CINXE.COM

Search results for: text mining analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: text mining analysis</title> <meta name="description" content="Search results for: text mining analysis"> <meta name="keywords" content="text mining analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="text mining analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="text mining analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 29151</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: text mining analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29151</span> Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Alshuwaier">Faisal Alshuwaier</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Areshey"> Ali Areshey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=max-prod" title=" max-prod"> max-prod</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20relations" title=" fuzzy relations"> fuzzy relations</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=memberships" title=" memberships"> memberships</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=memberships" title=" memberships"> memberships</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/23970/optimal-classifying-and-extracting-fuzzy-relationship-from-query-using-text-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29150</span> Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Yang">Sidi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyi%20Zhang"> Haiyi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title="text mining">text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20model" title=" topic model"> topic model</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a> </p> <a href="https://publications.waset.org/abstracts/95281/text-mining-of-twitter-data-using-a-latent-dirichlet-allocation-topic-model-and-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29149</span> “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Hafferssas">Oussama Hafferssas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiba%20Benyahia"> Hiba Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Madani"> Amina Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Zeriri"> Nassima Zeriri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textmining" title="textmining">textmining</a>, <a href="https://publications.waset.org/abstracts/search?q=named%20entity%20recognition%28NER%29" title=" named entity recognition(NER)"> named entity recognition(NER)</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media%20networks%20%28SN" title=" social media networks (SN"> social media networks (SN</a>, <a href="https://publications.waset.org/abstracts/search?q=SMN%29" title="SMN)">SMN)</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence%28BI%29" title=" business intelligence(BI)"> business intelligence(BI)</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing" title=" marketing"> marketing</a> </p> <a href="https://publications.waset.org/abstracts/15721/octopub-geographical-sentiment-analysis-using-named-entity-recognition-from-social-networks-for-geo-targeted-billboard-advertising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29148</span> The Acquisition of Case in Biological Domain Based on Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shen%20Jian">Shen Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Jie"> Hu Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Jin"> Qi Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Wei%20Jie"> Liu Wei Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Ji%20Yi"> Chen Ji Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Ying%20Hong"> Peng Ying Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title="text mining">text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20inspired%20design" title=" biologically inspired design"> biologically inspired design</a> </p> <a href="https://publications.waset.org/abstracts/88075/the-acquisition-of-case-in-biological-domain-based-on-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29147</span> Evaluating 8D Reports Using Text-Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Kuester">Benjamin Kuester</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjoern%20Eilert"> Bjoern Eilert</a>, <a href="https://publications.waset.org/abstracts/search?q=Malte%20Stonis"> Malte Stonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludger%20Overmeyer"> Ludger Overmeyer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=8D%20report" title="8D report">8D report</a>, <a href="https://publications.waset.org/abstracts/search?q=complaint%20management" title=" complaint management"> complaint management</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20system" title=" evaluation system"> evaluation system</a>, <a href="https://publications.waset.org/abstracts/search?q=text-mining" title=" text-mining"> text-mining</a> </p> <a href="https://publications.waset.org/abstracts/75439/evaluating-8d-reports-using-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29146</span> Multi-Class Text Classification Using Ensembles of Classifiers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Basit%20Ali%20Shah%20Bukhari">Syed Basit Ali Shah Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20%20Qiang"> Yan Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Abdul%20Rauf"> Saad Abdul Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Saqlaina%20Bukhari"> Syed Saqlaina Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20Language%20Processing" title="Natural Language Processing">Natural Language Processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensemble%20Classifier" title=" Ensemble Classifier"> Ensemble Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagging%20Classifier" title=" Bagging Classifier"> Bagging Classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=AdaBoost" title=" AdaBoost"> AdaBoost</a> </p> <a href="https://publications.waset.org/abstracts/123394/multi-class-text-classification-using-ensembles-of-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29145</span> Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Senthil%20Kumari">P. Senthil Kumari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title="text mining">text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20classification" title=" data classification"> data classification</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20network" title=" community network"> community network</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20algorithm" title=" learning algorithm"> learning algorithm</a> </p> <a href="https://publications.waset.org/abstracts/27184/spontaneous-message-detection-of-annoying-situation-in-community-networks-using-mining-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29144</span> Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Munaf">Samuel Munaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Swingler"> Kevin Swingler</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Br%C3%BClisauer"> Franz Brülisauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20O%E2%80%99Hare"> Anthony O’Hare</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Gunn"> George Gunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Reeves"> Aaron Reeves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=veterinary%20epidemiology" title="veterinary epidemiology">veterinary epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20surveillance" title=" disease surveillance"> disease surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=infodemiology" title=" infodemiology"> infodemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=infoveillance" title=" infoveillance"> infoveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholding" title=" smallholding"> smallholding</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20scraping" title=" web scraping"> web scraping</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geolocation" title=" geolocation"> geolocation</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a> </p> <a href="https://publications.waset.org/abstracts/159869/text-mining-of-veterinary-forums-for-epidemiological-surveillance-supplementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29143</span> Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oshin%20Anand">Oshin Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Atanu%20Rakshit"> Atanu Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20mining" title="association mining">association mining</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20preference" title=" customer preference"> customer preference</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20pattern" title=" frequent pattern"> frequent pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20reviews" title=" online reviews"> online reviews</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/68059/recognizing-customer-preferences-using-review-documents-a-hybrid-text-and-data-mining-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29142</span> Social Media Mining with R. Twitter Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Codat">Diana Codat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20R" title=" language R"> language R</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter "> Twitter </a> </p> <a href="https://publications.waset.org/abstracts/81942/social-media-mining-with-r-twitter-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29141</span> Opinion Mining and Sentiment Analysis on DEFT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najiba%20Ouled%20Omar">Najiba Ouled Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Harbaoui"> Azza Harbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Henda%20Ben%20Ghezala"> Henda Ben Ghezala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories.&nbsp;DEFT offers participants the opportunity to work on&nbsp;regularly&nbsp;renewed&nbsp;themes&nbsp;and proposes to work on opinion mining in several&nbsp;editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opinion%20mining" title="opinion mining">opinion mining</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion" title=" emotion"> emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=polarity" title=" polarity"> polarity</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=OSEE" title=" OSEE"> OSEE</a>, <a href="https://publications.waset.org/abstracts/search?q=figurative%20language" title=" figurative language"> figurative language</a>, <a href="https://publications.waset.org/abstracts/search?q=DEFT" title=" DEFT"> DEFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Tweet" title=" Tweet"> Tweet</a> </p> <a href="https://publications.waset.org/abstracts/130709/opinion-mining-and-sentiment-analysis-on-deft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29140</span> Text Mining Techniques for Prioritizing Pathogenic Mutations in Protein Families Known to Misfold or Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaleel%20Saleh%20Al-Rababah">Khaleel Saleh Al-Rababah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloid fibril forming regions, which are known as protein aggregates, in sequences of some protein families are associated with a number of diseases known as amyloidosis. Mutations play a role in forming fibrils by accelerating the fibril formation process. In this paper we want to extract diseases that caused by those mutations as a result of the impact of the mutations on structural and functional properties of the aggregated protein. We propose a text mining system, to automatically extract mutations, diseases and relations between mutations and diseases. We presented an algorithm based on finite state to cluster mutations found in the same sentence as a sentence could contain different mutation cause different diseases. Also, we presented a co reference algorithm that enables cross-link sentences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid" title="amyloid">amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title=" amyloidosis"> amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=co%20reference" title=" co reference"> co reference</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/24232/text-mining-techniques-for-prioritizing-pathogenic-mutations-in-protein-families-known-to-misfold-or-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29139</span> Enhance the Power of Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang">Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Desouza"> Pedro Desouza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=Twitter" title=" Twitter"> Twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Amazon" title=" Amazon"> Amazon</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/5977/enhance-the-power-of-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29138</span> Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaspreet%20Singh">Jaspreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurvinder%20Singh"> Gurvinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhsimran%20Singh"> Prabhsimran Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajinder%20Singh"> Rajinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prithvipal%20Singh"> Prithvipal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanjeet%20Singh%20Kahlon"> Karanjeet Singh Kahlon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh%20Sawhney"> Ravinder Singh Sawhney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title="deep neural network">deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20suicides" title=" farmer suicides"> farmer suicides</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20processing" title=" morphological processing"> morphological processing</a>, <a href="https://publications.waset.org/abstracts/search?q=punjabi%20text" title=" punjabi text"> punjabi text</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a> </p> <a href="https://publications.waset.org/abstracts/88605/morphological-processing-of-punjabi-text-for-sentiment-analysis-of-farmer-suicides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29137</span> Research on the Landscape of Xi&#039;an Ancient City Based on the Poetry Text of Tang Dynasty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zou%20Yihui">Zou Yihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of the traditional landscape of the ancient city and the poet's emotions and symbolization into ancient poetry is the unique cultural gene and spiritual core of the historical city, and re-understanding the historical landscape pattern from the poetry is conducive to continuing the historical city context and improving the current situation of the gradual decline of the poetry of the modern historical urban landscape. Starting from Tang poetry uses semantic analysis methods、combined with text mining technology, entry mining, word frequency analysis, and cluster analysis of the landscape information of Tang Chang'an City were carried out, and the method framework for analyzing the urban landscape form based on poetry text was constructed. Nearly 160 poems describing the landscape of Tang Chang'an City were screened, and the poetic landscape characteristics of Tang Chang'an City were sorted out locally in order to combine with modern urban spatial development to continue the urban spatial context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tang%20Chang%27an%20City" title="Tang Chang&#039;an City">Tang Chang&#039;an City</a>, <a href="https://publications.waset.org/abstracts/search?q=poetic%20texts" title=" poetic texts"> poetic texts</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title=" semantic analysis"> semantic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20landscape" title=" historical landscape"> historical landscape</a> </p> <a href="https://publications.waset.org/abstracts/185945/research-on-the-landscape-of-xian-ancient-city-based-on-the-poetry-text-of-tang-dynasty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29136</span> Graph-Based Semantical Extractive Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Samizadeh">Mina Samizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keyword%20extraction" title="keyword extraction">keyword extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=n-gram%20extraction" title=" n-gram extraction"> n-gram extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20summarization" title=" text summarization"> text summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20clustering" title=" topic clustering"> topic clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20analysis" title=" semantic analysis"> semantic analysis</a> </p> <a href="https://publications.waset.org/abstracts/160526/graph-based-semantical-extractive-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29135</span> A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Yi%20Wu">Mei-Yi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang-Ming%20Huang"> Shang-Ming Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20image%20retrieval" title="mobile image retrieval">mobile image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20information%20service%20system" title=" product information service system"> product information service system</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20marketing" title=" online marketing"> online marketing</a> </p> <a href="https://publications.waset.org/abstracts/33483/a-framework-of-product-information-service-system-using-mobile-image-retrieval-and-text-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29134</span> Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minami%20Ito">Minami Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Iijima"> Akihiro Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20reconstruction" title="eco-friendly reconstruction">eco-friendly reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=harmony%20with%20environment" title=" harmony with environment"> harmony with environment</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20disaster" title=" nuclear disaster"> nuclear disaster</a> </p> <a href="https://publications.waset.org/abstracts/3245/text-mining-analysis-of-the-reconstruction-plans-after-the-great-east-japan-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29133</span> Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Knudsen">R. B. Knudsen</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20T.%20Rasmussen"> O. T. Rasmussen</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Alphinas"> R. A. Alphinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20network" title="Artificial Neural network">Artificial Neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Competitive%20dynamics" title=" Competitive dynamics"> Competitive dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Logistic%20Regression" title=" Logistic Regression"> Logistic Regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Text%20classification" title=" Text classification"> Text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Text%20mining" title=" Text mining"> Text mining</a> </p> <a href="https://publications.waset.org/abstracts/127954/developing-an-advanced-algorithm-capable-of-classifying-news-articles-and-other-textual-documents-using-text-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29132</span> A Recommender System Fusing Collaborative Filtering and User’s Review Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seulbi%20Choi">Seulbi Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Ahn"> Hyunchul Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users&rsquo; numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user&#39;s review can be regarded as the new informative source for identifying user&#39;s preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user&#39;s review mining. Our system adopts conventional memory-based CF, but it is designed to use both user&rsquo;s numeric ratings and his/her text reviews on the items when calculating similarities between users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recommender%20system" title="Recommender system">Recommender system</a>, <a href="https://publications.waset.org/abstracts/search?q=Collaborative%20filtering" title=" Collaborative filtering"> Collaborative filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Text%20mining" title=" Text mining"> Text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Review%20mining" title=" Review mining"> Review mining</a> </p> <a href="https://publications.waset.org/abstracts/54867/a-recommender-system-fusing-collaborative-filtering-and-users-review-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29131</span> Literature Review on Text Comparison Techniques: Analysis of Text Extraction, Main Comparison and Visual Representation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andriana%20Mkrtchyan">Andriana Mkrtchyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahe%20Khlghatyan"> Vahe Khlghatyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice of a profession is one of the most important decisions people make throughout their life. With the development of modern science, technologies, and all the spheres existing in the modern world, more and more professions are being arisen that complicate even more the process of choosing. Hence, there is a need for a guiding platform to help people to choose a profession and the right career path based on their interests, skills, and personality. This review aims at analyzing existing methods of comparing PDF format documents and suggests that a 3-stage approach is implemented for the comparison, that is – 1. text extraction from PDF format documents, 2. comparison of the extracted text via NLP algorithms, 3. comparison representation using special shape and color psychology methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20psychology" title="color psychology">color psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition%2Fextraction" title=" data acquisition/extraction"> data acquisition/extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20augmentation" title=" data augmentation"> data augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=disambiguation" title=" disambiguation"> disambiguation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier%20detection" title=" outlier detection"> outlier detection</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20similarity" title=" semantic similarity"> semantic similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=text-mining" title=" text-mining"> text-mining</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20evaluation" title=" user evaluation"> user evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20search" title=" visual search"> visual search</a> </p> <a href="https://publications.waset.org/abstracts/161588/literature-review-on-text-comparison-techniques-analysis-of-text-extraction-main-comparison-and-visual-representation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29130</span> Urdu Text Extraction Method from Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samabia%20Tehsin">Samabia Tehsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Kausar"> Sumaira Kausar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caption%20text" title="caption text">caption text</a>, <a href="https://publications.waset.org/abstracts/search?q=content-based%20image%20retrieval" title=" content-based image retrieval"> content-based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20analysis" title=" document analysis"> document analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20extraction" title=" text extraction"> text extraction</a> </p> <a href="https://publications.waset.org/abstracts/9566/urdu-text-extraction-method-from-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29129</span> Fake News Detection for Korean News Using Machine Learning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae-Uk%20Yun">Tae-Uk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Pullip%20Chung"> Pullip Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Young%20Kwahk"> Kee-Young Kwahk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Ahn"> Hyunchul Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fake%20news%20detection" title="fake news detection">fake news detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Korean%20news" title=" Korean news"> Korean news</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/80316/fake-news-detection-for-korean-news-using-machine-learning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29128</span> What the Future Holds for Social Media Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Wlodarczak">P. Wlodarczak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Soar"> J. Soar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ally"> M. Ally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20media" title="social media">social media</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title=" knowledge discovery"> knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20analysis" title=" predictive analysis"> predictive analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/13660/what-the-future-holds-for-social-media-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29127</span> Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myungsu%20Lim">Myungsu Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Xiu%20Shun%20Wong"> William Xiu Shun Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoonjin%20Hyun"> Yoonjin Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Liu"> Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongi%20Choi"> Seongi Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasom%20Kim"> Dasom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Namgyu%20Kim"> Namgyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Data%20Mining" title="Data Mining">Data Mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Issue%20Tracking" title=" Issue Tracking"> Issue Tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Text%20Mining" title=" Text Mining"> Text Mining</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20Analysis" title=" topic Analysis"> topic Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20Detection" title=" topic Detection"> topic Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Trend%20Detection" title=" Trend Detection"> Trend Detection</a> </p> <a href="https://publications.waset.org/abstracts/29251/investigating-dynamic-transition-process-of-issues-using-unstructured-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29126</span> Predicting Success and Failure in Drug Development Using Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Hao%20Chow">Zhi Hao Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Cian%20Mulligan"> Cian Mulligan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Walsh"> Jack Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Garzon%20Vico"> Antonio Garzon Vico</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Krastev"> Dimitar Krastev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=text-mining" title=" text-mining"> text-mining</a> </p> <a href="https://publications.waset.org/abstracts/121298/predicting-success-and-failure-in-drug-development-using-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29125</span> A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20De%20Freitas">Kyle De Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaret%20Bernard"> Margaret Bernard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20data%20mining" title="educational data mining">educational data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20management%20system" title=" learning management system"> learning management system</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20analytics" title=" learning analytics"> learning analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM%20framework" title=" EDM framework"> EDM framework</a> </p> <a href="https://publications.waset.org/abstracts/78786/a-modular-framework-for-enabling-analysis-for-educators-with-different-levels-of-data-mining-skills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29124</span> Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Werner">Sarah Werner</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Pritchard"> Michael J. Pritchard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20industry" title="aerospace industry">aerospace industry</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20demand" title=" job demand"> job demand</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=workforce%20development" title=" workforce development"> workforce development</a> </p> <a href="https://publications.waset.org/abstracts/136196/aviation-versus-aerospace-a-differential-analysis-of-workforce-jobs-via-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29123</span> Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volker%20Mittendorf">Volker Mittendorf</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Schmale"> Andre Schmale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=populism" title="populism">populism</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20style" title=" communication style"> communication style</a>, <a href="https://publications.waset.org/abstracts/search?q=election" title=" election"> election</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a> </p> <a href="https://publications.waset.org/abstracts/102354/identifying-concerned-citizen-communication-style-during-the-state-parliamentary-elections-in-bavaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29122</span> Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Munaf">Samuel Munaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Swingler"> Kevin Swingler</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Br%C3%BClisauer"> Franz Brülisauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20O%E2%80%99Hare"> Anthony O’Hare</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Gunn"> George Gunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Reeves"> Aaron Reeves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=veterinary%20epidemiology" title="veterinary epidemiology">veterinary epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20surveillance" title=" disease surveillance"> disease surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=infodemiology" title=" infodemiology"> infodemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=infoveillance" title=" infoveillance"> infoveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=avian%20influenza" title=" avian influenza"> avian influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a> </p> <a href="https://publications.waset.org/abstracts/148887/poultry-in-motion-text-mining-social-media-data-for-avian-influenza-surveillance-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=971">971</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=972">972</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20mining%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10