiki/Birkh%C3%A4user_Verlag" title="Birkhäuser Verlag">Birkhäuser Verlag</a>, Berlin 2000, <a href="/wiki/Spezial:ISBN-Suche/3764361891" class="internal mw-magiclink-isbn">ISBN 3-7643-6189-1</a>, S. 47–76.</li> <li><a href="/wiki/Eli_Maor" title="Eli Maor">Eli Maor</a>: <i>The Pythagorean Theorem: A 4,000-year History.</i> <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, Princeton 2007, <a href="/wiki/Spezial:ISBN-Suche/0691125260" class="internal mw-magiclink-isbn">ISBN 0-691-12526-0</a>.</li> <li>Alfred S. Posamentier: <i>The Pythagorean Theorem: The Story of Its Power and Beauty.</i> Prometheus Books, Amherst 2010, <a href="/wiki/Spezial:ISBN-Suche/9781616141813" class="internal mw-magiclink-isbn">ISBN 978-1-61614-181-3</a>.</li> <li><a href="/wiki/Elisha_Scott_Loomis" title="Elisha Scott Loomis">Elisha Scott Loomis</a>: <i>The Pythagorean Proposition</i>. Edwards Brothers, 2-te Auflage, Ann Arbor (MI) 1940 (Digitalisate: <a rel="nofollow" class="external text" href="https://files.eric.ed.gov/fulltext/ED037335.pdf">eric</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/pythagoreanpropo0000loom_b2m3/">archive.org</a>)</li> <li><a href="/wiki/Simon_Singh" title="Simon Singh">Simon Singh</a>: <i>Fermats letzter Satz</i> (Fermat’s Last Theorem), aus dem Englischen von Klaus Fritz, Carl Hanser Verlag München Wien 1998, <a href="/wiki/Spezial:ISBN-Suche/3446193138" class="internal mw-magiclink-isbn">ISBN 3-446-19313-8</a>.</li> <li><span class="cite">Reinhard Kleindl:&#32;<a rel="nofollow" class="external text" href="https://www.derstandard.at/story/3000000242480/zwei-studentinnen-publizieren-neue-beweise-fuer-den-satz-von-pythagoras"><i>Zwei Studentinnen publizieren neue Beweise für den Satz von Pythagoras.</i></a>&#32;In:&#32;<i>derstandard.at.</i>&#32;28.&#160;Oktober 2024&#44;<span class="Abrufdatum">&#32;abgerufen am 28.&#160;Oktober 2024</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Zwei+Studentinnen+publizieren+neue+Beweise+f%C3%BCr+den+Satz+von+Pythagoras&amp;rft.description=Zwei+Studentinnen+publizieren+neue+Beweise+f%C3%BCr+den+Satz+von+Pythagoras&amp;rft.identifier=https%3A%2F%2Fwww.derstandard.at%2Fstory%2F3000000242480%2Fzwei-studentinnen-publizieren-neue-beweise-fuer-den-satz-von-pythagoras&amp;rft.creator=Reinhard+Kleindl&amp;rft.date=2024-10-28">&#160;</span></li> <li>Ne'Kiya Jackson, Calcea Johnson&#58; <cite class="lang" lang="en" dir="auto" style="font-style:italic">Five or Ten New Proofs of the Pythagorean Theorem</cite>. Hrsg.: <a href="/wiki/American_Mathematical_Monthly" title="American Mathematical Monthly">American Mathematical Monthly</a>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em">&#160;</span>131</span>, <span style="white-space:nowrap">Nr.<span style="display:inline-block;width:.2em">&#160;</span>9</span>. <a href="/wiki/Taylor_%26_Francis" title="Taylor &amp; Francis">Taylor &amp; Francis</a>, <a href="/wiki/Washington,_D.C." title="Washington, D.C.">Washington, D.C.</a> 2004, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>739–752</span>, <a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://doi.org/10.1080/00029890.2024.2370240">10.1080/00029890.2024.2370240</a></span> (englisch).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Satz+des+Pythagoras&amp;rft.au=Ne%27Kiya+Jackson%2C+Calcea+Johnson&amp;rft.btitle=Five+or+Ten+New+Proofs+of+the+Pythagorean+Theorem&amp;rft.date=2004&amp;rft.doi=10.1080%2F00029890.2024.2370240&amp;rft.genre=book&amp;rft.issue=9&amp;rft.pages=739-752&amp;rft.place=Washington%2C+D.C.&amp;rft.pub=Taylor+%26+Francis&amp;rft.volume=131" style="display:none">&#160;</span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noresize noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div><b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Pythagorean_theorem?uselang=de"><span lang="en">Commons</span>: Satz des Pythagoras</a></span></b>&#160;– Sammlung von Bildern, Videos und Audiodateien</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><span class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wiktionary"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/16px-Wiktfavicon_en.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/24px-Wiktfavicon_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/32px-Wiktfavicon_en.svg.png 2x" data-file-width="16" data-file-height="16" /></span></span></span><b><a href="https://de.wiktionary.org/wiki/Satz_des_Pythagoras" class="extiw" title="wikt:Satz des Pythagoras">Wiktionary: Satz des Pythagoras</a></b>&#160;– Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen</div> <ul><li><a rel="nofollow" class="external text" href="https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/mathematik/unterrichtsmaterialien/sekundarstufe1/geometrie/pyth/beweise/index.html">Vielzahl animierter Beweise des Satzes des Pythagoras</a>, Landesbildungsserver Baden-Württemberg</li> <li><style data-mw-deduplicate="TemplateStyles:r246413598">.mw-parser-output .webarchiv-memento{color:var(--color-base,#202122)!important}</style><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100912103144/http://www.didmath.ewf.uni-erlangen.de/Verschie/Gut_Ref/Pythago/Pythagoras.html"><i>Beweise für den Satz des Pythagoras.</i></a> (<a href="/wiki/Web-Archivierung#Begrifflichkeiten" title="Web-Archivierung"><span class="webarchiv-memento">Memento</span></a> vom 12. September 2010 im <i><a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a></i>). Lehrstuhl für Didaktik der Mathematik, Universität Erlangen-Nürnberg</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=Pqy9TlNWxFg">Geometrische Beweise für den Satz des Pythagoras</a> (Video)</li> <li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/pythagoras/index.shtml">Sammlung von 122 Beweisen für den Satz des Pythagoras</a> auf <i>cut-the-knot</i> (englisch)</li> <li><a rel="nofollow" class="external text" href="http://www.asamnet.de/~sigwarts/facharbeit/titel.htm">Interaktives Lernprogramm mit Beweisen, Aufgaben und vielen Links</a></li> <li><a href="/wiki/Eric_Weisstein" title="Eric Weisstein">Eric W. Weisstein</a>: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PythagoreanTheorem.html"><i>Pythagorean theorem</i>.</a> In: <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i> (englisch). (Enthält auch verschiedene Beweise)</li> <li><a rel="nofollow" class="external text" href="https://www.spektrum.de/lexikon/mathematik/der-satz-des-pythagoras/7163">Eintrag <b>Der Satz des Pythagoras</b> im Lexikon der Mathematik (2017)</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><span class="cite">Ferdinand Rudio:&#32;<a rel="nofollow" class="external text" href="https://archive.org/details/berlinerphilolo02unkngoog/page/n124/mode/1up"><i>Berliner philologische Wochenschrift.</i></a>&#32;In:&#32;<i>Internet Archiv.</i>&#32;K.Fuhr,&#32;16.&#160;Februar 1907&#44;<span class="Abrufdatum">&#32;abgerufen am 9.&#160;Oktober 2021</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Berliner+philologische+Wochenschrift&amp;rft.description=Berliner+philologische+Wochenschrift&amp;rft.identifier=https%3A%2F%2Farchive.org%2Fdetails%2Fberlinerphilolo02unkngoog%2Fpage%2Fn124%2Fmode%2F1up&amp;rft.creator=Ferdinand+Rudio&amp;rft.publisher=K.Fuhr&amp;rft.date=1907-02-16">&#160;</span></span> </li> <li id="cite_note-Claudi_Alsina-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Claudi_Alsina_2-0">a</a></sup> <sup><a href="#cite_ref-Claudi_Alsina_2-1">b</a></sup></span> <span class="reference-text">Claudi Alsina, Roger B. Nelsen: <i>Perlen der Mathematik - 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen</i>, Springer Spektrum, Springer-Verlag GmbH Berlin 2015, <a href="/wiki/Spezial:ISBN-Suche/9783662454602" class="internal mw-magiclink-isbn">ISBN 978-3-662-45460-2</a>, S. 46.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><span class="cite">Jürg Kramer:&#32;<a rel="nofollow" class="external text" href="https://www.matheon.de/downloadFile.php?file=public_access/school/rentthecenter/RentTheCenter_Kramer_Fermat.pdf"><i>Der große Satz von Fermat - die Lösung eines 300 Jahre alten Problems.</i></a>&#32;Humboldt Universität&#44;<span class="Abrufdatum">&#32;abgerufen am 30.&#160;September 2024</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Der+gro%C3%9Fe+Satz+von+Fermat+-+die+L%C3%B6sung+eines+300+Jahre+alten+Problems&amp;rft.description=Der+gro%C3%9Fe+Satz+von+Fermat+-+die+L%C3%B6sung+eines+300+Jahre+alten+Problems&amp;rft.identifier=https%3A%2F%2Fwww.matheon.de%2FdownloadFile.php%3Ffile%3Dpublic_access%2Fschool%2Frentthecenter%2FRentTheCenter_Kramer_Fermat.pdf&amp;rft.creator=J%C3%BCrg+Kramer&amp;rft.publisher=Humboldt+Universit%C3%A4t">&#160;</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><span class="cite">Andrew John Wiles:&#32;<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170811071550id_/http://scienzamedia.uniroma2.it/~eal/Wiles-Fermat.pdf"><i>Modular elliptic curves and Fermat’s Last Theorem.</i></a>&#32;In:&#32;<i>Annals of Mathematics, 141 (1995), 443-551.</i><span class="Abrufdatum">&#32;Abgerufen am 30.&#160;September 2024</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Modular+elliptic+curves+and+Fermat%E2%80%99s+Last+Theorem&amp;rft.description=Modular+elliptic+curves+and+Fermat%E2%80%99s+Last+Theorem&amp;rft.identifier=https%3A%2F%2Fweb.archive.org%2Fweb%2F20170811071550id_%2Fhttp%3A%2F%2Fscienzamedia.uniroma2.it%2F%7Eeal%2FWiles-Fermat.pdf&amp;rft.creator=Andrew+John+Wiles">&#160;</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><a href="/wiki/Eli_Maor" title="Eli Maor">Eli Maor</a>: <i>The Pythagorean Theorem: A 4,000-year History.</i> Princeton University Press, Princeton 2007, <a href="/wiki/Spezial:ISBN-Suche/0691125260" class="internal mw-magiclink-isbn">ISBN 0-691-12526-0</a>., S. XIII (Vorwort).</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">Elisha S.Loomis: <i>The Pythagorean Proposition</i>, Cleveland 1927, 2. Auflage 1940, Nachdruck: The National Council of Teachers of Mathematics, Washington D. C. 1968.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">371 nach Maor <i>The Pythagorean Theorem</i>, Princeton UP, S. 98. Loomis selbst gibt in der 2. Auflage 367 an. Die genaue Anzahl der Beweis in dem Buch von Loomis ist aufgrund seiner nicht durchgängigen Aufzählungsmethode und der Tatsache, dass einige zirkulär oder unzureichend sind und andere nur Variationen voneinander, nicht ganz klar, <i>Hidden harmonies. The Live and Times of the Pythagorean Theorem</i>, Bloomsbury Press, 2011, Kapitel 5.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Gerwig, <i>Der Satz des Pythagoras in 365 Beweisen</i>, Springer Spektrum 2021.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI47.html">Euclids Elements</a>, Book 1, Proposition 47, David Joyce.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI31.html">Euclids Elements, Book 6, Proposition 31</a>, David Joyce.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text">Eli Maor: <i>The Pythagorean Theorem</i>. Princeton University Press 2007, S. 42.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI48.html">Elemente, Buch 1, Proposition 48</a>, David Joyce.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text">John C. Sparks: <i>The Pythagorean Theorem. Crown Jewel of Mathematics</i>, AuthorHouse, Bloomington, Indiana 2008, S. 36.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text">Maor, <i>The Pythagorean Theorem</i>, Princeton UP, 2007, S. 45.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text">Schopenhauer, Die Welt als Wille und Vorstellung, Band 1, in Julius Frauenstädt (Hrsg.), Schopenhauers Sämtliche Werke, Band 2, Brockhaus, 2. Auflage 1877, S. 84.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text">Felix Klein, Elementarmathematik vom höheren Standpunkt, Band 2, Springer 1925, S. 258.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="https://www.math.uni-bielefeld.de/~ringel/puzzle/puzzle02/pytha.htm"><i>Zhou bi, Mathematischer Kanon des Zhou-Gnomons.</i></a>&#32;Universität Bielefeld&#44;<span class="Abrufdatum">&#32;abgerufen am 24.&#160;Mai 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Zhou+bi%2C+Mathematischer+Kanon+des+Zhou-Gnomons&amp;rft.description=Zhou+bi%2C+Mathematischer+Kanon+des+Zhou-Gnomons&amp;rft.identifier=https%3A%2F%2Fwww.math.uni-bielefeld.de%2F%7Eringel%2Fpuzzle%2Fpuzzle02%2Fpytha.htm&amp;rft.publisher=Universit%C3%A4t+Bielefeld">&#160;</span></span> </li> <li id="cite_note-Schreiber-18"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Schreiber_18-0">a</a></sup> <sup><a href="#cite_ref-Schreiber_18-1">b</a></sup></span> <span class="reference-text">C.J. Scriba, P. Schreiber&#58; <cite style="font-style:italic">5000 Jahre Geometrie — Zhoubi suanjing (Chou Pei Suan Ching)</cite>. Hrsg.: H.-W. Alten, A. Djafari Naini, H. Wesemüller-Kock. 3. Auflage. Springer, Berlin, Heidelberg 2010, <a href="/wiki/Spezial:ISBN-Suche/9783642023613" class="internal mw-magiclink-isbn">ISBN 978-3-642-02361-3</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>111–113</span> (<a rel="nofollow" class="external text" href="https://www.springer.com/de/book/9783642023613">springer.com</a>).<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Satz+des+Pythagoras&amp;rft.au=C.J.+Scriba%2C+P.+Schreiber&amp;rft.btitle=5000+Jahre+Geometrie+%E2%80%94+Zhoubi+suanjing+%28Chou+Pei+Suan+Ching%29&amp;rft.date=2010&amp;rft.edition=3&amp;rft.genre=book&amp;rft.isbn=9783642023613&amp;rft.pages=111-113&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pub=Springer" style="display:none">&#160;</span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text">Wolfgang Zeuge: <i>Nützliche und schöne Geometrie - Eine etwas andere Einführung in die Euklidische Geometrie.</i> Zweite korrigierte und ergänzte Auflage, <a href="/wiki/Springer_Spektrum" title="Springer Spektrum">Springer Spektrum</a>, Springer-Verlag GmbH, <a href="/wiki/Berlin" title="Berlin">Berlin</a> 2021, <a href="/wiki/Spezial:ISBN-Suche/9783662638309" class="internal mw-magiclink-isbn">ISBN 978-3-662-63830-9</a>, S. 29.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text">Manon Bischoff: <a rel="nofollow" class="external text" href="https://www.spektrum.de/kolumne/der-satz-des-pythagoras-wale-und-einsteins-verschollener-beweis/2168841"><i>Der Satz des Pythagoras, Wale und Einsteins verschollener Beweis</i></a>. In: <i>Die fabelhafte Welt der Mathematik</i> auf <a href="/wiki/Spektrum.de" title="Spektrum.de">spektrum.de</a> vom 18. August 2023. Siehe insbes. die beiliegende <a rel="nofollow" class="external text" href="https://static.spektrum.de/fm/912/f2000/Einstein-Beweis_MBi.jpg">Zeichnung</a>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text">Mario Gerwig, Der Satz des Pythagoras in 365 Beweisen, Springer Spektrum, S.&#160;38, Beweis 15; <a href="//doi.org/10.1007/978-3-662-62886-7" class="extiw" title="doi:10.1007/978-3-662-62886-7">doi:10.1007/978-3-662-62886-7</a>. Dazu: <ul><li>Mario Gerwig: <a rel="nofollow" class="external text" href="https://www.spektrum.de/rezension/buchkritik-zu-der-satz-des-pythagoras-in-365-beweisen/1936339">Rezension</a> auf <a href="/wiki/Spektrum.de" title="Spektrum.de">spektrum.de</a> vom 10. November 2021.</li></ul> </span></li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text">Michael de Villiers: <a rel="nofollow" class="external text" href="http://dynamicmathematicslearning.com/thabit-generalization-pythagoras.pdf"><i>Thabit’s Generalisation of the Theorem of Pythagoras</i></a>. In: <i>Learning and Teaching Mathematics.</i> Nr. 23, 2017, S. 22–23.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text">Aydin Sayili: <i>Thâbit Ibn Qurra’s Generalization of the Pythagorean Theorem.</i> In: <i>Isis.</i> Band 51, Nr. 1, 1960, S. 35–37 (<a rel="nofollow" class="external text" href="http://www.jstor.org/stable/227603">JSTOR</a>).</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="#cite_ref-24">↑</a></span> <span class="reference-text">George Gheverghese Joseph: <i>The Crest of the Peacock: Non-European Roots of Mathematics.</i> Princeton University Press, 2011, <a href="/wiki/Spezial:ISBN-Suche/9780691135267" class="internal mw-magiclink-isbn">ISBN 978-0-691-13526-7</a>, S.&#160;492.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text">Howard Eves: <i>Pappus’s Extension of the Pythagorean Theorem.</i> In: <i>The Mathematics Teacher.</i> Band 51, Nr. 7 (November 1958), S.&#160;544–546 (<a href="/wiki/JSTOR" title="JSTOR">JSTOR</a>:<a rel="nofollow" class="external text" href="http://www.jstor.org/stable/27955752">27955752</a>).</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text">Claudi Alsina, Roger B. Nelsen: <i>Charming Proofs: A Journey Into Elegant Mathematics.</i> M. A. A., Washington DC 2010, <a href="/wiki/Spezial:ISBN-Suche/9780883853481" class="internal mw-magiclink-isbn">ISBN 978-0-88385-348-1</a>, S.&#160;77–78 (<a rel="nofollow" class="external text" href="https://books.google.de/books?id=mIT5-BN_L0oC&amp;pg=PA77#v=onepage">eingeschränkte Vorschau</a>&#32;in der Google-Buchsuche).</span> </li> <li id="cite_note-Thomas_Heath-27"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Thomas_Heath_27-0">a</a></sup> <sup><a href="#cite_ref-Thomas_Heath_27-1">b</a></sup></span> <span class="reference-text"><span class="cite">Thomas Heath:&#32;<a rel="nofollow" class="external text" href="https://www.wilbourhall.org/pdfs/heath/HeathVolI.pdf#page=204&amp;zoom=auto,-111,36"><i>A History of Greek Mathematics, Band 1,.</i></a>&#32;(a) Hippocrates’s quadrature of lunes.&#32;In:&#32;<i>wilbourhall.</i>&#32;Clarendon Press, Oxford,&#32;1921,&#32;<span style="white-space:nowrap;">S.&#32;183 ff., Abbildung S. 185</span>&#44;<span class="Abrufdatum">&#32;abgerufen am 25.&#160;September 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=A+History+of+Greek+Mathematics%2C+Band+1%2C&amp;rft.description=A+History+of+Greek+Mathematics%2C+Band+1%2C&amp;rft.identifier=https%3A%2F%2Fwww.wilbourhall.org%2Fpdfs%2Fheath%2FHeathVolI.pdf%23page%3D204%26zoom%3Dauto%2C-111%2C36&amp;rft.creator=Thomas+Heath&amp;rft.publisher=Clarendon+Press%2C+Oxford&amp;rft.date=1921">&#160;</span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text"><span class="cite"><a href="/wiki/Oskar_Becker_(Philosoph)" title="Oskar Becker (Philosoph)">Oskar Becker</a>:&#32;<a rel="nofollow" class="external text" href="https://books.google.de/books?id=Iemc6s5q0_kC&amp;pg=PA58#v=onepage&amp;q&amp;f=false"><i>Das mathematische Denken der Antike, Band 3.</i></a>&#32;Mathematik des 5. Jahrhunderts.&#32;In:&#32;<i>Google Books.</i>&#32;Vandenhoeck &amp; Ruprecht, Göttingen,&#32;1966,&#32;<span style="white-space:nowrap;">S.&#32;58</span>&#44;<span class="Abrufdatum">&#32;abgerufen am 26.&#160;September 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Das+mathematische+Denken+der+Antike%2C+Band+3&amp;rft.description=Das+mathematische+Denken+der+Antike%2C+Band+3&amp;rft.identifier=https%3A%2F%2Fbooks.google.de%2Fbooks%3Fid%3DIemc6s5q0_kC%26pg%3DPA58%23v%3Donepage%26q%26f%3Dfalse&amp;rft.creator=%5B%5BOskar+Becker+%28Philosoph%29%7COskar+Becker%5D%5D&amp;rft.publisher=Vandenhoeck+%26+Ruprecht%2C+G%C3%B6ttingen&amp;rft.date=1966">&#160;</span></span> </li> <li id="cite_note-Euklid-29"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Euklid_29-0">a</a></sup> <sup><a href="#cite_ref-Euklid_29-1">b</a></sup></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="http://opera-platonis.de/euklid/Buch6.pdf#page=23&amp;zoom=80,-154,801"><i>Euklid: Stoicheia. Buch VI.</i></a>&#32;(PDF; 529&#160;kB)&#32;In:&#32;<i>opera-platonis.de/euklid.</i><span class="Abrufdatum">&#32;Abgerufen am 19.&#160;Mai 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Euklid%3A+Stoicheia.+Buch+VI&amp;rft.description=Euklid%3A+Stoicheia.+Buch+VI&amp;rft.identifier=http%3A%2F%2Fopera-platonis.de%2Feuklid%2FBuch6.pdf%23page%3D23%26zoom%3D80%2C-154%2C801">&#160;</span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><a href="#cite_ref-30">↑</a></span> <span class="reference-text"><span class="cite">Naber:&#32;<a rel="nofollow" class="external text" href="https://www.math.uni-bielefeld.de/~ringel/puzzle/puzzle02/pytha-na.htm"><i>Der Satz von Pythagoras ein Satz über Quadrate?</i></a>&#32;Universität Bielefeld&#44;<span class="Abrufdatum">&#32;abgerufen am 24.&#160;Mai 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Der+Satz+von+Pythagoras+ein+Satz+%C3%BCber+Quadrate%3F&amp;rft.description=Der+Satz+von+Pythagoras+ein+Satz+%C3%BCber+Quadrate%3F&amp;rft.identifier=https%3A%2F%2Fwww.math.uni-bielefeld.de%2F%7Eringel%2Fpuzzle%2Fpuzzle02%2Fpytha-na.htm&amp;rft.creator=Naber&amp;rft.publisher=Universit%C3%A4t+Bielefeld">&#160;</span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text">London, <a href="/wiki/British_Museum" title="British Museum">British Museum</a>, <a rel="nofollow" class="external text" href="https://www.britishmuseum.org/research/collection_online/collection_object_details/collection_image_gallery.aspx?partid=1&amp;assetid=415486&amp;objectid=327243">Keilschrifttafel 85196</a>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><a href="#cite_ref-32">↑</a></span> <span class="reference-text"><a href="/wiki/Helmuth_Gericke" title="Helmuth Gericke">Helmuth Gericke</a>: <i>Mathematik in Antike und Orient.</i> Berlin 1984, S. 33 f.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><a href="#cite_ref-33">↑</a></span> <span class="reference-text"><a href="/wiki/Kurt_Vogel_(Mathematikhistoriker)" title="Kurt Vogel (Mathematikhistoriker)">Kurt Vogel</a>: <i>Vorgriechische Mathematik.</i> Teil II: <i>Die Mathematik der Babylonier.</i> Hannover/Paderborn 1959, S. 67 f.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><a href="#cite_ref-34">↑</a></span> <span class="reference-text"><a href="/wiki/Kurt_Vogel_(Mathematikhistoriker)" title="Kurt Vogel (Mathematikhistoriker)">Kurt Vogel</a>: <i>Vorgriechische Mathematik.</i> Teil II: <i>Die Mathematik der Babylonier.</i> Hannover/Paderborn 1959, S. 20.<br /><span class="cite"><a href="/wiki/Franz_Lemmermeyer" title="Franz Lemmermeyer">Franz Lemmermeyer</a>:&#32;<a rel="nofollow" class="external text" href="http://www.rzuser.uni-heidelberg.de/~hb3/HA/babel.pdf#page=54&amp;zoom=90,-404,789"><i>Die Mathematik der Babylonier.</i></a>&#32;(PDF; 7,6&#160;MB)&#32;2.4 Das Babylonische Maßsystem.&#32;Universität Heidelberg,&#32;27.&#160;Oktober 2015,&#32;<span style="white-space:nowrap;">S.&#32;44 ff.</span>&#44;<span class="Abrufdatum">&#32;abgerufen am 23.&#160;Mai 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Die+Mathematik+der+Babylonier&amp;rft.description=Die+Mathematik+der+Babylonier&amp;rft.identifier=http%3A%2F%2Fwww.rzuser.uni-heidelberg.de%2F%7Ehb3%2FHA%2Fbabel.pdf%23page%3D54%26zoom%3D90%2C-404%2C789&amp;rft.creator=%5B%5BFranz+Lemmermeyer%5D%5D&amp;rft.publisher=Universit%C3%A4t+Heidelberg&amp;rft.date=2015-10-27">&#160;</span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text">Helmuth Gericke: <i>Mathematik in Antike und Orient.</i> Berlin u.&#160;a. 1984, S. 66–69.</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><a href="#cite_ref-36">↑</a></span> <span class="reference-text">Oskar Becker: <i>Das mathematische Denken der Antike.</i> Göttingen 1966, S. 55 f. (<a rel="nofollow" class="external text" href="https://books.google.de/books?id=Iemc6s5q0_kC&amp;pg=PA55#v=onepage">eingeschränkte Vorschau</a>&#32;in der Google-Buchsuche).</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><a href="#cite_ref-37">↑</a></span> <span class="reference-text">Ausführliche Darlegung des Sachverhalts bei Thomas L. Heath: <i>The thirteen books of Euclid’s Elements.</i> Band 1. 2. Auflage, New York 1956, S. 360–364.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><a href="#cite_ref-38">↑</a></span> <span class="reference-text">Oskar Becker: <i>Die Grundlagen der Mathematik in geschichtlicher Entwicklung.</i> Freiburg 1964, S. 20.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><a href="#cite_ref-39">↑</a></span> <span class="reference-text">Jean-Claude Martzloff: <i>A History of Chinese Mathematics.</i> Berlin u.&#160;a. 1997, S. 124, 126.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><a href="#cite_ref-40">↑</a></span> <span class="reference-text">Helmuth Gericke: <i>Mathematik in Antike und Orient.</i> Berlin 1984, S. 178 f.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><a href="#cite_ref-41">↑</a></span> <span class="reference-text">Jean-Claude Martzloff: <i>A History of Chinese Mathematics.</i> Berlin u.&#160;a. 1997, S. 298 f.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><a href="#cite_ref-42">↑</a></span> <span class="reference-text">Oskar Becker: <i>Das mathematische Denken der Antike.</i> Göttingen 1966, S. 56 (<a rel="nofollow" class="external text" href="https://books.google.de/books?id=Iemc6s5q0_kC&amp;pg=PA56#v=onepage">eingeschränkte Vorschau</a>&#32;in der Google-Buchsuche).<br />Helmuth Gericke: <i>Mathematik in Antike und Orient.</i> Berlin 1984, S. 179 dagegen sieht darin noch keinen Beweis.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><a href="#cite_ref-43">↑</a></span> <span class="reference-text">Jean-Claude Martzloff: <i>A History of Chinese Mathematics.</i> Berlin u.&#160;a. 1997, S. 296–298. Die zugehörige Zeichnung, die für das richtige Verständnis benötigt wird, ist nicht erhalten geblieben.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><a href="#cite_ref-44">↑</a></span> <span class="reference-text">Maor, The Pythagorean Theorem, Princeton University Press 2007, S. 25.</span> </li> <li id="cite_note-waerden-45"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-waerden_45-0">a</a></sup> <sup><a href="#cite_ref-waerden_45-1">b</a></sup></span> <span class="reference-text">van der Waerden, Science Awakening, Kluwer 1988, S. 100.</span> </li> <li id="cite_note-Heath-46"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Heath_46-0">a</a></sup> <sup><a href="#cite_ref-Heath_46-1">b</a></sup></span> <span class="reference-text">Heath, A History of Greek Mathematics, Oxford 1921, Band 1, S. 144.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><a href="#cite_ref-47">↑</a></span> <span class="reference-text">Walter Burkert: <i>Weisheit und Wissenschaft. Studien zu Pythagoras, Philolaos und Platon.</i> Nürnberg 1962, <a rel="nofollow" class="external text" href="http://daten.digitale-sammlungen.de/~db/ausgaben/zweiseitenansicht.html?fip=193.174.98.30&amp;id=00116254&amp;seite=416">S. 405 f.</a>, <a rel="nofollow" class="external text" href="http://daten.digitale-sammlungen.de/~db/ausgaben/zweiseitenansicht.html?fip=193.174.98.30&amp;id=00116254&amp;seite=453">441 ff.</a></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><a href="#cite_ref-48">↑</a></span> <span class="reference-text">Leonid Zhmud: <i>Wissenschaft, Philosophie und Religion im frühen Pythagoreismus.</i> Berlin 1997, S. 141–151, 160–163 (<a rel="nofollow" class="external text" href="https://books.google.de/books?id=9ZBsDwAAQBAJ&amp;pg=PA141#v=onepage">eingeschränkte Vorschau</a>&#32;in der Google-Buchsuche).</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><a href="#cite_ref-49">↑</a></span> <span class="reference-text">Siehe auch Thomas L. Heath: <i>The thirteen books of Euclid’s Elements.</i> Band 1. 2. Auflage. New York 1956, S. 350–360.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><a href="#cite_ref-50">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="http://www.opera-platonis.de/euklid/Euklid_Stoicheia.pdf#page=70&amp;zoom=80,-154,438"><i>Euklid: Elemente. Die Stoicheia. Buch 1, Satz 47.</i></a>&#32;(PDF; 5,6&#160;MB)&#32;In:&#32;<i>opera-platonis.de.</i><span class="Abrufdatum">&#32;Abgerufen am 15.&#160;Juli 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Euklid%3A+Elemente.+Die+Stoicheia.+Buch+1%2C+Satz+47&amp;rft.description=Euklid%3A+Elemente.+Die+Stoicheia.+Buch+1%2C+Satz+47&amp;rft.identifier=http%3A%2F%2Fwww.opera-platonis.de%2Feuklid%2FEuklid_Stoicheia.pdf%23page%3D70%26zoom%3D80%2C-154%2C438">&#160;</span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><a href="#cite_ref-51">↑</a></span> <span class="reference-text">Proclos, A commentary on the first Book of Euclid's Elements, Hrsg. Glenn R. Morrow, Princeton UP 1970, S. 337.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><a href="#cite_ref-52">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A2008.01.0395%3Asection%3D11">Plutarch, Non posse suaviter vivi secundum Epicurum</a>, Kapitel IX, Goodwin (Übersetzer), Cambridge UP 1874, Projekt Perseus.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><a href="#cite_ref-53">↑</a></span> <span class="reference-text">Vitruv: <i>Ten Books on Architecture.</i> Cambridge University Press 1999 (Hrsg. Ingrid D. Rowland), S. 107/108, Kapitel 9, Vorwort, Abschnitt 6.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><a href="#cite_ref-54">↑</a></span> <span class="reference-text">Apollodoros nach Diogenes Laertios 8,12, übersetzt von <a href="/wiki/Otto_Apelt" title="Otto Apelt">Otto Apelt</a>: <i>Diogenes Laertios: Leben und Meinungen berühmter Philosophen.</i> 3. Auflage. Hamburg 1990, S. 116.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><a href="#cite_ref-55">↑</a></span> <span class="reference-text">Leonid Zhmud: <i>Pythagoras and the Early Pythagoreans.</i> Oxford 2012, S. 59, 257, 267–269.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><a href="#cite_ref-56">↑</a></span> <span class="reference-text">Walter Burkert: <i>Weisheit und Wissenschaft. Studien zu Pythagoras, Philolaos und Platon.</i> Nürnberg 1962, S. 168 und Anm. 152, S. 405 f.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><a href="#cite_ref-57">↑</a></span> <span class="reference-text">Aus dem Englischen übersetzt nach der Zitierung in Dan Pedoe <i>Geometry and the liberal arts</i>, St. Martin's Press 1976, S. 72. Der dort zitierte Folgesatz <i>Den ersten können wir mit einem Batzen Gold vergleichen, den zweiten können wir als kostbares Juwel bezeichnen</i> fehlt im lateinischen Original, Kepler, Mysterium Cosmographicum, Werkausgabe Band 8 (Franz Hammer Hrsg.), C. H. Beck 1963, S. 78 (<i>Atque hactenus usui fuit aureum illud theorema Pythagorae potentijs laterum in triangulo rectangulo, prop. 47.lib. 1. In caeteris duobus corporibus altero illo Geometriae thesauro opus est de linea secundum extremam et mediam rationem secta, qui est propositio 30. sexti.</i>). Dort ist einfach nur von zwei goldenen Sätzen der Geometrie die Rede, dem Satz des Pythagoras (Euklid, Elemente, I, 47) und dem Satz vom goldenen Schnitt (Euklid Elemente, VI, 30), wobei letzterer bei der Konstruktion des <a href="/wiki/Dodekaeder" title="Dodekaeder">Dodekaeders</a> verwendet wird, mit den anderen regulären Polyedern eines der Themen in Keplers Buch.</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><a href="#cite_ref-58">↑</a></span> <span class="reference-text">Maor, The Pythagorean Theorem, 2007, S. 47.</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><a href="#cite_ref-59">↑</a></span> <span class="reference-text">Hans Christian Andersen: <i>H. C. Andersens samlede værker.</i> Band 7: <i>Digte I. 1823–1839.</i> Kopenhagen 2005, S. 311–313, Kommentar S. 638–639 (<a rel="nofollow" class="external text" href="http://visithcandersen.dk/d-hca-formens-magi.htm">visithcandersen.dk</a>).</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><a href="#cite_ref-60">↑</a></span> <span class="reference-text"><span class="cite"><a href="/wiki/Hans-Joachim_Schlichting" title="Hans-Joachim Schlichting">Hans-Joachim Schlichting</a>:&#32;<a rel="nofollow" class="external text" href="https://hjschlichting.wordpress.com/2017/03/09/satz-des-pythagoras-formen-der-ewigen-magie/"><i>Die Welt physikalisch gesehen. – Formen der ewigen Magie.</i></a>&#32;In:&#32;<i>hjschlichting.wordpress.com.</i>&#32;9.&#160;März 2017&#44;<span class="Abrufdatum">&#32;abgerufen am 13.&#160;Juli 2020</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Die+Welt+physikalisch+gesehen.++%E2%80%93+Formen+der+ewigen+Magie&amp;rft.description=Die+Welt+physikalisch+gesehen.++%E2%80%93+Formen+der+ewigen+Magie&amp;rft.identifier=https%3A%2F%2Fhjschlichting.wordpress.com%2F2017%2F03%2F09%2Fsatz-des-pythagoras-formen-der-ewigen-magie%2F&amp;rft.creator=%5B%5BHans-Joachim+Schlichting%5D%5D&amp;rft.date=2017-03-09">&#160;</span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><a href="#cite_ref-61">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.hs-augsburg.de/~harsch/germanica/Chronologie/19Jh/Chamisso/cha_1836.html">Adelbert von Chamisso, Vom Pythagoräischen Lehrsatz</a>, Bibliotheca Augustana.</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><a href="#cite_ref-62">↑</a></span> <span class="reference-text"><i>But neither thirty years, nor thirty centuries, affect the clearness, or the charm of Geometrical truths. Such a theorem as '"the square of the hypotenuse of a right -angled triangle is equal to the sum of the squares of the sides" is as dazzlingly beautiful now as it was in the day when Pythagoras first discovered it, …</i>, in: Carroll, A new theory of parallels, Macmillan 1890, S. XVI, <a rel="nofollow" class="external text" href="https://books.google.de/books/about/A_new_theory_of_parallels.html?id=DBkPAAAAIAAJ&amp;redir_esc=y">google books</a>.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><a href="#cite_ref-63">↑</a></span> <span class="reference-text"><span class="cite">Hans-Joachim Schlichting:&#32;<a rel="nofollow" class="external text" href="https://hjschlichting.wordpress.com/2017/03/05/9476/"><i>Die Welt physikalisch gesehen. Der Satz des Pythagoras – revisited.</i></a>&#32;In:&#32;<i>hjschlichting.wordpress.com.</i>&#32;5.&#160;März 2017&#44;<span class="Abrufdatum">&#32;abgerufen am 11.&#160;Juli 2019</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3ASatz+des+Pythagoras&amp;rft.title=Die+Welt+physikalisch+gesehen.+Der+Satz+des+Pythagoras+%E2%80%93+revisited&amp;rft.description=Die+Welt+physikalisch+gesehen.+Der+Satz+des+Pythagoras+%E2%80%93+revisited&amp;rft.identifier=https%3A%2F%2Fhjschlichting.wordpress.com%2F2017%2F03%2F05%2F9476%2F&amp;rft.creator=Hans-Joachim+Schlichting&amp;rft.date=2017-03-05">&#160;</span></span> </li> </ol> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable noprint" style="border-top-style: solid; border-top-width: 1px; clear: both; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="Vorlage_Exzellent"><div class="noviewer noresize" style="display: table-cell; padding-bottom: 0.2em; padding-left: 0.25em; padding-right: 1em; padding-top: 0.2em; vertical-align: middle;" aria-hidden="true" role="presentation"><span typeof="mw:File"><a href="/wiki/Wikipedia:Exzellente_Artikel" title="Wikipedia:Exzellente Artikel"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/24px-Qsicon_Exzellent.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/36px-Qsicon_Exzellent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Qsicon_Exzellent.svg/48px-Qsicon_Exzellent.svg.png 2x" data-file-width="24" data-file-height="24" /></a></span></div> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div role="contentinfo"> Dieser Artikel wurde am 16.&#160;Juni 2004 in <a href="/wiki/Spezial:Permanenter_Link/1556350" title="Spezial:Permanenter Link/1556350">dieser Version</a> in die Liste der <a href="/wiki/Wikipedia:Exzellente_Artikel" title="Wikipedia:Exzellente Artikel">exzellenten Artikel</a> aufgenommen.</div> </div></div> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable normdaten-typ-s" style="border-style: solid; border-width: 1px; clear: left; margin-bottom:1em; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="normdaten"> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div> Normdaten&#160;(Sachbegriff): <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4176546-1">4176546-1</a></span> <span class="noprint">(<a rel="nofollow" class="external text" href="https://lobid.org/gnd/4176546-1">lobid</a>, <a rel="nofollow" class="external text" href="https://swb.bsz-bw.de/DB=2.104/SET=1/TTL=1/CMD?retrace=0&amp;trm_old=&amp;ACT=SRCHA&amp;IKT=2999&amp;SRT=RLV&amp;TRM=4176546-1">OGND</a><span class="metadata">, <a rel="nofollow" class="external text" href="https://prometheus.lmu.de/gnd/4176546-1">AKS</a></span>)</span> &#124; <a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://lccn.loc.gov/sh85109374">sh85109374</a></span> <span class="metadata"></span></div> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Satz_des_Pythagoras&amp;oldid=250610983">https://de.wikipedia.org/w/index.php?title=Satz_des_Pythagoras&amp;oldid=250610983</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Wikipedia:Exzellent" title="Kategorie:Wikipedia:Exzellent">Wikipedia:Exzellent</a></li><li><a href="/wiki/Kategorie:Dreiecksgeometrie" title="Kategorie:Dreiecksgeometrie">Dreiecksgeometrie</a></li><li><a href="/wiki/Kategorie:Satz_(Ebene_Geometrie)" title="Kategorie:Satz (Ebene Geometrie)">Satz (Ebene Geometrie)</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Satz+des+Pythagoras" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Satz+des+Pythagoras" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Satz_des_Pythagoras" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Satz_des_Pythagoras" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Satz_des_Pythagoras"><span>Lesen</span></a></li><li id="ca-viewsource" class="mw-list-item"><a href="/w/index.php?title=Satz_des_Pythagoras&amp;action=edit" title="Diese Seite ist geschützt. Ihr Quelltext kann dennoch angesehen und kopiert werden. [e]" accesskey="e"><span>Quelltext anzeigen</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Satz_des_Pythagoras&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Satz_des_Pythagoras" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Satz_des_Pythagoras" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Satz_des_Pythagoras&amp;oldid=250610983" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Satz_des_Pythagoras&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Satz_des_Pythagoras&amp;id=250610983&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FSatz_des_Pythagoras"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FSatz_des_Pythagoras"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Satz_des_Pythagoras&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Satz_des_Pythagoras&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Pythagorean_theorem" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11518" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Pythagoras_se_stelling" title="Pythagoras se stelling – Afrikaans" lang="af" hreflang="af" data-title="Pythagoras se stelling" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Satz_des_Pythagoras" title="Satz des Pythagoras – Schweizerdeutsch" lang="gsw" hreflang="gsw" data-title="Satz des Pythagoras" data-language-autonym="Alemannisch" data-language-local-name="Schweizerdeutsch" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8D%93%E1%8B%AD%E1%89%B3%E1%8C%8E%E1%88%A8%E1%88%B5_%E1%8A%A5%E1%88%AD%E1%8C%89%E1%8C%A5" title="ፓይታጎረስ እርጉጥ – Amharisch" lang="am" hreflang="am" data-title="ፓይታጎረስ እርጉጥ" data-language-autonym="አማርኛ" data-language-local-name="Amharisch" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Teorema_de_Pitagoras" title="Teorema de Pitagoras – Aragonesisch" lang="an" hreflang="an" data-title="Teorema de Pitagoras" data-language-autonym="Aragonés" data-language-local-name="Aragonesisch" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%B1%D9%87%D9%86%D8%A9_%D9%81%D9%8A%D8%AB%D8%A7%D8%BA%D9%88%D8%B1%D8%B3" title="مبرهنة فيثاغورس – Arabisch" lang="ar" hreflang="ar" data-title="مبرهنة فيثاغورس" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AA%E0%A6%BE%E0%A6%87%E0%A6%A5%E0%A6%BE%E0%A6%97%E0%A7%8B%E0%A7%B0%E0%A6%BE%E0%A6%9B%E0%A7%B0_%E0%A6%89%E0%A6%AA%E0%A6%AA%E0%A6%BE%E0%A6%A6%E0%A7%8D%E0%A6%AF" title="পাইথাগোৰাছৰ উপপাদ্য – Assamesisch" lang="as" hreflang="as" data-title="পাইথাগোৰাছৰ উপপাদ্য" data-language-autonym="অসমীয়া" data-language-local-name="Assamesisch" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Teorema_de_Pit%C3%A1gores" title="Teorema de Pitágores – Asturisch" lang="ast" hreflang="ast" data-title="Teorema de Pitágores" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-awa mw-list-item"><a href="https://awa.wikipedia.org/wiki/%E0%A4%AA%E0%A4%BE%E0%A4%87%E0%A4%A5%E0%A4%BE%E0%A4%97%E0%A5%8B%E0%A4%B0%E0%A4%B8_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A5%87%E0%A4%AF" title="पाइथागोरस प्रमेय – Awadhi" lang="awa" hreflang="awa" data-title="पाइथागोरस प्रमेय" data-language-autonym="अवधी" data-language-local-name="Awadhi" class="interlanguage-link-target"><span>अवधी</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Pifaqor_teoremi" title="Pifaqor teoremi – Aserbaidschanisch" lang="az" hreflang="az" data-title="Pifaqor teoremi" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%81%DB%8C%D8%AB%D8%A7%D8%BA%D9%88%D8%B1%D8%B3_%D8%AA%D8%A6%D9%88%D8%B1%DB%8C%D8%B3%DB%8C" title="فیثاغورس تئوریسی – Südaserbaidschanisch" lang="azb" hreflang="azb" data-title="فیثاغورس تئوریسی" data-language-autonym="تۆرکجه" data-language-local-name="Südaserbaidschanisch" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0%D2%BB%D1%8B" title="Пифагор теоремаһы – Baschkirisch" lang="ba" hreflang="ba" data-title="Пифагор теоремаһы" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-ban mw-list-item"><a href="https://ban.wikipedia.org/wiki/Rumus_Pythagoras" title="Rumus Pythagoras – Balinesisch" lang="ban" hreflang="ban" data-title="Rumus Pythagoras" data-language-autonym="Basa Bali" data-language-local-name="Balinesisch" class="interlanguage-link-target"><span>Basa Bali</span></a></li><li class="interlanguage-link interwiki-bar badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://bar.wikipedia.org/wiki/Sotz_vum_Pythagoras" title="Sotz vum Pythagoras – Bairisch" lang="bar" hreflang="bar" data-title="Sotz vum Pythagoras" data-language-autonym="Boarisch" data-language-local-name="Bairisch" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/P%C4%97taguora_teuorema" title="Pėtaguora teuorema – Samogitisch" lang="sgs" hreflang="sgs" data-title="Pėtaguora teuorema" data-language-autonym="Žemaitėška" data-language-local-name="Samogitisch" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Teorema_ni_Pythagoras" title="Teorema ni Pythagoras – Zentralbikolano" lang="bcl" hreflang="bcl" data-title="Teorema ni Pythagoras" data-language-autonym="Bikol Central" data-language-local-name="Zentralbikolano" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A2%D1%8D%D0%B0%D1%80%D1%8D%D0%BC%D0%B0_%D0%9F%D1%96%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D0%B0" title="Тэарэма Піфагора – Belarussisch" lang="be" hreflang="be" data-title="Тэарэма Піфагора" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A2%D1%8D%D0%B0%D1%80%D1%8D%D0%BC%D0%B0_%D0%9F%D1%96%D1%82%D0%B0%D0%B3%D0%BE%D1%80%D0%B0" title="Тэарэма Пітагора – Weißrussisch (Taraschkewiza)" lang="be-tarask" hreflang="be-tarask" data-title="Тэарэма Пітагора" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Weißrussisch (Taraschkewiza)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D0%B8%D1%82%D0%B0%D0%B3%D0%BE%D1%80%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Питагорова теорема – Bulgarisch" lang="bg" hreflang="bg" data-title="Питагорова теорема" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A6%BF%E0%A6%A5%E0%A6%BE%E0%A6%97%E0%A7%8B%E0%A6%B0%E0%A6%BE%E0%A6%B8%E0%A7%87%E0%A6%B0_%E0%A6%89%E0%A6%AA%E0%A6%AA%E0%A6%BE%E0%A6%A6%E0%A7%8D%E0%A6%AF" title="পিথাগোরাসের উপপাদ্য – Bengalisch" lang="bn" hreflang="bn" data-title="পিথাগোরাসের উপপাদ্য" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Teorem_Pythagoras" title="Teorem Pythagoras – Bretonisch" lang="br" hreflang="br" data-title="Teorem Pythagoras" data-language-autonym="Brezhoneg" data-language-local-name="Bretonisch" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Pitagorina_teorema" title="Pitagorina teorema – Bosnisch" lang="bs" hreflang="bs" data-title="Pitagorina teorema" data-language-autonym="Bosanski" data-language-local-name="Bosnisch" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teorema_de_Pit%C3%A0gores" title="Teorema de Pitàgores – Katalanisch" lang="ca" hreflang="ca" data-title="Teorema de Pitàgores" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AA%DB%8C%DB%86%D8%B1%D9%85%DB%8C_%D9%BE%DB%8C%D8%AA%D8%A7%DA%AF%DB%86%D8%B1%D8%B3" title="تیۆرمی پیتاگۆرس – Zentralkurdisch" lang="ckb" hreflang="ckb" data-title="تیۆرمی پیتاگۆرس" data-language-autonym="کوردی" data-language-local-name="Zentralkurdisch" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-co mw-list-item"><a href="https://co.wikipedia.org/wiki/Tiurema_di_Pitagora" title="Tiurema di Pitagora – Korsisch" lang="co" hreflang="co" data-title="Tiurema di Pitagora" data-language-autonym="Corsu" data-language-local-name="Korsisch" class="interlanguage-link-target"><span>Corsu</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Pythagorova_v%C4%9Bta" title="Pythagorova věta – Tschechisch" lang="cs" hreflang="cs" data-title="Pythagorova věta" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B8" title="Пифагор теореми – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Пифагор теореми" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Theorem_Pythagoras" title="Theorem Pythagoras – Walisisch" lang="cy" hreflang="cy" data-title="Theorem Pythagoras" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Den_pythagor%C3%A6iske_l%C3%A6res%C3%A6tning" title="Den pythagoræiske læresætning – Dänisch" lang="da" hreflang="da" data-title="Den pythagoræiske læresætning" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Teorem%C3%AA_Pisagori" title="Teoremê Pisagori – Zazaki" lang="diq" hreflang="diq" data-title="Teoremê Pisagori" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-dtp mw-list-item"><a href="https://dtp.wikipedia.org/wiki/Teorem_Pythagoras" title="Teorem Pythagoras – Zentral-Dusun" lang="dtp" hreflang="dtp" data-title="Teorem Pythagoras" data-language-autonym="Kadazandusun" data-language-local-name="Zentral-Dusun" class="interlanguage-link-target"><span>Kadazandusun</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CF%85%CE%B8%CE%B1%CE%B3%CF%8C%CF%81%CE%B5%CE%B9%CE%BF_%CE%B8%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1" title="Πυθαγόρειο θεώρημα – Griechisch" lang="el" hreflang="el" data-title="Πυθαγόρειο θεώρημα" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Tior%C3%A9ma_%27d_Pit%C3%A0gora" title="Tioréma &#039;d Pitàgora – Emilianisch" lang="egl" hreflang="egl" data-title="Tioréma &#039;d Pitàgora" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emilianisch" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://en.wikipedia.org/wiki/Pythagorean_theorem" title="Pythagorean theorem – Englisch" lang="en" hreflang="en" data-title="Pythagorean theorem" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://eo.wikipedia.org/wiki/Teoremo_de_Pitagoro" title="Teoremo de Pitagoro – Esperanto" lang="eo" hreflang="eo" data-title="Teoremo de Pitagoro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_de_Pit%C3%A1goras" title="Teorema de Pitágoras – Spanisch" lang="es" hreflang="es" data-title="Teorema de Pitágoras" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Pythagorase_teoreem" title="Pythagorase teoreem – Estnisch" lang="et" hreflang="et" data-title="Pythagorase teoreem" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Pitagorasen_teorema" title="Pitagorasen teorema – Baskisch" lang="eu" hreflang="eu" data-title="Pitagorasen teorema" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%B6%DB%8C%D9%87_%D9%81%DB%8C%D8%AB%D8%A7%D8%BA%D9%88%D8%B1%D8%B3" title="قضیه فیثاغورس – Persisch" lang="fa" hreflang="fa" data-title="قضیه فیثاغورس" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Pythagoraan_lause" title="Pythagoraan lause – Finnisch" lang="fi" hreflang="fi" data-title="Pythagoraan lause" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Pythagore" title="Théorème de Pythagore – Französisch" lang="fr" hreflang="fr" data-title="Théorème de Pythagore" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Pythagoras_sin_reegel" title="Pythagoras sin reegel – Nordfriesisch" lang="frr" hreflang="frr" data-title="Pythagoras sin reegel" data-language-autonym="Nordfriisk" data-language-local-name="Nordfriesisch" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Teoirim_Ph%C3%ADotagar%C3%A1sach" title="Teoirim Phíotagarásach – Irisch" lang="ga" hreflang="ga" data-title="Teoirim Phíotagarásach" data-language-autonym="Gaeilge" data-language-local-name="Irisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Teorema_de_Pit%C3%A1goras" title="Teorema de Pitágoras – Galicisch" lang="gl" hreflang="gl" data-title="Teorema de Pitágoras" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Pit%C3%A1gora_remimoa%C3%B1eter%C3%A3" title="Pitágora remimoañeterã – Guaraní" lang="gn" hreflang="gn" data-title="Pitágora remimoañeterã" data-language-autonym="Avañe&#039;ẽ" data-language-local-name="Guaraní" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%AA%E0%AA%BE%E0%AA%AF%E0%AA%A5%E0%AA%BE%E0%AA%97%E0%AB%8B%E0%AA%B0%E0%AA%B8%E0%AA%A8%E0%AB%81%E0%AA%82_%E0%AA%AA%E0%AB%8D%E0%AA%B0%E0%AA%AE%E0%AB%87%E0%AA%AF" title="પાયથાગોરસનું પ્રમેય – Gujarati" lang="gu" hreflang="gu" data-title="પાયથાગોરસનું પ્રમેય" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%A4%D7%98_%D7%A4%D7%99%D7%AA%D7%92%D7%95%D7%A8%D7%A1" title="משפט פיתגורס – Hebräisch" lang="he" hreflang="he" data-title="משפט פיתגורס" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A4%BE%E0%A4%87%E0%A4%A5%E0%A4%BE%E0%A4%97%E0%A5%8B%E0%A4%B0%E0%A4%B8_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A5%87%E0%A4%AF" title="पाइथागोरस प्रमेय – Hindi" lang="hi" hreflang="hi" data-title="पाइथागोरस प्रमेय" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Pythagorean_theorem" title="Pythagorean theorem – Fidschi-Hindi" lang="hif" hreflang="hif" data-title="Pythagorean theorem" data-language-autonym="Fiji Hindi" data-language-local-name="Fidschi-Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Pitagorin_pou%C4%8Dak" title="Pitagorin poučak – Kroatisch" lang="hr" hreflang="hr" data-title="Pitagorin poučak" data-language-autonym="Hrvatski" data-language-local-name="Kroatisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Sada_Pythagorasa" title="Sada Pythagorasa – Obersorbisch" lang="hsb" hreflang="hsb" data-title="Sada Pythagorasa" data-language-autonym="Hornjoserbsce" data-language-local-name="Obersorbisch" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pitagorasz-t%C3%A9tel" title="Pitagorasz-tétel – Ungarisch" lang="hu" hreflang="hu" data-title="Pitagorasz-tétel" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%B5%D5%B8%D6%82%D5%A9%D5%A1%D5%A3%D5%B8%D6%80%D5%A1%D5%BD%D5%AB_%D5%A9%D5%A5%D5%B8%D6%80%D5%A5%D5%B4" title="Պյութագորասի թեորեմ – Armenisch" lang="hy" hreflang="hy" data-title="Պյութագորասի թեորեմ" data-language-autonym="Հայերեն" data-language-local-name="Armenisch" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Theorema_de_Pythagoras" title="Theorema de Pythagoras – Interlingua" lang="ia" hreflang="ia" data-title="Theorema de Pythagoras" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Teorem_Pythagoras" title="Teorem Pythagoras – Iban" lang="iba" hreflang="iba" data-title="Teorem Pythagoras" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teorema_Pythagoras" title="Teorema Pythagoras – Indonesisch" lang="id" hreflang="id" data-title="Teorema Pythagoras" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Teoremo_di_Pitagoro" title="Teoremo di Pitagoro – Ido" lang="io" hreflang="io" data-title="Teoremo di Pitagoro" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Regla_P%C3%BD%C3%BEag%C3%B3rasar" title="Regla Pýþagórasar – Isländisch" lang="is" hreflang="is" data-title="Regla Pýþagórasar" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_di_Pitagora" title="Teorema di Pitagora – Italienisch" lang="it" hreflang="it" data-title="Teorema di Pitagora" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%94%E3%82%BF%E3%82%B4%E3%83%A9%E3%82%B9%E3%81%AE%E5%AE%9A%E7%90%86" title="ピタゴラスの定理 – Japanisch" lang="ja" hreflang="ja" data-title="ピタゴラスの定理" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9E%E1%83%98%E1%83%97%E1%83%90%E1%83%92%E1%83%9D%E1%83%A0%E1%83%90%E1%83%A1_%E1%83%97%E1%83%94%E1%83%9D%E1%83%A0%E1%83%94%E1%83%9B%E1%83%90" title="პითაგორას თეორემა – Georgisch" lang="ka" hreflang="ka" data-title="პითაგორას თეორემა" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Asekkud_n_Pythagore" title="Asekkud n Pythagore – Kabylisch" lang="kab" hreflang="kab" data-title="Asekkud n Pythagore" data-language-autonym="Taqbaylit" data-language-local-name="Kabylisch" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kbd mw-list-item"><a href="https://kbd.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D0%B8_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D1%8D" title="Пифагор и теоремэ – Kabardinisch" lang="kbd" hreflang="kbd" data-title="Пифагор и теоремэ" data-language-autonym="Адыгэбзэ" data-language-local-name="Kabardinisch" class="interlanguage-link-target"><span>Адыгэбзэ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0%D1%81%D1%8B" title="Пифагор теоремасы – Kasachisch" lang="kk" hreflang="kk" data-title="Пифагор теоремасы" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%91%E1%9F%92%E1%9E%9A%E1%9E%B9%E1%9E%9F%E1%9F%92%E1%9E%8F%E1%9E%B8%E1%9E%94%E1%9E%91%E1%9E%96%E1%9E%B8%E1%9E%8F%E1%9E%B6%E1%9E%80%E1%9E%9A" title="ទ្រឹស្តីបទពីតាករ – Khmer" lang="km" hreflang="km" data-title="ទ្រឹស្តីបទពីតាករ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%94%BC%ED%83%80%EA%B3%A0%EB%9D%BC%EC%8A%A4_%EC%A0%95%EB%A6%AC" title="피타고라스 정리 – Koreanisch" lang="ko" hreflang="ko" data-title="피타고라스 정리" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Teorema_P%C3%AEtagoras" title="Teorema Pîtagoras – Kurdisch" lang="ku" hreflang="ku" data-title="Teorema Pîtagoras" data-language-autonym="Kurdî" data-language-local-name="Kurdisch" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0%D1%81%D1%8B" title="Пифагор теоремасы – Kirgisisch" lang="ky" hreflang="ky" data-title="Пифагор теоремасы" data-language-autonym="Кыргызча" data-language-local-name="Kirgisisch" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Theorema_Pythagorae" title="Theorema Pythagorae – Latein" lang="la" hreflang="la" data-title="Theorema Pythagorae" data-language-autonym="Latina" data-language-local-name="Latein" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Teorem_de_Pitagora" title="Teorem de Pitagora – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Teorem de Pitagora" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Teorema_de_Pitagora" title="Teorema de Pitagora – Lombardisch" lang="lmo" hreflang="lmo" data-title="Teorema de Pitagora" data-language-autonym="Lombard" data-language-local-name="Lombardisch" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://ln.wikipedia.org/wiki/Bondeko_ya_mpanzi-mis%C3%A1to" title="Bondeko ya mpanzi-misáto – Lingala" lang="ln" hreflang="ln" data-title="Bondeko ya mpanzi-misáto" data-language-autonym="Lingála" data-language-local-name="Lingala" class="interlanguage-link-target"><span>Lingála</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%97%E0%BA%B4%E0%BA%94%E0%BA%AA%E0%BA%B0%E0%BA%94%E0%BA%B5_%E0%BA%9B%E0%BA%B5%E0%BA%97%E0%BA%B2%E0%BB%82%E0%BA%81%E0%BA%A3%E0%BA%BD%E0%BA%99" title="ທິດສະດີ ປີທາໂກຣຽນ – Laotisch" lang="lo" hreflang="lo" data-title="ທິດສະດີ ປີທາໂກຣຽນ" data-language-autonym="ລາວ" data-language-local-name="Laotisch" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Pitagoro_teorema" title="Pitagoro teorema – Litauisch" lang="lt" hreflang="lt" data-title="Pitagoro teorema" data-language-autonym="Lietuvių" data-language-local-name="Litauisch" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Pitagora_teor%C4%93ma" title="Pitagora teorēma – Lettisch" lang="lv" hreflang="lv" data-title="Pitagora teorēma" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Raikitr%27_Pytagore" title="Raikitr&#039; Pytagore – Malagasy" lang="mg" hreflang="mg" data-title="Raikitr&#039; Pytagore" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D0%B8%D1%82%D0%B0%D0%B3%D0%BE%D1%80%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Питагорова теорема – Mazedonisch" lang="mk" hreflang="mk" data-title="Питагорова теорема" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AA%E0%B5%88%E0%B4%A4%E0%B4%97%E0%B5%8B%E0%B4%B1%E0%B4%B8%E0%B5%8D_%E0%B4%B8%E0%B4%BF%E0%B4%A6%E0%B5%8D%E0%B4%A7%E0%B4%BE%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B4%82" title="പൈതഗോറസ് സിദ്ധാന്തം – Malayalam" lang="ml" hreflang="ml" data-title="പൈതഗോറസ് സിദ്ധാന്തം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D1%8B%D0%BD_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC" title="Пифагорын теорем – Mongolisch" lang="mn" hreflang="mn" data-title="Пифагорын теорем" data-language-autonym="Монгол" data-language-local-name="Mongolisch" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AA%E0%A4%BE%E0%A4%AF%E0%A4%A5%E0%A4%BE%E0%A4%97%E0%A5%8B%E0%A4%B0%E0%A4%B8%E0%A4%9A%E0%A4%BE_%E0%A4%B8%E0%A4%BF%E0%A4%A6%E0%A5%8D%E0%A4%A7%E0%A4%BE%E0%A4%A8%E0%A5%8D%E0%A4%A4" title="पायथागोरसचा सिद्धान्त – Marathi" lang="mr" hreflang="mr" data-title="पायथागोरसचा सिद्धान्त" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Teorem_Pythagoras" title="Teorem Pythagoras – Malaiisch" lang="ms" hreflang="ms" data-title="Teorem Pythagoras" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%95%E1%80%AD%E1%80%AF%E1%80%80%E1%80%BA%E1%80%9E%E1%80%AC%E1%80%82%E1%80%AD%E1%80%AF%E1%80%9B_%E1%80%9E%E1%80%AE%E1%80%A1%E1%80%AD%E1%80%AF%E1%80%9B%E1%80%99%E1%80%BA" title="ပိုက်သာဂိုရ သီအိုရမ် – Birmanisch" lang="my" hreflang="my" data-title="ပိုက်သာဂိုရ သီအိုရမ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmanisch" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Satz_van_Pythagoras" title="Satz van Pythagoras – Niederdeutsch" lang="nds" hreflang="nds" data-title="Satz van Pythagoras" data-language-autonym="Plattdüütsch" data-language-local-name="Niederdeutsch" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AA%E0%A4%BE%E0%A4%87%E0%A4%A5%E0%A4%BE%E0%A4%97%E0%A5%8B%E0%A4%B0%E0%A4%B8_%E0%A4%B8%E0%A4%BE%E0%A4%A7%E0%A5%8D%E0%A4%AF" title="पाइथागोरस साध्य – Nepalesisch" lang="ne" hreflang="ne" data-title="पाइथागोरस साध्य" data-language-autonym="नेपाली" data-language-local-name="Nepalesisch" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Stelling_van_Pythagoras" title="Stelling van Pythagoras – Niederländisch" lang="nl" hreflang="nl" data-title="Stelling van Pythagoras" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Den_pytagoreiske_l%C3%A6resetninga" title="Den pytagoreiske læresetninga – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Den pytagoreiske læresetninga" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://no.wikipedia.org/wiki/Pytagoras%E2%80%99_l%C3%A6resetning" title="Pytagoras’ læresetning – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Pytagoras’ læresetning" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Teor%C3%A8ma_de_Pitag%C3%B2ras" title="Teorèma de Pitagòras – Okzitanisch" lang="oc" hreflang="oc" data-title="Teorèma de Pitagòras" data-language-autonym="Occitan" data-language-local-name="Okzitanisch" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D1%8B_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%C3%A6" title="Пифагоры теоремæ – Ossetisch" lang="os" hreflang="os" data-title="Пифагоры теоремæ" data-language-autonym="Ирон" data-language-local-name="Ossetisch" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AA%E0%A8%BE%E0%A8%88%E0%A8%A5%E0%A8%BE%E0%A8%97%E0%A9%8B%E0%A8%B0%E0%A8%B8_%E0%A8%A5%E0%A8%BF%E0%A8%8A%E0%A8%B0%E0%A8%AE" title="ਪਾਈਥਾਗੋਰਸ ਥਿਊਰਮ – Punjabi" lang="pa" hreflang="pa" data-title="ਪਾਈਥਾਗੋਰਸ ਥਿਊਰਮ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Twierdzenie_Pitagorasa" title="Twierdzenie Pitagorasa – Polnisch" lang="pl" hreflang="pl" data-title="Twierdzenie Pitagorasa" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Teorema_%C3%ABd_Pit%C3%A0gora" title="Teorema ëd Pitàgora – Piemontesisch" lang="pms" hreflang="pms" data-title="Teorema ëd Pitàgora" data-language-autonym="Piemontèis" data-language-local-name="Piemontesisch" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D8%B3%D9%84%DB%81_%D9%81%DB%8C%D8%B3%D8%A7%D8%BA%D9%88%D8%B1%D8%B3" title="مسلہ فیساغورس – Westliches Panjabi" lang="pnb" hreflang="pnb" data-title="مسلہ فیساغورس" data-language-autonym="پنجابی" data-language-local-name="Westliches Panjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teorema_de_Pit%C3%A1goras" title="Teorema de Pitágoras – Portugiesisch" lang="pt" hreflang="pt" data-title="Teorema de Pitágoras" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-pwn mw-list-item"><a href="https://pwn.wikipedia.org/wiki/sasusuan_ni_pitaguras" title="sasusuan ni pitaguras – Paiwan" lang="pwn" hreflang="pwn" data-title="sasusuan ni pitaguras" data-language-autonym="Pinayuanan" data-language-local-name="Paiwan" class="interlanguage-link-target"><span>Pinayuanan</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teorema_lui_Pitagora" title="Teorema lui Pitagora – Rumänisch" lang="ro" hreflang="ro" data-title="Teorema lui Pitagora" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D0%B0" title="Теорема Пифагора – Russisch" lang="ru" hreflang="ru" data-title="Теорема Пифагора" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9F%D0%B8%D1%84%D0%B0%D0%B3%D0%BE%D1%80_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0%D1%82%D0%B0" title="Пифагор теоремата – Jakutisch" lang="sah" hreflang="sah" data-title="Пифагор теоремата" data-language-autonym="Саха тыла" data-language-local-name="Jakutisch" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sat mw-list-item"><a href="https://sat.wikipedia.org/wiki/%E1%B1%AF%E1%B1%9F%E1%B1%AD%E1%B1%9B%E1%B1%B7%E1%B1%B3%E1%B1%9C%E1%B1%B3%E1%B1%A8%E1%B1%9A%E1%B1%B1_%E1%B1%9B%E1%B1%B7%E1%B1%A4%E1%B1%AD%E1%B1%9A%E1%B1%A8%E1%B1%9A%E1%B1%A2" title="ᱯᱟᱭᱛᱷᱳᱜᱳᱨᱚᱱ ᱛᱷᱤᱭᱚᱨᱚᱢ – Santali" lang="sat" hreflang="sat" data-title="ᱯᱟᱭᱛᱷᱳᱜᱳᱨᱚᱱ ᱛᱷᱤᱭᱚᱨᱚᱢ" data-language-autonym="ᱥᱟᱱᱛᱟᱲᱤ" data-language-local-name="Santali" class="interlanguage-link-target"><span>ᱥᱟᱱᱛᱟᱲᱤ</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Tiurema_di_Pitagora" title="Tiurema di Pitagora – Sizilianisch" lang="scn" hreflang="scn" data-title="Tiurema di Pitagora" data-language-autonym="Sicilianu" data-language-local-name="Sizilianisch" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-se mw-list-item"><a href="https://se.wikipedia.org/wiki/Pythagorasa_cealkka" title="Pythagorasa cealkka – Nordsamisch" lang="se" hreflang="se" data-title="Pythagorasa cealkka" data-language-autonym="Davvisámegiella" data-language-local-name="Nordsamisch" class="interlanguage-link-target"><span>Davvisámegiella</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Pitagorina_teorema" title="Pitagorina teorema – Serbokroatisch" lang="sh" hreflang="sh" data-title="Pitagorina teorema" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbokroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%B4%E0%B6%BA%E0%B7%92%E0%B6%AD%E0%B6%9C%E0%B6%BB%E0%B7%83%E0%B7%8A_%E0%B6%B4%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B6%B8%E0%B7%9A%E0%B6%BA%E0%B6%BA" title="පයිතගරස් ප්‍රමේයය – Singhalesisch" lang="si" hreflang="si" data-title="පයිතගරස් ප්‍රමේයය" data-language-autonym="සිංහල" data-language-local-name="Singhalesisch" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Pythagorean_theorem" title="Pythagorean theorem – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Pythagorean theorem" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Pytagorova_veta" title="Pytagorova veta – Slowakisch" lang="sk" hreflang="sk" data-title="Pytagorova veta" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Pitagorov_izrek" title="Pitagorov izrek – Slowenisch" lang="sl" hreflang="sl" data-title="Pitagorov izrek" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Dudzirazivo_raPythagoras" title="Dudzirazivo raPythagoras – Shona" lang="sn" hreflang="sn" data-title="Dudzirazivo raPythagoras" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Aragtida_Baytagoras" title="Aragtida Baytagoras – Somali" lang="so" hreflang="so" data-title="Aragtida Baytagoras" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Teorema_e_Pitagor%C3%ABs" title="Teorema e Pitagorës – Albanisch" lang="sq" hreflang="sq" data-title="Teorema e Pitagorës" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr badge-Q17437796 badge-featuredarticle mw-list-item" title="exzellenter Artikel"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D0%B8%D1%82%D0%B0%D0%B3%D0%BE%D1%80%D0%B8%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Питагорина теорема – Serbisch" lang="sr" hreflang="sr" data-title="Питагорина теорема" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Pythagoras_sats" title="Pythagoras sats – Schwedisch" lang="sv" hreflang="sv" data-title="Pythagoras sats" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhakiki_wa_Pythagoras" title="Uhakiki wa Pythagoras – Suaheli" lang="sw" hreflang="sw" data-title="Uhakiki wa Pythagoras" data-language-autonym="Kiswahili" data-language-local-name="Suaheli" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Twjerdzy%C5%84y_Pitagorasa" title="Twjerdzyńy Pitagorasa – Schlesisch (Wasserpolnisch)" lang="szl" hreflang="szl" data-title="Twjerdzyńy Pitagorasa" data-language-autonym="Ślůnski" data-language-local-name="Schlesisch (Wasserpolnisch)" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%BF%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AF%87%E0%AE%95%E0%AF%8B%E0%AE%B0%E0%AE%9A%E0%AF%81_%E0%AE%A4%E0%AF%87%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%AE%E0%AF%8D" title="பித்தேகோரசு தேற்றம் – Tamil" lang="ta" hreflang="ta" data-title="பித்தேகோரசு தேற்றம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AA%E0%B1%88%E0%B0%A5%E0%B0%BE%E0%B0%97%E0%B0%B0%E0%B0%B8%E0%B1%8D_%E0%B0%B8%E0%B0%BF%E0%B0%A6%E0%B1%8D%E0%B0%A7%E0%B0%BE%E0%B0%82%E0%B0%A4%E0%B0%82" title="పైథాగరస్ సిద్ధాంతం – Telugu" lang="te" hreflang="te" data-title="పైథాగరస్ సిద్ధాంతం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%9A%E0%B8%97%E0%B8%9E%E0%B8%B5%E0%B8%97%E0%B8%B2%E0%B9%82%E0%B8%81%E0%B8%A3%E0%B8%B1%E0%B8%AA" title="ทฤษฎีบทพีทาโกรัส – Thailändisch" lang="th" hreflang="th" data-title="ทฤษฎีบทพีทาโกรัส" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Pifagory%C5%88_teoremasy" title="Pifagoryň teoremasy – Turkmenisch" lang="tk" hreflang="tk" data-title="Pifagoryň teoremasy" data-language-autonym="Türkmençe" data-language-local-name="Turkmenisch" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Teorema_ni_Pitagoras" title="Teorema ni Pitagoras – Tagalog" lang="tl" hreflang="tl" data-title="Teorema ni Pitagoras" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Pisagor_teoremi" title="Pisagor teoremi – Türkisch" lang="tr" hreflang="tr" data-title="Pisagor teoremi" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Pifagor_teoremas%C4%B1" title="Pifagor teoreması – Tatarisch" lang="tt" hreflang="tt" data-title="Pifagor teoreması" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatarisch" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%96%D1%84%D0%B0%D0%B3%D0%BE%D1%80%D0%B0" title="Теорема Піфагора – Ukrainisch" lang="uk" hreflang="uk" data-title="Теорема Піфагора" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B3%D8%A6%D9%84%DB%82_%D9%81%DB%8C%D8%AB%D8%A7_%D8%BA%D9%88%D8%B1%D8%AB" title="مسئلۂ فیثا غورث – Urdu" lang="ur" hreflang="ur" data-title="مسئلۂ فیثا غورث" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Pifagor_teoremasi" title="Pifagor teoremasi – Usbekisch" lang="uz" hreflang="uz" data-title="Pifagor teoremasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Usbekisch" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Pifagoran_teorem" title="Pifagoran teorem – Wepsisch" lang="vep" hreflang="vep" data-title="Pifagoran teorem" data-language-autonym="Vepsän kel’" data-language-local-name="Wepsisch" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="lesenswerter Artikel"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Pythagoras" title="Định lý Pythagoras – Vietnamesisch" lang="vi" hreflang="vi" data-title="Định lý Pythagoras" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Pitagorasnon_nga_teyorema" title="Pitagorasnon nga teyorema – Waray" lang="war" hreflang="war" data-title="Pitagorasnon nga teyorema" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8B%BE%E8%82%A1%E5%AE%9A%E7%90%86" title="勾股定理 – Wu" lang="wuu" hreflang="wuu" data-title="勾股定理" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%99%D7%98%D7%90%D7%92%D7%90%D7%A8%D7%90%D7%A1_%D7%A4%D7%A8%D7%99%D7%A0%D7%A6%D7%99%D7%A4" title="פיטאגאראס פרינציפ – Jiddisch" lang="yi" hreflang="yi" data-title="פיטאגאראס פרינציפ" data-language-autonym="ייִדיש" data-language-local-name="Jiddisch" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/%C3%80gb%C3%A9r%C3%B2_Pythagoras" title="Àgbérò Pythagoras – Yoruba" lang="yo" hreflang="yo" data-title="Àgbérò Pythagoras" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8B%BE%E8%82%A1%E5%AE%9A%E7%90%86" title="勾股定理 – Chinesisch" lang="zh" hreflang="zh" data-title="勾股定理" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%8B%BE%E8%82%A1%E5%AE%9A%E7%90%86" title="勾股定理 – Klassisches Chinesisch" lang="lzh" hreflang="lzh" data-title="勾股定理" data-language-autonym="文言" data-language-local-name="Klassisches Chinesisch" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Pythagoras_t%C4%93ng-l%C3%AD" title="Pythagoras tēng-lí – Min Nan" lang="nan" hreflang="nan" data-title="Pythagoras tēng-lí" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Min Nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%95%A2%E6%B0%8F%E5%AE%9A%E7%90%86" title="畢氏定理 – Kantonesisch" lang="yue" hreflang="yue" data-title="畢氏定理" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11518#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 23. November 2024 um 15:03 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Satz_des_Pythagoras&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Satz_des_Pythagoras?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Satz_des_Pythagoras&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-m9w6c","wgBackendResponseTime":205,"wgPageParseReport":{"limitreport":{"cputime":"0.740","walltime":"1.125","ppvisitednodes":{"value":7001,"limit":1000000},"postexpandincludesize":{"value":52176,"limit":2097152},"templateargumentsize":{"value":15697,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":54235,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 622.518 1 -total"," 35.49% 220.954 13 Vorlage:Internetquelle"," 17.58% 109.440 1 Vorlage:Commonscat"," 16.41% 102.184 2 Vorlage:Wikidata-Registrierung"," 10.55% 65.680 2 Vorlage:Literatur"," 6.25% 38.899 1 Vorlage:Exzellent"," 3.99% 24.818 4 Vorlage:Google_Buch"," 3.87% 24.101 13 Vorlage:Str_len"," 3.57% 22.238 1 Vorlage:Zitat"," 3.17% 19.737 1 Vorlage:Webarchiv"]},"scribunto":{"limitreport-timeusage":{"value":"0.199","limit":"10.000"},"limitreport-memusage":{"value":5962096,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-xkjqr","timestamp":"20241123140843","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Satz des Pythagoras","url":"https:\/\/de.wikipedia.org\/wiki\/Satz_des_Pythagoras","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11518","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11518","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-07-17T11:59:03Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d1\/01-Rechtwinkliges_Dreieck-Pythagoras.svg","headline":"mathematische Aussage \u00fcber die Seiten eines rechtwinkligen Dreiecks"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10