CINXE.COM

Search results for: energy flux

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy flux</title> <meta name="description" content="Search results for: energy flux"> <meta name="keywords" content="energy flux"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy flux" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy flux"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8853</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy flux</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8853</span> Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Li">W. R. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Xia"> J. K. Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Peng"> R. Q. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Guo"> Z. Y. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jiang"> L. Jiang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20end%20flux%20leakage" title="axial end flux leakage">axial end flux leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=detent%20force" title=" detent force"> detent force</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20flux%20PM%20linear%20machine" title=" transverse flux PM linear machine"> transverse flux PM linear machine</a> </p> <a href="https://publications.waset.org/abstracts/46785/research-on-axial-end-flux-leakage-and-detent-force-of-transverse-flux-pm-linear-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8852</span> New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirill%20D.%20Kapustin">Kirill D. Kapustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20B.%20Krasilnikov"> Mikhail B. Krasilnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20A.%20Kudryavtsev"> Anatoly A. Kudryavtsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20kinetics" title="plasma kinetics">plasma kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20distribution%20function" title=" electron distribution function"> electron distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20and%20radiation%20rates" title=" excitation and radiation rates"> excitation and radiation rates</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20and%20nonlocal%20EDF" title=" local and nonlocal EDF"> local and nonlocal EDF</a> </p> <a href="https://publications.waset.org/abstracts/4431/new-kinetic-effects-in-spatial-distribution-of-electron-flux-and-excitation-rates-in-glow-discharge-plasmas-in-middle-and-high-pressures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8851</span> Flux-Linkage Performance of DFIG Under Different Types of Faults and Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20induction%20motor" title="double fed induction motor">double fed induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20linkage" title=" flux linkage"> flux linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit" title=" short circuit"> short circuit</a> </p> <a href="https://publications.waset.org/abstracts/27816/flux-linkage-performance-of-dfig-under-different-types-of-faults-and-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8850</span> Analysis of Flux-Linkage Performance of DFIG by Using Simulink under Different Types of Faults and Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20induction%20motor" title="double fed induction motor">double fed induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20linkage" title=" flux linkage"> flux linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit" title=" short circuit "> short circuit </a> </p> <a href="https://publications.waset.org/abstracts/27818/analysis-of-flux-linkage-performance-of-dfig-by-using-simulink-under-different-types-of-faults-and-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8849</span> Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Fazlinejad">H. Fazlinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Halvaee"> A. Halvaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATIG" title="ATIG">ATIG</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20flux" title=" active flux"> active flux</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20penetration" title=" weld penetration"> weld penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%201050" title=" Al 1050"> Al 1050</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/103663/effect-of-zinc-oxide-on-characteristics-of-active-flux-tig-welds-of-1050-aluminum-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8848</span> Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Chand">Manish Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhrojit%20Bagchi"> Subhrojit Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kumar"> R. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title="neutron flux">neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20analysis" title=" neutron activation analysis"> neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux%20shape%20factor" title=" neutron flux shape factor"> neutron flux shape factor</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP" title=" MCNP"> MCNP</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20N-Particle%20Code" title=" Monte Carlo N-Particle Code"> Monte Carlo N-Particle Code</a> </p> <a href="https://publications.waset.org/abstracts/99662/measurement-and-simulation-of-axial-neutron-flux-distribution-in-dry-tube-of-kamini-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8847</span> X-Ray Energy Release in the Solar Eruptive Flare from 6th of September 2012</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirabbos%20Mirkamalov">Mirabbos Mirkamalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Zavkiddin%20Mirtoshev"> Zavkiddin Mirtoshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The M 1.6 class flare occurred on 6<sup>th</sup> of September 2012. Our observations correspond to the active region NOAA 11560 with the heliographic coordinates N04W71. The event took place between 04:00 UT and 04:45 UT, and was close to the solar limb at the western region. The flare temperature correlates with flux peak, increases for a short period (between 04:08 UT and 04:12 UT), rises impulsively, attains a maximum value of about 17 MK at 04:12 UT and gradually decreases after peak value. Around the peak we observe significant emissions of X-ray sources. Flux profiles of the X-ray emission exhibit a progressively faster raise and decline as the higher energy channels are considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20reconnection" title="magnetic reconnection">magnetic reconnection</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20atmosphere" title=" solar atmosphere"> solar atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20flare" title=" solar flare"> solar flare</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20emission" title=" X-ray emission"> X-ray emission</a> </p> <a href="https://publications.waset.org/abstracts/50607/x-ray-energy-release-in-the-solar-eruptive-flare-from-6th-of-september-2012" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8846</span> Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Saeidi">Maryam Saeidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Motamedian"> Ehsan Motamedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Shojaosadati"> Seyed Abbas Shojaosadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner&ndash;Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome-scale%20metabolic%20model" title="genome-scale metabolic model">genome-scale metabolic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupled%20growth" title=" uncoupled growth"> uncoupled growth</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ATP%20dissipation" title=" ATP dissipation"> ATP dissipation</a> </p> <a href="https://publications.waset.org/abstracts/15686/reconstruction-of-a-genome-scale-metabolic-model-to-simulate-uncoupled-growth-of-zymomonas-mobilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8845</span> A Comprehensive Review of Axial Flux Machines and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20Amin">Shahbaz Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Hussain%20Shah"> Sabir Hussain Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahib%20Khan"> Sahib Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a thorough review concerning the design types of axial flux permanent magnet machines (AFPM) in terms of different features such as construction, design, materials, and manufacturing. Particular emphasis is given on the design and performance analysis of AFPM machines. A comparison among different permanent magnet machines is also provided. First of all, early and modern axial flux machines are mentioned. Secondly, rotor construction of different axial flux machines is described, then different stator constructions are mentioned depending upon the presence of slots and stator back iron. Then according to the arrangement of the rotor stator structure the machines are classified into single, double and multi-stack arrangements. Advantages, disadvantages and applications of each type of rotor and stator are pointed out. Finally on the basis of the reviewed literature merits, demerits, features and application of different axial flux machines structures are explained and clarified. Thus, this paper provides connection between the machines that are currently being used in industry and the developments of AFPM throughout the years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20machines" title="axial flux machines">axial flux machines</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20applications" title=" axial flux applications"> axial flux applications</a>, <a href="https://publications.waset.org/abstracts/search?q=coreless%20machines" title=" coreless machines"> coreless machines</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%20machines" title=" PM machines"> PM machines</a> </p> <a href="https://publications.waset.org/abstracts/95500/a-comprehensive-review-of-axial-flux-machines-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8844</span> Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chii-Dong%20Ho">Chii-Dong Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Har%20Chen"> Jian-Har Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permeate%20flux" title="permeate flux">permeate flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=DCMD%20module" title=" DCMD module"> DCMD module</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20polarization" title=" temperature polarization"> temperature polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20diameters" title=" hydraulic diameters"> hydraulic diameters</a> </p> <a href="https://publications.waset.org/abstracts/194162/investigation-of-permeate-flux-through-dcmd-module-by-inserting-s-ribs-carbon-fiber-promoters-with-ascending-and-descending-hydraulic-diameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8843</span> Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zheng">Wei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mao%20Ji"> Mao Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Hou"> Zhe Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Huang"> Meng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Qi"> Bo Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20flux%20leakage" title="magnetic flux leakage">magnetic flux leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20placement%20method" title=" sensor placement method"> sensor placement method</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20deformation" title=" winding deformation"> winding deformation</a> </p> <a href="https://publications.waset.org/abstracts/136348/research-on-placement-method-of-the-magnetic-flux-leakage-sensor-based-on-online-detection-of-the-transformer-winding-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8842</span> Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petter%20Eklund">Petter Eklund</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Sj%C3%B6lund"> Jonathan Sjölund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Eriksson"> Sandra Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mats%20Leijon"> Mats Leijon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20effects" title="end effects">end effects</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20leakage%20flux" title=" end leakage flux"> end leakage flux</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machine" title=" permanent magnet machine"> permanent magnet machine</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke%20type%20rotor" title=" spoke type rotor"> spoke type rotor</a> </p> <a href="https://publications.waset.org/abstracts/65632/magnetic-end-leakage-flux-in-a-spoke-type-rotor-permanent-magnet-synchronous-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8841</span> Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingwei%20Wang">Jingwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20G.%20Fane"> Anthony G. Fane</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling%20mitigation" title="membrane fouling mitigation">membrane fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-solid%20fluidization" title=" liquid-solid fluidization"> liquid-solid fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flux" title=" critical flux"> critical flux</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20input" title=" energy input"> energy input</a> </p> <a href="https://publications.waset.org/abstracts/75555/effect-of-fluidized-granular-activated-carbon-for-the-mitigation-of-membrane-fouling-in-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8840</span> Development and Modeling of a Geographic Information System Solar Flux in Adrar, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Benatiallah">D. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benatiallah"> A. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouchouicha"> K. Bouchouicha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harouz"> A. Harouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development and operation of renewable energy known an important development in the world with significant growth potential. Estimate the solar radiation on terrestrial geographic locality is of extreme importance, firstly to choose the appropriate site where to place solar systems (solar power plants for electricity generation, for example) and also for the design and performance analysis of any system using solar energy. In addition, solar radiation measurements are limited to a few areas only in Algeria. Thus, we use theoretical approaches to assess the solar radiation on a given location. The Adrar region is one of the most favorable sites for solar energy use with a medium flow that exceeds 7 kWh / m2 / d and saddle of over 3500 hours per year. Our goal in this work focuses on the creation of a data bank for the given data in the energy field of the Adrar region for the period of the year and the month then the integration of these data into a geographic Information System (GIS) to estimate the solar flux on a location on the map. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrar" title="Adrar">Adrar</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=deposit%20potential" title=" deposit potential"> deposit potential</a> </p> <a href="https://publications.waset.org/abstracts/47606/development-and-modeling-of-a-geographic-information-system-solar-flux-in-adrar-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8839</span> Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Bengourina">M. R. Bengourina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahli"> M. Rahli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hassaine"> L. Hassaine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saadi"> S. Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shunt%20active%20power%20filter" title="shunt active power filter">shunt active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=VF-DPC" title=" VF-DPC"> VF-DPC</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a> </p> <a href="https://publications.waset.org/abstracts/74510/renewable-energy-interfaced-shunt-active-filter-using-a-virtual-flux-direct-power-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8838</span> Modification of Fick’s First Law by Introducing the Time Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fick%27s%20first%20law" title="Fick&#039;s first law">Fick&#039;s first law</a>, <a href="https://publications.waset.org/abstracts/search?q=flux" title=" flux"> flux</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Fick%E2%80%99s%20first%20law" title=" modified Fick’s first law"> modified Fick’s first law</a> </p> <a href="https://publications.waset.org/abstracts/19767/modification-of-ficks-first-law-by-introducing-the-time-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8837</span> Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Xinxin">Zhu Xinxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hui"> Wang Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Kai"> Yang Kai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correction%20method" title="correction method">correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux%20calculation" title=" heat flux calculation"> heat flux calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20structure" title=" heat insulation structure"> heat insulation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20model" title=" heat transfer model"> heat transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=slug%20calorimeter" title=" slug calorimeter"> slug calorimeter</a> </p> <a href="https://publications.waset.org/abstracts/116493/optimization-of-heat-insulation-structure-and-heat-flux-calculation-method-of-slug-calorimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8836</span> Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lehr">Marcel Lehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder"> Andreas Binder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly-salient-permanent-magnet-machine" title="doubly-salient-permanent-magnet-machine">doubly-salient-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-reversal-permanent-magnet-machine" title=" flux-reversal-permanent-magnet-machine"> flux-reversal-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-switching-permanent-magnet-machine" title=" flux-switching-permanent-magnet-machine"> flux-switching-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20drive" title=" industrial drive"> industrial drive</a> </p> <a href="https://publications.waset.org/abstracts/61399/comparison-of-different-electrical-machines-with-permanent-magnets-in-the-stator-for-use-as-an-industrial-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8835</span> Optimization of a Flux Switching Permanent Magnet Machine Using Laminated Segmented Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedmilad%20Kazemisangdehi">Seyedmilad Kazemisangdehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedmehdi%20Kazemisangdehi"> Seyedmehdi Kazemisangdehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flux switching permanent magnet machines are considered for wide range of applications because of their outstanding merits including high torque/power densities, high efficiency, simple and robust rotor structure. Therefore, several topologies have been proposed like the PM exited flux switching machine, hybrid excited flux switching type, and so on. Recently, a novel laminated segmented rotor flux switching permanent magnet machine was introduced. It features flux barriers on rotor structure to enhance the performances of machine including torque ripple reduction and also torque and efficiency improvements at the same time. This is while, the design of barriers was not optimized by the authors. Therefore, in this paper three coefficients regarding the position of the barriers are considered for optimization. The effect of each coefficient on the performance of this machine is investigated by finite element method and finally an optimized design of flux barriers based on these three coefficients is proposed from different points of view including electromagnetic torque maximization and cogging torque/torque ripple minimization. At optimum design from maximum developed torque aspect, this machine generates 0.65 Nm torque higher than that of the not-optimized design with an almost 0.4 % improvement in efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FSPM" title=" FSPM"> FSPM</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20segmented%20rotor%20flux%20switching%20permanent%20magnet%20machine" title=" laminated segmented rotor flux switching permanent magnet machine"> laminated segmented rotor flux switching permanent magnet machine</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/127513/optimization-of-a-flux-switching-permanent-magnet-machine-using-laminated-segmented-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8834</span> Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Rosaz">G. Rosaz</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Semblanet"> V. Semblanet</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Calatroni"> S. Calatroni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sublet"> A. Sublet</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Taborelli"> M. Taborelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnetic profiles. These show a good agreement between the expected and actual values. The qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016 A.cm<sup>-2</sup> to 0.074 A.cm<sup>-2</sup> of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10<sup>-3</sup> mbar and a plasma source power of 300 W. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20energy%20distribution%20function" title="ion energy distribution function">ion energy distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=niobium" title=" niobium"> niobium</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced" title=" unbalanced"> unbalanced</a>, <a href="https://publications.waset.org/abstracts/search?q=SRF%20cavities" title=" SRF cavities"> SRF cavities</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/44989/unbalanced-cylindrical-magnetron-for-accelerating-cavities-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8833</span> Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Motamedian">Ehsan Motamedian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux%20variability" title="flux variability">flux variability</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20network" title=" metabolic network"> metabolic network</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20optimal%20solutions" title=" multiple optimal solutions"> multiple optimal solutions</a> </p> <a href="https://publications.waset.org/abstracts/15698/effect-of-variable-fluxes-on-optimal-flux-distribution-in-a-metabolic-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8832</span> Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jia%20He">Jia-Jia He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hua%20Sun"> Jin-Hua Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title="rigid polyurethane foam">rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20time" title=" ignition time"> ignition time</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heat%20flux" title=" external heat flux"> external heat flux</a> </p> <a href="https://publications.waset.org/abstracts/77115/effect-of-external-radiative-heat-flux-on-combustion-characteristics-of-rigid-polyurethane-foam-under-piloted-ignition-and-radiative-auto-ignition-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8831</span> Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Grahovac">Jovana Grahovac</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Pajcin"> Ivana Pajcin</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasa%20Lukic"> Natasa Lukic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Dodic"> Jelena Dodic</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Jokic"> Aleksandar Jokic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20velezensis" title="Bacillus velezensis">Bacillus velezensis</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration" title=" microfiltration"> microfiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20mixer" title=" static mixer"> static mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/119795/reduction-of-specific-energy-consumption-in-microfiltration-of-bacillus-velezensis-broth-by-air-sparging-and-turbulence-promoter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8830</span> The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natheer%20Alatawneh">Natheer Alatawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternating%20core%20losses" title="alternating core losses">alternating core losses</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20machines" title=" electric machines"> electric machines</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20core%20losses" title=" rotational core losses"> rotational core losses</a> </p> <a href="https://publications.waset.org/abstracts/64360/the-influence-of-different-flux-patterns-on-magnetic-losses-in-electric-machine-cores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8829</span> Effect of Hydraulic Diameter on Flow Boiling Instability in a Single Microtube with Vertical Upward Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20You">Qian You</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Hassan"> Ibrahim Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Kadem"> Lyes Kadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment is conducted to fundamentally investigate flow oscillation characteristics in different sizes of single microtubes in vertical upward flow direction. Three microtubes have 0.889 mm, 0.533 mm, and 0.305 mm hydraulic diameters with 100 mm identical heated length. The mass flux of the working fluid FC-72 varies from 700 kg/m2•s to 1400 kg/m2•s, and the heat flux is uniformly applied on the tube surface up to 9.4 W/cm2. The subcooled inlet temperature is maintained around 24°C during the experiment. The effect of hydraulic diameter and mass flux are studied. The results showed that they have interactions on the flow oscillations occurrence and behaviors. The onset of flow instability (OFI), which is a threshold of unstable flow, usually appears in large microtube with diversified and sustained flow oscillations, while the transient point, which is the point when the flow turns from one stable state to another suddenly, is more observed in small microtube without characterized flow oscillations due to the bubble confinement. The OFI/transient point occurs early as hydraulic diameter reduces at a given mass flux. The increased mass flux can delay the OFI/transient point occurrence in large hydraulic diameter, but no significant effect in small size. Although the only transient point is observed in the smallest tube, it appears at small heat flux and is not sensitive to mass flux; hence, the smallest microtube is not recommended since increasing heat flux may cause local dryout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20boiling%20instability" title="flow boiling instability">flow boiling instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20diameter%20effect" title=" hydraulic diameter effect"> hydraulic diameter effect</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20single%20microtube" title=" a single microtube"> a single microtube</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20upward%20flow" title=" vertical upward flow"> vertical upward flow</a> </p> <a href="https://publications.waset.org/abstracts/29887/effect-of-hydraulic-diameter-on-flow-boiling-instability-in-a-single-microtube-with-vertical-upward-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8828</span> Design of a Compact Herriott Cell for Heat Flux Measurement Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Ram%C3%ADrez-Chavarr%C3%ADa">R. G. Ramírez-Chavarría</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S%C3%A1nchez-P%C3%A9rez"> C. Sánchez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Argueta-D%C3%ADaz"> V. Argueta-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title="heat flux">heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Herriott%20cell" title=" Herriott cell"> Herriott cell</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20beam%20deflection" title=" optical beam deflection"> optical beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/31146/design-of-a-compact-herriott-cell-for-heat-flux-measurement-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8827</span> Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Mukherjee">Abhishek Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Cajas"> Juan C. Cajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20%20Suckale"> Jenny Suckale</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Houzeaux"> Guillaume Houzeaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Oriol%20Lehmkuhl"> Oriol Lehmkuhl</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Marras"> Simone Marras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20defense" title="coastal defense">coastal defense</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20flux" title=" energy flux"> energy flux</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20hazards" title=" natural hazards"> natural hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title=" sediment transport"> sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20mitigation" title=" tsunami mitigation"> tsunami mitigation</a> </p> <a href="https://publications.waset.org/abstracts/136422/numerical-investigation-of-tsunami-flow-characteristics-and-energy-reduction-through-flexible-vegetation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8826</span> Optimized Passive Heating for Multifamily Dwellings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Bostick">Joseph Bostick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20plus" title="energy plus">energy plus</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/142684/optimized-passive-heating-for-multifamily-dwellings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8825</span> Standardization Of Miniature Neutron Research Reactor And Occupational Safety Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparator factors (Fc) for miniature research reactors are of great importance in the field of nuclear physics as it provide accurate bases for the evaluation of elements in all form of samples via ko-NAA techniques. The Fc was initially simulated theoretically thereafter, series of experiments were performed to validate the results. In this situation, the experimental values were obtained using the alloy of Au(0.1%) - Al monitor foil and a neutron flux setting of 5.00E+11 cm-2.s-1. As was observed in the inner irradiation position, the average experimental value of 7.120E+05 was reported against the theoretical value of 7.330E+05. In comparison, a percentage deviation of 2.86 (from theoretical value) was observed. In the large case of the outer irradiation position, the experimental value of 1.170E+06 was recorded against the theoretical value of 1.210E+06 with a percentage deviation of 3.310 (from the theoretical value). The estimation of equivalent dose rate at 5m from neutron flux of 5.00E+11 cm-2.s-1 within the neutron energies of 1KeV, 10KeV, 100KeV, 500KeV, 1MeV, 5MeV and 10MeV were calculated to be 0.01 Sv/h, 0.01 Sv/h, 0.03 Sv/h, 0.15 Sv/h, 0.21Sv/h and 0.25 Sv/h respectively with a total dose within a period of an hour was obtained to be 0.66 Sv. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20flux" title="neutron flux">neutron flux</a>, <a href="https://publications.waset.org/abstracts/search?q=comparator%20factor" title=" comparator factor"> comparator factor</a>, <a href="https://publications.waset.org/abstracts/search?q=NAA%20techniques" title=" NAA techniques"> NAA techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20energy" title=" neutron energy"> neutron energy</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20dose" title=" equivalent dose"> equivalent dose</a> </p> <a href="https://publications.waset.org/abstracts/142174/standardization-of-miniature-neutron-research-reactor-and-occupational-safety-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8824</span> Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Pradeep">O. S. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vigneshwaran"> S. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Praveen%20Kumar"> K. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jeyendran"> K. Jeyendran</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0<sup>o</sup>, 30<sup>o</sup>, 45<sup>o</sup>, and 60<sup>o</sup>. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket" title=" liquid rocket"> liquid rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine%20wall%20heat%20flux" title=" rocket engine wall heat flux"> rocket engine wall heat flux</a> </p> <a href="https://publications.waset.org/abstracts/62084/wall-heat-flux-mapping-in-liquid-rocket-combustion-chamber-with-different-jet-impingement-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=295">295</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=296">296</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20flux&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10