CINXE.COM

Search results for: maximum considered earthquake

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: maximum considered earthquake</title> <meta name="description" content="Search results for: maximum considered earthquake"> <meta name="keywords" content="maximum considered earthquake"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="maximum considered earthquake" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="maximum considered earthquake"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12480</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: maximum considered earthquake</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12480</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12479</span> Estimation of Maximum Earthquake for Gujarat Region, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Saxena">Ashutosh Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Pallav"> Kumar Pallav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramji%20Dwivedi"> Ramji Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismicity parameter 'b' and maximum possible magnitude of an earthquake (Mmax) for Gujarat region with three well-established methods viz. Kijiko parametric model (KP), Kijiko-Sellevol-Bayern (KSB) and Tapered Gutenberg-Richter (TGR), as a combined seismic source regime. The earthquake catalogue is prepared for a period of 1330 to 2013 in the region Latitudes 20o N to 250 N and Longitudinally extending from 680 to 750 E for earthquake moment magnitude (Mw) ≥4.0. The ’a’ and 'b' value estimated for the region as 4.68 and 0.58. Further, Mmax estimated as 8.54 (± 0.29), 8.69 (± 0.48), and 8.12 with KP, KSB, and TGR, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mmax" title="Mmax">Mmax</a>, <a href="https://publications.waset.org/abstracts/search?q=seismicity%20parameter" title=" seismicity parameter"> seismicity parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujarat" title=" Gujarat"> Gujarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapered%20Gutenberg-Richter" title=" Tapered Gutenberg-Richter "> Tapered Gutenberg-Richter </a> </p> <a href="https://publications.waset.org/abstracts/18662/estimation-of-maximum-earthquake-for-gujarat-region-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12478</span> Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gitartha%20Kalita"> Gitartha Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title="ground motion">ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20effects" title=" rotational effects"> rotational effects</a>, <a href="https://publications.waset.org/abstracts/search?q=translational%20effects" title=" translational effects"> translational effects</a> </p> <a href="https://publications.waset.org/abstracts/26464/translational-and-rotational-effect-of-earthquake-ground-motion-on-a-bridge-substructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12477</span> Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Khaund">Prasanna Kumar Khaund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Talukdar"> Sukanya Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20base%20width" title="design base width">design base width</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20earthquake%20coefficient" title=" horizontal earthquake coefficient"> horizontal earthquake coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20water" title=" tail water"> tail water</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20coefficient" title=" vertical earthquake coefficient"> vertical earthquake coefficient</a> </p> <a href="https://publications.waset.org/abstracts/72683/variation-of-base-width-of-a-typical-concrete-gravity-dam-under-different-seismic-conditions-using-static-seismic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12476</span> A Case Study on the Collapse Assessment of the Steel Moment-Frame Setback High-Rise Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzie%20Shahini">Marzie Shahini</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasoul%20Mirghaderi"> Rasoul Mirghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes collapse assessments of a steel moment-frame high-rise tower with setback irregularity, designed per the 2010 ASCE7 code, under spectral-matched ground motion records. To estimate a safety margin against life-threatening collapse, an analytical model of the tower is subjected to a suite of ground motions with incremental intensities from maximum considered earthquake hazard level to the incipient collapse level. Capability of the structural system to collapse prevention is evaluated based on the similar methodology reported in FEMA P695. Structural performance parameters in terms of maximum/mean inter-story drift ratios, residual drift ratios, and maximum plastic hinge rotations are also compared to the acceptance criteria recommended by the TBI Guidelines. The results demonstrate that the structural system satisfactorily safeguards the building against collapse. Moreover, for this tower, the code-specified requirements in ASCE7-10 are reasonably adequate to satisfy seismic performance criteria developed in the TBI Guidelines for the maximum considered earthquake hazard level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-rise%20buildings" title="high-rise buildings">high-rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=set%20back" title=" set back"> set back</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20drift" title=" residual drift"> residual drift</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/57732/a-case-study-on-the-collapse-assessment-of-the-steel-moment-frame-setback-high-rise-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12475</span> Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq%20A.%20Chaudhary">Muhammad Tariq A. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20model" title=" FEM model"> FEM model</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20pier" title=" reinforced concrete pier"> reinforced concrete pier</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20foundation" title=" pile foundation"> pile foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20loading" title=" seismic loading"> seismic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/77619/seismic-behavior-of-pile-supported-bridges-considering-soil-structure-interaction-and-structural-non-linearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12474</span> A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Asgari">Ehsan Asgari</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Afazeli"> Meisam Afazeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezhla%20Attarchian"> Nezhla Attarchian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post%20earthquake%20fire" title="post earthquake fire">post earthquake fire</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20frame" title=" moment frame"> moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20temperature-displacement%20analysis" title=" coupled temperature-displacement analysis"> coupled temperature-displacement analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20scenario" title=" fire scenario"> fire scenario</a> </p> <a href="https://publications.waset.org/abstracts/98372/a-study-on-the-failure-modes-of-steel-moment-frame-in-post-earthquake-fire-using-coupled-mechanical-thermal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12473</span> Dynamics of Understanding Earthquake Precursors-A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarada%20Nivedita%20Bhuyan">Sarada Nivedita Bhuyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20precursors" title="earthquake precursors">earthquake precursors</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20plates" title=" tectonic plates"> tectonic plates</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a> </p> <a href="https://publications.waset.org/abstracts/37407/dynamics-of-understanding-earthquake-precursors-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12472</span> Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qassun%20S.%20Mohammed%20Shafiqu">Qassun S. Mohammed Shafiqu</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtadha%20A.%20Abdulrasool"> Murtadha A. Abdulrasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title="shallow foundation">shallow foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title=" seismic behavior"> seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20thickness" title=" raft thickness"> raft thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a> </p> <a href="https://publications.waset.org/abstracts/92879/finite-element-analysis-of-raft-foundation-on-various-soil-types-under-earthquake-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12471</span> Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Huleihil">Mahmoud Huleihil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20generator" title="magnetohydrodynamic generator">magnetohydrodynamic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power" title=" maximum power"> maximum power</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20efficiency" title=" maximum efficiency"> maximum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20engine" title=" heat engine"> heat engine</a> </p> <a href="https://publications.waset.org/abstracts/103498/power-efficiency-characteristics-of-magnetohydrodynamic-thermodynamic-gas-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12470</span> A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Abdallah%20Mohamed%20Dahy">Sayed Abdallah Mohamed Dahy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswan%20high%20dam%20reservoir" title="Aswan high dam reservoir">Aswan high dam reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20activity" title=" earthquake activity"> earthquake activity</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/35385/a-study-on-the-influence-of-aswan-high-dam-reservoir-loading-on-earthquake-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12469</span> Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Bikram%20Thapa">Ram Bikram Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Lama"> Ganesh Lama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro" title="micro hydro">micro hydro</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20failure" title=" structural failure"> structural failure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/48351/sustainability-effect-of-earthquake-in-micro-hydro-sector-a-case-study-of-micro-hydro-projects-in-northern-part-of-kavre-district-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12468</span> Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Mirzaei">Mehrnoosh Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20education" title="disaster education">disaster education</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20sign%20marks" title=" earthquake sign marks"> earthquake sign marks</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20table" title=" learning table"> learning table</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20card" title=" matching card"> matching card</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction%20behavior" title=" risk reduction behavior"> risk reduction behavior</a> </p> <a href="https://publications.waset.org/abstracts/98228/designing-a-learning-table-and-game-cards-for-preschoolers-for-disaster-risk-reduction-drr-on-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12467</span> A Brief Overview of Seven Churches in Van Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gulen"> Mustafa Gulen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20structures" title=" historical structures"> historical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20province" title=" Van province"> Van province</a>, <a href="https://publications.waset.org/abstracts/search?q=church" title=" church"> church</a> </p> <a href="https://publications.waset.org/abstracts/21338/a-brief-overview-of-seven-churches-in-van-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12466</span> Effect of Wind Braces to Earthquake Resistance of Steel Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gokdemir">H. Gokdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20bracings" title="wind bracings">wind bracings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20lateral%20loads" title=" vertical and lateral loads"> vertical and lateral loads</a> </p> <a href="https://publications.waset.org/abstracts/23581/effect-of-wind-braces-to-earthquake-resistance-of-steel-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12465</span> Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Lu">Ming Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Li"> Xiaojun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodi%20Lu"> Bodi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Juehui%20Xing"> Juehui Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribute%20index" title="attribute index">attribute index</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20method" title=" classification method"> classification method</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage%20picture" title=" earthquake damage picture"> earthquake damage picture</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20structure" title=" engineering structure"> engineering structure</a> </p> <a href="https://publications.waset.org/abstracts/66126/attribute-index-and-classification-method-of-earthquake-damage-photographs-of-engineering-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">765</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12464</span> Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moein%20Izadi">Moein Izadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammadzadeh"> Ali Mohammadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SVM%20classifier" title="SVM classifier">SVM classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20damage%20detection" title=" road damage detection"> road damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=quickBird%20images" title=" quickBird images"> quickBird images</a> </p> <a href="https://publications.waset.org/abstracts/26389/post-earthquake-road-damage-detection-by-svm-classification-from-quickbird-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12463</span> Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozden%20Saygili">Ozden Saygili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eser%20Cakti"> Eser Cakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20safety" title=" earthquake safety"> earthquake safety</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20structures" title=" masonry structures"> masonry structures</a> </p> <a href="https://publications.waset.org/abstracts/28561/assessment-of-seismic-behavior-of-masonry-minarets-by-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12462</span> Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Pourmohammad">Fereshteh Pourmohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Zare"> Mehdi Zare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20zones" title="seismic zones">seismic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20period" title=" return period"> return period</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title=" hazard analysis"> hazard analysis</a> </p> <a href="https://publications.waset.org/abstracts/157805/seismic-hazard-study-and-strong-ground-motion-in-southwest-alborz-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12461</span> Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semra%20Sirin%20Kiris">Semra Sirin Kiris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20parameters" title="earthquake parameters">earthquake parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20design" title=" earthquake resistant design"> earthquake resistant design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/128363/investigation-on-correlation-of-earthquake-intensity-parameters-with-seismic-response-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12460</span> Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Winston%20Oreta">Andres Winston Oreta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title="earthquake engineering">earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential%20learning" title=" experiential learning"> experiential learning</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/189318/experiential-learning-in-an-earthquake-engineering-course-using-online-tools-and-shake-table-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12459</span> Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yamanturk">Kaan Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihan%20Dogruoz"> Cihan Dogruoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake" title="maximum considered earthquake">maximum considered earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20resisting%20frame" title=" moment resisting frame"> moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolator" title=" seismic isolator"> seismic isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a> </p> <a href="https://publications.waset.org/abstracts/109879/application-of-seismic-isolators-in-kutahya-city-hospital-project-utilizing-double-friction-pendulum-type-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12458</span> Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akk%C3%B6se">Mehmet Akköse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title="near-fault ground motion">near-fault ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=pounding%20analysis" title=" pounding analysis"> pounding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP2000" title=" SAP2000"> SAP2000</a> </p> <a href="https://publications.waset.org/abstracts/37307/effects-of-near-fault-ground-motions-on-earthquake-induced-pounding-response-of-rc-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12457</span> Calculation of Instrumental Results of the Tohoku Earthquake, Japan (Mw 9.0) on March 11, 2011 and Other Destructive Earthquakes during Seismic Hazard Assessment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Karapetyan">J. K. Karapetyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper seismological-statistical analysis of actual instrumental data on the main tremor of the Great Japan earthquake 11.03.2011 is implemented for finding out the dependence between maximal values of peak ground accelerations (PGA) and epicentric distances. A number of peculiarities of manifestation of accelerations' maximum values at the interval of long epicentric distances are revealed which do not correspond with current scales of seismic intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title="earthquakes">earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumental%20records" title=" instrumental records"> instrumental records</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a> </p> <a href="https://publications.waset.org/abstracts/19025/calculation-of-instrumental-results-of-the-tohoku-earthquake-japan-mw-90-on-march-11-2011-and-other-destructive-earthquakes-during-seismic-hazard-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12456</span> Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20G.%20Kostinakis">Konstantinos G. Kostinakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Manthos%20K.%20Papadopoulos"> Manthos K. Papadopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Asimina%20M.%20Athanatopoulou"> Asimina M. Athanatopoulou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20indices" title="damage indices">damage indices</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20response" title=" non-linear response"> non-linear response</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20excitation%20angle" title=" seismic excitation angle"> seismic excitation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-specific%20intensity%20measures" title=" structure-specific intensity measures"> structure-specific intensity measures</a> </p> <a href="https://publications.waset.org/abstracts/7746/adequacy-of-advanced-earthquake-intensity-measures-for-estimation-of-damage-under-seismic-excitation-with-arbitrary-orientation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12455</span> A Safety-Door for Earthquake Disaster Prevention - Part II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety of door has not given much attention. The main problem of doors during and after earthquake is that they are unable to be opened because deviation from its original position by the lateral load. The aim of this research is to develop and evaluate a safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. Nonlinear finite element analysis was conducted in order to evaluate the structural performance and behavior of the proposed door under both monotonic and cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety-door" title="safety-door">safety-door</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20yield%20point%20steel" title=" low yield point steel"> low yield point steel</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20energy%20dissipating%20device" title=" passive energy dissipating device"> passive energy dissipating device</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/44036/a-safety-door-for-earthquake-disaster-prevention-part-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12454</span> Fractal Behaviour of Earthquake Sequences in Himalaya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal">Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Ahmad"> Adil Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are among the most versatile natural and dynamic processes, and hence a fractal model is considered to be the best representative of the same. We present a novel method to process and analyse information hidden in earthquake sequences using Fractal Dimensions and Iterative Function Systems (IFS). Spatial and temporal variations in the fractal dimensions of seismicity observed around the Indian peninsula in last 30 years are studied. This was used as a possible precursor before large earthquakes in the region. IFS images for observed seismicity in the Himalayan belt were also obtained. We scan the whole data set and coarse grain of a selected window to reduce it to four bins. A critical analysis of four-cornered chaos-game clearly shows that the spatial variation in earthquake occurrences in Himalayan range is not random. Two subzones of Himalaya have a tendency to follow each other in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title="earthquakes">earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=fractals" title=" fractals"> fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalaya" title=" Himalaya"> Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20systems" title=" iterated function systems "> iterated function systems </a> </p> <a href="https://publications.waset.org/abstracts/84637/fractal-behaviour-of-earthquake-sequences-in-himalaya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12453</span> Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathul%20Mubin">Fathul Mubin</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20E.%20Nurcahya"> Budi E. Nurcahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplification%20factor" title="amplification factor">amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=microzonation%20analysis" title=" microzonation analysis"> microzonation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability%20index" title=" seismic vulnerability index"> seismic vulnerability index</a> </p> <a href="https://publications.waset.org/abstracts/85181/seismic-microzonation-analysis-for-damage-mapping-of-the-2006-yogyakarta-earthquake-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12452</span> Statistical Physics Model of Seismic Activation Preceding a Major Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20S.%20Brox">Daniel S. Brox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20activation" title="seismic activation">seismic activation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20physics" title=" statistical physics"> statistical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=geodynamics" title=" geodynamics"> geodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/192295/statistical-physics-model-of-seismic-activation-preceding-a-major-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12451</span> Comparative Study of R.C.C. Steel and Concrete Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Suresh%20Kumawat">Mahesh Suresh Kumawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20column" title=" RCC column"> RCC column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20beam" title=" RCC beam"> RCC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connector" title=" shear connector"> shear connector</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%202000%20software" title=" SAP 2000 software"> SAP 2000 software</a> </p> <a href="https://publications.waset.org/abstracts/8085/comparative-study-of-rcc-steel-and-concrete-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=415">415</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=416">416</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10