CINXE.COM

Search results for: 2)al harouge al aswad igneous complex.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: 2)al harouge al aswad igneous complex.</title> <meta name="description" content="Search results for: 2)al harouge al aswad igneous complex."> <meta name="keywords" content="2)al harouge al aswad igneous complex."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="2)al harouge al aswad igneous complex." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="2)al harouge al aswad igneous complex."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5268</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: 2)al harouge al aswad igneous complex.</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5268</span> Generation &amp; Migration Of Carbone Dioxid In The Lower Cretaceous Bahi Sandstone Reservoir Within The En-naga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex.Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub – basin), three main developed structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represents a good example for the deep over pressure potential in (En Naga sub - basin). The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%29%20en%20naga%20sub%20basin" title="1) en naga sub basin">1) en naga sub basin</a>, <a href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex." title=" 2)al harouge al aswad igneous complex."> 2)al harouge al aswad igneous complex.</a>, <a href="https://publications.waset.org/abstracts/search?q=3%29%20lower%20cretaceous%20bahi%20reservoir" title=" 3) lower cretaceous bahi reservoir"> 3) lower cretaceous bahi reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=4%29co2%20generation%20and%20migration%20to%20the%20bahi%20sandstone%20reservoir" title=" 4)co2 generation and migration to the bahi sandstone reservoir"> 4)co2 generation and migration to the bahi sandstone reservoir</a> </p> <a href="https://publications.waset.org/abstracts/173034/generation-migration-of-carbone-dioxid-in-the-lower-cretaceous-bahi-sandstone-reservoir-within-the-en-naga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5267</span> Lower Cretaceous Bahi Sandstone Reservoir as Sourced of Co2 Accumulation Within the En-Naga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moawia%20Abulgader%20Gdara">Moawia Abulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO2 accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO2 gas reservoirs with almost pure magmatic CO2, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO2 is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD.In the (En Naga sub – basin), The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam Formation) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO2 prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO2 prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%29en%20naga%20sub%20basin" title="1)en naga sub basin">1)en naga sub basin</a>, <a href="https://publications.waset.org/abstracts/search?q=2%29alharouge%20al%20aswad%20igneous%20complex" title=" 2)alharouge al aswad igneous complex"> 2)alharouge al aswad igneous complex</a>, <a href="https://publications.waset.org/abstracts/search?q=3%29co2%20generation%20and%20migration" title=" 3)co2 generation and migration"> 3)co2 generation and migration</a>, <a href="https://publications.waset.org/abstracts/search?q=4%29lower%20cretaceous%20bahi%20sandstone" title=" 4)lower cretaceous bahi sandstone"> 4)lower cretaceous bahi sandstone</a> </p> <a href="https://publications.waset.org/abstracts/168693/lower-cretaceous-bahi-sandstone-reservoir-as-sourced-of-co2-accumulation-within-the-en-naga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5266</span> Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=En%20Naga%20Sub%20Basin" title="En Naga Sub Basin">En Naga Sub Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Harouge%20Al%20Aswad%27s%20Igneous%20complex" title=" Al Harouge Al Aswad&#039;s Igneous complex"> Al Harouge Al Aswad&#039;s Igneous complex</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20generation" title=" carbon dioxide generation"> carbon dioxide generation</a>, <a href="https://publications.waset.org/abstracts/search?q=migration%20in%20the%20Bahi%20sandstone%20reservoir" title=" migration in the Bahi sandstone reservoir"> migration in the Bahi sandstone reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous%20Bahi%20Sandstone" title=" lower cretaceous Bahi Sandstone"> lower cretaceous Bahi Sandstone</a> </p> <a href="https://publications.waset.org/abstracts/151300/generation-and-migration-of-co2-in-the-bahi-sandstone-reservoir-within-the-ennaga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5265</span> Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moaawia%20Abdulgader%20Gdara">Moaawia Abdulgader Gdara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=En%20Naga%20Sub%20Basin" title="En Naga Sub Basin">En Naga Sub Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Harouge%20Al%20Aswad%E2%80%99s%20Igneous%20Complex" title=" Al Harouge Al Aswad’s Igneous Complex"> Al Harouge Al Aswad’s Igneous Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20generation%20and%20migration%20in%20the%20Bahi%20sandstone%20reservoir" title=" carbon dioxide generation and migration in the Bahi sandstone reservoir"> carbon dioxide generation and migration in the Bahi sandstone reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous%20Bahi%20sandstone" title=" lower cretaceous Bahi sandstone"> lower cretaceous Bahi sandstone</a> </p> <a href="https://publications.waset.org/abstracts/151882/generation-and-migration-of-co2-in-the-bahi-sandstone-reservoir-within-the-ennaga-sub-basin-sirte-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5264</span> Chemical Composition, Petrology and P-T Conditions of Ti-Mg-Biotites within Syenitic Rocks from the Lar Igneous Suite, East of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Ghafaribijar">Sasan Ghafaribijar</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Hakimi"> Javad Hakimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Arvin"> Mohsen Arvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Tahernezhad"> Peyman Tahernezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lar Igneous Suite (LIS), east of Iran, is part of post collisional alkaline magmatism related to Late Cretaceous- mid Eocene Sistan suture zone. The suite consists of a wide variety of igneous rocks, from volcanic to intrusive and hypabissal rocks such as tuffs, trachyte, monzonite, syenites and lamprophyres. Syenitic rocks which mainly occur in a giant ring dike and stocks, are shoshonitic to potassic-ultrapotassic (K<sub>2</sub>O/Na<sub>2</sub>O &gt; 2 wt.%; MgO &gt; 3 wt.%; K<sub>2</sub>O &gt; 3 wt.%) in composition and are also associated with Cu-Mo mineralization. In this study, chemical composition of biotites within the Lar syenites (LS) is determined by electron microprobe analysis. The results show that LS biotites are Ti-Mg-biotites (phlogopite) which contain relatively high Ti and Mg, and low Fe concentrations. The Mg/(Fe<sup>2+</sup>+ Mg) ratio in these biotites range between 0.56 and 0.73 that represent their transitionally chemical evolution. TiO<sub>2</sub> content in these biotites is high and in the range of 3.0-5.4 wt.%. These chemical characteristics indicate that the LS biotites are primary and have been crystallized directly from magma. The investigations also demonstrate that the LS biotites have crystallized from a magma of orogenic nature. Temperature and pressure are the most significant factors controlling Mg and Ti content in the LS biotites, respectively. The results show that the LS biotites crystallized at temperatures (T) between 800 to 842 &deg;C and pressures (P) between 0.99 to 1.44 kbar. These conditions are indicative of a crystallization depth of 3.26-4.74 km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sistan%20suture%20zone" title="sistan suture zone">sistan suture zone</a>, <a href="https://publications.waset.org/abstracts/search?q=Lar%20Igneous%20Suite" title=" Lar Igneous Suite"> Lar Igneous Suite</a>, <a href="https://publications.waset.org/abstracts/search?q=zahedan" title=" zahedan"> zahedan</a>, <a href="https://publications.waset.org/abstracts/search?q=syenite" title=" syenite"> syenite</a>, <a href="https://publications.waset.org/abstracts/search?q=biotite" title=" biotite"> biotite</a> </p> <a href="https://publications.waset.org/abstracts/109121/chemical-composition-petrology-and-p-t-conditions-of-ti-mg-biotites-within-syenitic-rocks-from-the-lar-igneous-suite-east-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5263</span> Hydrometallurgical Production of Nickel Ores from Field Bugetkol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Zhakiyenova">A. T. Zhakiyenova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Zhatkanbaev"> E. E. Zhatkanbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Zh.%20K.%20Zhatkanbaeva"> Zh. K. Zhatkanbaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt" title="cobalt">cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20extraction" title=" degree of extraction"> degree of extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title=" hydrometallurgy"> hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20metallurgy" title=" igneous metallurgy"> igneous metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=matte" title=" matte"> matte</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/43141/hydrometallurgical-production-of-nickel-ores-from-field-bugetkol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5262</span> Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahya%20Wimar%20Wicaksono">Cahya Wimar Wicaksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynara%20Davin%20Chen"> Reynara Davin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvian%20Kristianto%20Santoso"> Alvian Kristianto Santoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustible" title="combustible">combustible</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive" title=" corrosive"> corrosive</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20sulphide%20zone" title=" heavy sulphide zone"> heavy sulphide zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20%C2%B1%20pyrrhotite" title=" pyrite ± pyrrhotite"> pyrite ± pyrrhotite</a> </p> <a href="https://publications.waset.org/abstracts/82797/heavy-sulphide-material-characterization-of-grasberg-block-cave-mine-mimika-papua-implication-for-tunnel-development-and-mill-issue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5261</span> Mineral Chemistry of Extraordinary Ilmenite from the Gabbroic Rocks of Abu Ghalaga Area, Eastern Desert, Egypt: Evidence to Metamorphic Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Maher%20Abdel%20Aziz%20Hawa">Yaser Maher Abdel Aziz Hawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An assemblage of Mn-bearing ilmenite, titanomagnetite (4-17 vol.%) and subordinate chalcopyrite, pyrrhptite and pyrite is present as dissiminations in gabbroic rocks of Abu Ghalaga area, Eastern Desert, Egypt. The neoproterozoic gabbroic rocks encompasses these opaques are emplaced during oceanic island arc stage which represents the Nubian shield of Egypt. However, some textural features of these opaques suggest a relict igneous. The high Mn (up to 5.8 MnO%, 1282% MnTiO3) and very low Mg contents (0.21 MgO%, 0.82 MgTiO3) are dissimilar to those of any igneous ilmenite of tholeiitic rocks. Most of these ilmenites are associated mostly with metamorphic hornblende. Hornblende thermometry estimate crystallization of about 560°C. the present study suggests that the ilmenite under consideration has been greatly metamorphically modified, having lost Mg and gained Mn by diffusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanomagnetite" title="titanomagnetite">titanomagnetite</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalaga" title=" Ghalaga"> Ghalaga</a>, <a href="https://publications.waset.org/abstracts/search?q=ilmenite" title=" ilmenite"> ilmenite</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a> </p> <a href="https://publications.waset.org/abstracts/7253/mineral-chemistry-of-extraordinary-ilmenite-from-the-gabbroic-rocks-of-abu-ghalaga-area-eastern-desert-egypt-evidence-to-metamorphic-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5260</span> Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Saleem">Mohamed A. Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirt%20Basin" title="Sirt Basin">Sirt Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zallah%20Trough" title=" Zallah Trough"> Zallah Trough</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20intrusions" title=" igneous intrusions"> igneous intrusions</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20data" title=" seismic data"> seismic data</a> </p> <a href="https://publications.waset.org/abstracts/147555/identification-of-igneous-intrusions-in-south-zallah-trough-sirt-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5259</span> Petrograpgy and Major Elements Chemistry of Granitic rocks of the Nagar Parkar Igneous Complex, Tharparkar, Sindh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanullah%20Lagharil">Amanullah Lagharil</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Ali%20Laghari"> Majid Ali Laghari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qasim"> M. Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan.%20M."> Jan. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Khan"> Asif Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassan%20Agheem"> M. Hassan Agheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nagar Parkar area in southeastern Sindh is a part of the Thar Desert adjacent to the Runn of Kutchh, and covers 480 km2. It contains exposures of a variety of igneous rocks referred to as the Nagar Parkar Igneous Complex. The complex comprises rocks belonging to at least six phases of magmatism, from oldest to youngest: 1) amphibolitic basement rocks, 2) riebeckite-aegirine grey granite, 3) biotite-hornblende pink granite, 4) acid dykes, 5) rhyolite “plugs”, and basic dykes (Jan et al., 1997). The last three of these are not significant in volume. Radiometric dates are lacking but the grey and pink granites are petrographically comparable to the Siwana and Jalore plutons, respectively, emplaced in the Malani volcanic series. Based on these similarities and proximity, the phase 2 to 6 bodies in the Nagar Parkar may belong to the Late Proterozoic (720–745 Ma) Malani magmatism that covers large areas in western Rajasthan. Khan et al. (2007) have reported a 745 ±30 – 755 ±22 Ma U-Th-Pb age on monazite from the pink granite. The grey granite is essentially composed of perthitic feldspar (microperthite, mesoperthite), quartz, small amount of plagioclase and, characteristically, sodic minerals such as riebeckite and aegirine. A few samples lack aegirine. Fe-Ti oxide and minute, well-developed crystals of zircon occur in almost all the studied samples. Tourmaline, fluorite, apatite and rutile occur in only some samples and astrophyllite is rare. Allanite, sphene and leucoxene occur as minor accessories along with local epidote. The pink granite is mostly leucocratic, but locally rich in biotite (up to 7 %). It is essentially made up of microperthite and quartz, with local microcline, and minor plagioclase (albite-oligoclase). Some rocks contain sufficient oligoclase and can be called adamellite or quartz mozonite. Biotite and hornblende are main accessory minerals along with iron oxide, but in a few samples are without hornblende. Fayalitic olivine, zircon, sphene, apatite, tourmaline, fluorite, allanite and cassiterite occur as sporadic accessory minerals. Epidote, carbonate, sericite and muscovite are produced due to the alteration of feldspar. This work concerns the major element geochemistry and comparison of the principal granitic rocks of Nagar Parkar. According to the scheme of De La Roche et al. (1980), majority of the grey and pink granites classify as alkali granite, 20 % as granite and 10 % as granodiorite. When evaluated on the basis of Shand's indices (after Maniar and Piccoli, 1989), the grey and pink granites span all three fields (peralkaline, metaluminous and peraluminous). Of the analysed grey granites, 67 % classify as peralkaline, 20 % as peraluminous and 10 % as metaluminous, while 50 % of pink granites classify as peralkaline, 30 % metaluminous and 20 % peraluminous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=nagar%20parker" title=" nagar parker"> nagar parker</a>, <a href="https://publications.waset.org/abstracts/search?q=granites" title=" granites"> granites</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20sciences" title=" geological sciences"> geological sciences</a> </p> <a href="https://publications.waset.org/abstracts/16480/petrograpgy-and-major-elements-chemistry-of-granitic-rocks-of-the-nagar-parkar-igneous-complex-tharparkar-sindh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5258</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells La-9D and La-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore, and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite, and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title="igneous rocks">igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title=" tracer elements"> tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/164354/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5257</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells LA-9D and LA-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20geothermal%20field" title="auto geothermal field">auto geothermal field</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title=" igneous rocks"> igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title="tracer elements">tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/142062/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5256</span> Analysis of Intra-Varietal Diversity for Some Lebanese Grapevine Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Khater">Stephanie Khater</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Chehade"> Ali Chehade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamis%20Chalak"> Lamis Chalak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The progressive replacement of the Lebanese autochthonous grapevine cultivars during the last decade by the imported foreign varieties almost resulted in the genetic erosion of the local germplasm and the confusion with cultivars' names. Hence there is a need to characterize these local cultivars and to assess the possible existing variability at the cultivar level. This work was conducted in an attempt to evaluate the intra-varietal diversity within Lebanese traditional cultivars 'Aswad', 'Maghdoushe', 'Maryame', 'Merweh', 'Meksese' and 'Obeide'. A total of 50 accessions distributed over five main geographical areas in Lebanon were collected and submitted to both ampelographic description and ISSR DNA analysis. A set of 35 ampelographic descriptors previously established by the International Office of Vine and Wine and related to leaf, bunch, berry, and phenological stages, were examined. Variability was observed between accessions within cultivars for blade shape, density of prostrate and erect hairs, teeth shape, berry shape, size and color, cluster shape and size, and flesh juiciness. At the molecular level, nine ISSR (inter-simple sequence repeat) primers, previously developed for grapevine, were used in this study. These primers generated a total of 35 bands, of which 30 (85.7%) were polymorphic. Totally, 29 genetic profiles were differentiated, of which 9 revealed within 'Obeide', 6 for 'Maghdoushe', 5 for 'Merweh', 4 within 'Maryame', 3 for 'Aswad' and 2 within 'Meksese'. Findings of this study indicate the existence of several genotypes that form the basis of the main indigenous cultivars grown in Lebanon and which should be further considered in the establishment of new vineyards and selection programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ampelography" title="ampelography">ampelography</a>, <a href="https://publications.waset.org/abstracts/search?q=autochthonous%20cultivars" title=" autochthonous cultivars"> autochthonous cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=ISSR%20markers" title=" ISSR markers"> ISSR markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanon" title=" Lebanon"> Lebanon</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera%20L." title=" Vitis vinifera L. "> Vitis vinifera L. </a> </p> <a href="https://publications.waset.org/abstracts/130529/analysis-of-intra-varietal-diversity-for-some-lebanese-grapevine-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5255</span> The Sr-Nd Isotope Data of the Platreef Rocks from the Northern Limb of the Bushveld Igneous Complex: Evidence of Contrasting Magma Composition and Origin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tshipeng%20Mwenze">Tshipeng Mwenze</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Okujeni"> Charles Okujeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Siad"> Abdi Siad</a>, <a href="https://publications.waset.org/abstracts/search?q=Russel%20Bailie"> Russel Bailie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Frei"> Dirk Frei</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelene%20Voigt"> Marcelene Voigt</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Le%20Roux"> Petrus Le Roux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Platreef is a platinum group element (PGE) deposit in the northern limb of the Bushveld Igneous Complex (BIC) which was emplaced as a series of mafic and ultramafic sills between the Main Zone (MZ) and the country rocks. The PGE mineralisation in the Platreef is hosted in different rock types, and its distribution and style vary with depth and along strike. This study contributes towards understanding the processes involved in the genesis of the Platreef. Twenty-four Platreef (2 harzburgites, 4 olivine pyroxenites, 17 feldspathic pyroxenites and 1 gabbronorite) and few MZ (1 gabbronorite and 1 leucogabbronorite) quarter core samples were collected from four drill cores (e.g., TN754, TN200, SS339, and OY482) and analysed for whole-rock Sr-Nd isotope data. The results show positive ɛNd values (+3.53 to +7.51) for harzburgites suggesting their parental magmas derived from the depleted Mantle. The remaining Platreef rocks have negative ɛNd values (-2.91 to -22.88) and show significant variations in Sr-Nd isotopic compositions. The first group of Platreef samples has relatively high isotopic compositions (ɛNd= -2.91 to -5.68; ⁸⁷Sr/⁸⁶Sri= 0.709177 - 0.711998). The second group of Platreef samples has Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.709816-0.712106) overlapping with samples of the first group but slightly lower ɛNd values (-7.44 to -8.39). Lastly, the third group of Platreef samples has low ɛNd values (-10.82 to -14.32) and low Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.707545-0.710042) than those from samples of the two Platreef groups mentioned above. There is, however, a Platreef sample with ɛNd value (-5.26) in range with the Platreef samples of the first group, but its Sr ratio (0.707281) is the lowest even when compared to samples of the third Platreef group. There are also five other Platreef samples which have either anomalous ɛNd or Sr ratios which make it difficult to assess their isotopic compositions relative to other samples. These isotopic variations for the Platreef samples indicate both multiple sources and multiple magma chambers where varying crustal contamination styles have operated during the evolution of these magmas prior their emplacements into the Platreef setting as sills. Furthermore, the MZ rocks have different Sr-Nd isotopic compositions (For OY482 gabbronorite [ɛNd= +0.65; ⁸⁷Sr/⁸⁶Sri= 0.711746]; for TN754 leucogabbronorite [ɛNd= -7.44; ⁸⁷Sr/⁸⁶Sri= 0.709322]) which do not only indicate different MZ magma chambers, but also different magmas from those of the Platreef. Although the Platreef is still considered a single stratigraphic unit in the northern limb of the BIC, its genesis involved multiple magmatic processes which evolved independently from each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustal%20contamination%20styles" title="crustal contamination styles">crustal contamination styles</a>, <a href="https://publications.waset.org/abstracts/search?q=magma%20chambers" title=" magma chambers"> magma chambers</a>, <a href="https://publications.waset.org/abstracts/search?q=magma%20sources" title=" magma sources"> magma sources</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sills%20emplacement" title=" multiple sills emplacement"> multiple sills emplacement</a> </p> <a href="https://publications.waset.org/abstracts/96022/the-sr-nd-isotope-data-of-the-platreef-rocks-from-the-northern-limb-of-the-bushveld-igneous-complex-evidence-of-contrasting-magma-composition-and-origin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5254</span> English Complex Aspectuality: A Functional Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cunyu%20Zhang">Cunyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on Systemic Functional Linguistics, this paper aims to explore the complex aspectuality system of English. This study shows that the complex aspectuality is classified into complex viewpoint aspect which refers to the homogeneous or heterogeneous ways continuously viewing on the same situation by the speaker and complex situation aspect which is the combined configuration of the internal time schemata of situation. Through viewpoint shifting and repeating, the complex viewpoint aspect is formed in two combination ways. Complex situation aspect is combined by the way of hypotactic verbal complex and the limitation of participant and circumstance in a clause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20series" title="aspect series">aspect series</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20situation%20aspect" title=" complex situation aspect"> complex situation aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20viewpoint%20aspect" title=" complex viewpoint aspect"> complex viewpoint aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=systemic%20functional%20linguistics" title=" systemic functional linguistics"> systemic functional linguistics</a> </p> <a href="https://publications.waset.org/abstracts/41687/english-complex-aspectuality-a-functional-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5253</span> Complex Fuzzy Evolution Equation with Nonlocal Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20El%20Allaoui">Abdelati El Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Melliani"> Said Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalla%20Saadia%20Chadli"> Lalla Saadia Chadli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Complex%20fuzzy%20evolution%20equations" title="Complex fuzzy evolution equations">Complex fuzzy evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20conditions" title=" nonlocal conditions"> nonlocal conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20solution" title=" mild solution"> mild solution</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fuzzy%20semigroups" title=" complex fuzzy semigroups"> complex fuzzy semigroups</a> </p> <a href="https://publications.waset.org/abstracts/59900/complex-fuzzy-evolution-equation-with-nonlocal-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5252</span> Second-Order Complex Systems: Case Studies of Autonomy and Free Will</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Sanchis">Eric Sanchis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomy" title="autonomy">autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20will" title=" free will"> free will</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20property" title=" synthetic property"> synthetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=vaporous%20complex%20systems" title=" vaporous complex systems"> vaporous complex systems</a> </p> <a href="https://publications.waset.org/abstracts/88132/second-order-complex-systems-case-studies-of-autonomy-and-free-will" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5251</span> Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Okan">E. O. Okan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kepic"> A. Kepic</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Williams"> P. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustal%20scale" title="crustal scale">crustal scale</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=IOCG%20deposit" title=" IOCG deposit"> IOCG deposit</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20surveys" title=" seismic surveys"> seismic surveys</a> </p> <a href="https://publications.waset.org/abstracts/40587/crustal-scale-seismic-surveys-in-search-for-gawler-craton-iron-oxide-cu-au-iocg-under-very-deep-cover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5250</span> Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Kumar">Naresh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Savita%20%20Kumari"> Savita Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Kochhar"> Naresh Kochhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title="geochemistry">geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=malani%20igneous%20suite" title=" malani igneous suite"> malani igneous suite</a>, <a href="https://publications.waset.org/abstracts/search?q=tosham" title=" tosham"> tosham</a> </p> <a href="https://publications.waset.org/abstracts/58002/geochemistry-and-tectonic-framework-of-malani-igneous-suite-and-their-effect-on-groundwater-quality-of-tosham-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5249</span> Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhu">Li Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binghua%20Wang"> Binghua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun"> Yong Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agritourism%20complex" title="agritourism complex">agritourism complex</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20simulation" title=" energy demand simulation"> energy demand simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure%20model" title=" hierarchical structure model"> hierarchical structure model</a> </p> <a href="https://publications.waset.org/abstracts/103773/energy-planning-analysis-of-an-agritourism-complex-based-on-energy-demand-simulation-a-case-study-of-wuxi-yangshan-agritourism-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5248</span> Digital Geological Map of the Loki Crystalline Massif (The Caucasus) and Its Multi-Informative Explanatory Note</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irakli%20Gamkrelidze">Irakli Gamkrelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Shengelia"> David Shengelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Chichinadze"> Giorgi Chichinadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Tsutsunava"> Tamara Tsutsunava</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Beridze"> Giorgi Beridze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Tsamalashvili"> Tamara Tsamalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ketevan%20Tedliashvili"> Ketevan Tedliashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Irakli%20Javakhishvili"> Irakli Javakhishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Caucasus is situated between the Eurasian and Africa-Arabian plates and represents a component of the Mediterranean (Alpine-Himalayan) collision belt. The Loki crystalline massif crops out within one of the terranes of the Caucasus – Baiburt-Sevanian terrane. By the end of 2018, a digital geological map (1:50 000) of the Loki massif was compiled. The presented map is of great importance for the region since there is no large-scale geological map which reflects the present standards of the geological study of the massif up to the last time. The existing State Geological Map of the Loki massif is very outdated. A new map drown by using GIS (Geographic Information System) technology is loaded with multi-informative details that include: specified contours of geological units and separate tectonic scales, key mineral assemblages and facies of metamorphism, temperature conditions of metamorphism, ages of metamorphism events and the massif rocks, genetic-geodynamic types of magmatic rocks. Explanatory note, attached to the map includes the large specter of scientific information. It contains characterization of the geological setting, composition and petrogenetic and geodynamic models of the massif formation. To create a geological map of the Loki crystalline massif, appropriate methodologies were applied: a sampling of rocks, GIS technology-based mapping of geological units, microscopic description of the material, composition analysis of rocks, microprobe analysis of minerals and a new interpretation of obtained data. To prepare a digital version of the map the appropriated activities were held including the creation of a common database. Finally, the design was created that includes the elaboration of legend and the final visualization of the map. The results of the study presented in the explanatory note are given below. The autochthonous gneissose quartz diorites of normal alkalinity and sub-alkaline gabbro-diorites included in them belong to different phases of magmatism. They represent “igneous” granites corresponding to mixed mantle-crustal type granites. Four tectonic plates of the allochthonous metamorphic complex–Lower Gorastskali, Sapharlo–Lok-Jandari, Moshevani, and Lower Gorastskali differ from each other by structure and degree of metamorphism. The initial rocks of these plates are formed in different geodynamic conditions and during the Early Bretonian orogeny while overthrusting due to tectonic compression they form a thick tectonic sheet. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The protolith of the ophiolitic complex basites corresponds to the tholeiitic series of basalts. The Sapharlo–Lok-Jandari overthrust sheet is metapelites, metamorphosed in conditions of greenschist facies of regional metamorphism. The regional metamorphism of Moshevani overthrust sheet crystalline schists quartzites corresponds to a range from greenschist to hornfels facies. The “mélange” is built of rock fragments and blocks of above-mentioned overthrust sheets. Sub-alkaline and normal alkaline post-metamorphic granites of the Loki crystalline massif belong to “igneous” and rarely to “sialic” and “anorogenic” types of granites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20geological%20map" title="digital geological map">digital geological map</a>, <a href="https://publications.waset.org/abstracts/search?q=1%3A50%20000%20scale" title=" 1:50 000 scale"> 1:50 000 scale</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20massif" title=" crystalline massif"> crystalline massif</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20caucasus" title=" the caucasus"> the caucasus</a> </p> <a href="https://publications.waset.org/abstracts/106823/digital-geological-map-of-the-loki-crystalline-massif-the-caucasus-and-its-multi-informative-explanatory-note" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5247</span> Preparation and Quality Control of a New Radiolabelled Complex of Spion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=SJ.%20Ahmadi"> SJ. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sajadi"> S. Sajadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahrami-Samani"> A. Bahrami-Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bagherzadeh"> M. Bagherzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20nanoparticles" title="iron nanoparticles">iron nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation" title=" preparation"> preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=153Sm" title=" 153Sm "> 153Sm </a> </p> <a href="https://publications.waset.org/abstracts/34298/preparation-and-quality-control-of-a-new-radiolabelled-complex-of-spion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5246</span> Development of 90y-Chitosan Complex for Radiosynovectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaei">A. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Athari-Allaf"> M. Athari-Allaf</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Jalilian"> A. R. Jalilian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y-90" title=" Y-90"> Y-90</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosynovectomy" title=" radiosynovectomy"> radiosynovectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a> </p> <a href="https://publications.waset.org/abstracts/23149/development-of-90y-chitosan-complex-for-radiosynovectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5245</span> Analysis of Kinetin Supramolecular Complex with Glytsirrizinic Acid and Based by Mass-Spectrometry Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakhtishod%20Matmuratov">Bakhtishod Matmuratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakhiba%20Madraximova"> Sakhiba Madraximova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakhmat%20Esanov"> Rakhmat Esanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alimjan%20Matchanov"> Alimjan Matchanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies have been performed to obtain complexes of glycyrrhizic acid and kinetins in a 2:1 ratio. The complex of glycyrrhizic acid and kinetins in a 2:1 ratio was considered evidence of the formation of a molecular complex by determining the molecular masses using chromato-mass spectroscopy and analyzing the IR spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monoammonium%20salt%20of%20glycyrrhizic%20acid" title="monoammonium salt of glycyrrhizic acid">monoammonium salt of glycyrrhizic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=glycyrrhizic%20acid" title=" glycyrrhizic acid"> glycyrrhizic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=supramolecular%20complex" title=" supramolecular complex"> supramolecular complex</a>, <a href="https://publications.waset.org/abstracts/search?q=isomolar%20series" title=" isomolar series"> isomolar series</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20spectroscopy" title=" IR spectroscopy"> IR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/151906/analysis-of-kinetin-supramolecular-complex-with-glytsirrizinic-acid-and-based-by-mass-spectrometry-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5244</span> Evaluation and Provenance Studies of Heavy Mineral Deposits in Recent Sediment of Ologe Lagoon, South Western, Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayowa%20Philips%20Ibitola">Mayowa Philips Ibitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade-Solomon%20Olorunfemi"> Akinade-Solomon Olorunfemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abe%20Oluwaseun%20Banji"> Abe Oluwaseun Banji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy minerals studies were carried out on eighteen sediment samples from Ologe lagoon located at Lagos Barrier complex, with the aim of evaluating the heavy mineral deposits and determining the provenance of the sediments. The samples were subjected to grain analysis techniques in order to collect the finest grain size. Separation of heavy minerals from the samples was done with the aid of bromoform to enable petrographic analyses of the heavy mineral suite, under the polarising microscope. The data obtained from the heavy mineral analysis were used in preparing histograms and pie chart, from which the individual heavy mineral percentage distribution and ZTR index were derived. The percentage composition of the individual heavy mineral analyzed are opaque mineral 63.92%, Zircon 12.43%, Tourmaline 5.79%, Rutile 13.44%, Garnet 1.74% and Staurolite 3.52%. The calculated zircon, tourmaline, rutile index in percentage (ZTR) varied between 76.13 -92.15%, average garnet-zircon index (GZI), average rutile-zircon index (RuZI) and average staurolite-zircon index values in all the stations are 16.18%, 54.33%, 25.11% respectively. The mean ZTR index percentage value is 85.17% indicates that the sediments within the lagoon are mineralogically matured. The high percentage of zircon, rutile, and tourmaline indicates an acid igneous rock source for the sediments. However, the low percentage of staurolite, rutile and garnet occurrence indicates sediment of metamorphic rock source input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lagoon" title="lagoon">lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20mineral" title=" heavy mineral"> heavy mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=ZTR%20index" title=" ZTR index"> ZTR index</a> </p> <a href="https://publications.waset.org/abstracts/90033/evaluation-and-provenance-studies-of-heavy-mineral-deposits-in-recent-sediment-of-ologe-lagoon-south-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5243</span> Parametric Design as an Approach to Respond to Complexity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Jabbari%20Behnam">Sepideh Jabbari Behnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahrasadat%20Saide%20Zarabadi"> Zahrasadat Saide Zarabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A city is an intertwined texture from the relationship of different components in a whole which is united in a one, so designing the whole complex and its planning is not an easy matter. By considering that a city is a complex system with infinite components and communications, providing flexible layouts that can respond to the unpredictable character of the city, which is a result of its complexity, is inevitable. Parametric design approach as a new approach can produce flexible and transformative layouts in any stage of design. This study aimed to introduce parametric design as a modern approach to respond to complex urban issues by using descriptive and analytical methods. This paper firstly introduces complex systems and then giving a brief characteristic of complex systems. The flexible design and layout flexibility is another matter in response and simulation of complex urban systems that should be considered in design, which is discussed in this study. In this regard, after describing the nature of the parametric approach as a flexible approach, as well as a tool and appropriate way to respond to features such as limited predictability, reciprocating nature, complex communications, and being sensitive to initial conditions and hierarchy, this paper introduces parametric design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity%20theory" title="complexity theory">complexity theory</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title=" parametric design"> parametric design</a> </p> <a href="https://publications.waset.org/abstracts/62330/parametric-design-as-an-approach-to-respond-to-complexity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5242</span> Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Andrey%20Fajardo%20Fajardo">Luis Andrey Fajardo Fajardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Python" title="Python">Python</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title=" dynamical systems"> dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/25768/implementation-in-python-of-a-method-to-transform-one-dimensional-signals-in-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5241</span> Delineation of Subsurface Tectonic Structures Using Gravity, Magnetic and Geological Data, in the Sarir-Hameimat Arm of the Sirt Basin, NE Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdalla%20Saleem">Mohamed Abdalla Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ellafi"> Hana Ellafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study area is located in the eastern part of the Sirt Basin, in the Sarir-Hameimat arm of the basin, south of Amal High. The area covers the northern part of the Hamemat Trough and the Rakb High. All of these tectonic elements are part of the major and common tectonics that were created when the old Sirt Arch collapsed, and most of them are trending NW-SE. This study has been conducted to investigate the subsurface structures and the sedimentology characterization of the area and attempt to define its development tectonically and stratigraphically. About 7600 land gravity measurements, 22500 gridded magnetic data, and petrographic core data from some wells were used to investigate the subsurface structural features both vertically and laterally. A third-order separation of the regional trends from the original Bouguer gravity data has been chosen. The residual gravity map reveals a significant number of high anomalies distributed in the area, separated by a group of thick sediment centers. The reduction to the pole magnetic map also shows nearly the same major trends and anomalies in the area. Applying the further interpretation filters reveals that these high anomalies are sourced from different depth levels; some are deep-rooted, and others are intruded igneous bodies within the sediment layers. The petrographic sedimentology study for some wells in the area confirmed the presence of these igneous bodies and defined their composition as most likely to be gabbro hosted by marine shale layers. Depth investigation of these anomalies by the average depth spectrum shows that the average basement depth is about 7.7 km, while the top of the intrusions is about 2.65 km, and some near-surface magnetic sources are about 1.86 km. The depth values of the magnetic anomalies and their location were estimated specifically using the 3D Euler deconvolution technique. The obtained results suggest that the maximum depth of the sources is about 4938m. The total horizontal gradient of the magnetic data shows that the trends are mostly extending NW-SE, others are NE-SW, and a third group has an N-S extension. This variety in trend direction shows that the area experienced different tectonic regimes throughout its geological history. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title="sirt basin">sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonics" title=" tectonics"> tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a> </p> <a href="https://publications.waset.org/abstracts/177510/delineation-of-subsurface-tectonic-structures-using-gravity-magnetic-and-geological-data-in-the-sarir-hameimat-arm-of-the-sirt-basin-ne-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5240</span> Classification of Traffic Complex Acoustic Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wang">Bin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Kang"> Jian Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soundscape" title="soundscape">soundscape</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20complex" title=" traffic complex"> traffic complex</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/57017/classification-of-traffic-complex-acoustic-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5239</span> Revolutionary Solutions for Modeling and Visualization of Complex Software Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Xiong">Jay Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lin"> Li Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing software modeling and visualization approaches using UML are outdated, which are outcomes of reductionism and the superposition principle that the whole of a system is the sum of its parts, so that with them all tasks of software modeling and visualization are performed linearly, partially, and locally. This paper introduces revolutionary solutions for modeling and visualization of complex software systems, which make complex software systems much easy to understand, test, and maintain. The solutions are based on complexity science, offering holistic, automatic, dynamic, virtual, and executable approaches about thousand times more efficient than the traditional ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title="complex systems">complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maintenance" title=" software maintenance"> software maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modeling" title=" software modeling"> software modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20visualization" title=" software visualization"> software visualization</a> </p> <a href="https://publications.waset.org/abstracts/41451/revolutionary-solutions-for-modeling-and-visualization-of-complex-software-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=175">175</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=176">176</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=2%29al%20harouge%20al%20aswad%20igneous%20complex.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10