CINXE.COM
MLlib: Main Guide - Spark 3.5.4 Documentation
<!DOCTYPE html> <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>MLlib: Main Guide - Spark 3.5.4 Documentation</title> <link rel="stylesheet" href="css/bootstrap.min.css"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> <link href="css/custom.css" rel="stylesheet"> <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> <link rel="stylesheet" href="css/pygments-default.css"> <link rel="stylesheet" href="css/docsearch.min.css" /> <link rel="stylesheet" href="css/docsearch.css"> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(["disableCookies"]); _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://analytics.apache.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '40']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </head> <body class="global"> <!--[if lt IE 7]> <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> <![endif]--> <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> <div class="navbar-brand"><a href="index.html"> <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.4</span> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarCollapse" aria-controls="navbarCollapse" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="navbarCollapse"> <ul class="navbar-nav me-auto"> <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> <a class="dropdown-item" href="quick-start.html">Quick Start</a> <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> <a class="dropdown-item" href="api/java/index.html">Java</a> <a class="dropdown-item" href="api/python/index.html">Python</a> <a class="dropdown-item" href="api/R/index.html">R</a> <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> <div class="dropdown-menu" aria-labelledby="navbarDeploying"> <a class="dropdown-item" href="cluster-overview.html">Overview</a> <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> <a class="dropdown-item" href="running-on-yarn.html">YARN</a> <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> <div class="dropdown-menu" aria-labelledby="navbarMore"> <a class="dropdown-item" href="configuration.html">Configuration</a> <a class="dropdown-item" href="monitoring.html">Monitoring</a> <a class="dropdown-item" href="tuning.html">Tuning Guide</a> <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> <a class="dropdown-item" href="security.html">Security</a> <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="building-spark.html">Building Spark</a> <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> </div> </li> <li class="nav-item"> <input type="text" id="docsearch-input" placeholder="Search the docs…"> </li> </ul> <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.4</span></span>--> </div> </nav> <div class="container"> <div class="left-menu-wrapper"> <div class="left-menu"> <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> <ul> <li> <a href="ml-statistics.html"> Basic statistics </a> </li> <li> <a href="ml-datasource.html"> Data sources </a> </li> <li> <a href="ml-pipeline.html"> Pipelines </a> </li> <li> <a href="ml-features.html"> Extracting, transforming and selecting features </a> </li> <li> <a href="ml-classification-regression.html"> Classification and Regression </a> </li> <li> <a href="ml-clustering.html"> Clustering </a> </li> <li> <a href="ml-collaborative-filtering.html"> Collaborative filtering </a> </li> <li> <a href="ml-frequent-pattern-mining.html"> Frequent Pattern Mining </a> </li> <li> <a href="ml-tuning.html"> Model selection and tuning </a> </li> <li> <a href="ml-advanced.html"> Advanced topics </a> </li> </ul> <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> <ul> <li> <a href="mllib-data-types.html"> Data types </a> </li> <li> <a href="mllib-statistics.html"> Basic statistics </a> </li> <li> <a href="mllib-classification-regression.html"> Classification and regression </a> </li> <li> <a href="mllib-collaborative-filtering.html"> Collaborative filtering </a> </li> <li> <a href="mllib-clustering.html"> Clustering </a> </li> <li> <a href="mllib-dimensionality-reduction.html"> Dimensionality reduction </a> </li> <li> <a href="mllib-feature-extraction.html"> Feature extraction and transformation </a> </li> <li> <a href="mllib-frequent-pattern-mining.html"> Frequent pattern mining </a> </li> <li> <a href="mllib-evaluation-metrics.html"> Evaluation metrics </a> </li> <li> <a href="mllib-pmml-model-export.html"> PMML model export </a> </li> <li> <a href="mllib-optimization.html"> Optimization (developer) </a> </li> </ul> </div> </div> <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> <label for="nav-trigger"></label> <div class="content-with-sidebar mr-3" id="content"> <h1 class="title">Machine Learning Library (MLlib) Guide</h1> <p>MLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level, it provides tools such as:</p> <ul> <li>ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering</li> <li>Featurization: feature extraction, transformation, dimensionality reduction, and selection</li> <li>Pipelines: tools for constructing, evaluating, and tuning ML Pipelines</li> <li>Persistence: saving and load algorithms, models, and Pipelines</li> <li>Utilities: linear algebra, statistics, data handling, etc.</li> </ul> <h1 id="announcement-dataframe-based-api-is-primary-api">Announcement: DataFrame-based API is primary API</h1> <p><strong>The MLlib RDD-based API is now in maintenance mode.</strong></p> <p>As of Spark 2.0, the <a href="rdd-programming-guide.html#resilient-distributed-datasets-rdds">RDD</a>-based APIs in the <code class="language-plaintext highlighter-rouge">spark.mllib</code> package have entered maintenance mode. The primary Machine Learning API for Spark is now the <a href="sql-programming-guide.html">DataFrame</a>-based API in the <code class="language-plaintext highlighter-rouge">spark.ml</code> package.</p> <p><em>What are the implications?</em></p> <ul> <li>MLlib will still support the RDD-based API in <code class="language-plaintext highlighter-rouge">spark.mllib</code> with bug fixes.</li> <li>MLlib will not add new features to the RDD-based API.</li> <li>In the Spark 2.x releases, MLlib will add features to the DataFrames-based API to reach feature parity with the RDD-based API.</li> </ul> <p><em>Why is MLlib switching to the DataFrame-based API?</em></p> <ul> <li>DataFrames provide a more user-friendly API than RDDs. The many benefits of DataFrames include Spark Datasources, SQL/DataFrame queries, Tungsten and Catalyst optimizations, and uniform APIs across languages.</li> <li>The DataFrame-based API for MLlib provides a uniform API across ML algorithms and across multiple languages.</li> <li>DataFrames facilitate practical ML Pipelines, particularly feature transformations. See the <a href="ml-pipeline.html">Pipelines guide</a> for details.</li> </ul> <p><em>What is “Spark ML”?</em></p> <ul> <li>“Spark ML” is not an official name but occasionally used to refer to the MLlib DataFrame-based API. This is majorly due to the <code class="language-plaintext highlighter-rouge">org.apache.spark.ml</code> Scala package name used by the DataFrame-based API, and the “Spark ML Pipelines” term we used initially to emphasize the pipeline concept.</li> </ul> <p><em>Is MLlib deprecated?</em></p> <ul> <li>No. MLlib includes both the RDD-based API and the DataFrame-based API. The RDD-based API is now in maintenance mode. But neither API is deprecated, nor MLlib as a whole.</li> </ul> <h1 id="dependencies">Dependencies</h1> <p>MLlib uses linear algebra packages <a href="http://www.scalanlp.org/">Breeze</a> and <a href="https://github.com/luhenry/netlib">dev.ludovic.netlib</a> for optimised numerical processing<sup id="fnref:1"><a href="#fn:1" class="footnote" rel="footnote" role="doc-noteref">1</a></sup>. Those packages may call native acceleration libraries such as <a href="https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html">Intel MKL</a> or <a href="http://www.openblas.net">OpenBLAS</a> if they are available as system libraries or in runtime library paths.</p> <p>However, native acceleration libraries can’t be distributed with Spark. See <a href="ml-linalg-guide.html">MLlib Linear Algebra Acceleration Guide</a> for how to enable accelerated linear algebra processing. If accelerated native libraries are not enabled, you will see a warning message like below and a pure JVM implementation will be used instead:</p> <div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>WARNING: Failed to load implementation from:dev.ludovic.netlib.blas.JNIBLAS </code></pre></div></div> <p>To use MLlib in Python, you will need <a href="http://www.numpy.org">NumPy</a> version 1.4 or newer.</p> <h1 id="highlights-in-30">Highlights in 3.0</h1> <p>The list below highlights some of the new features and enhancements added to MLlib in the <code class="language-plaintext highlighter-rouge">3.0</code> release of Spark:</p> <ul> <li>Multiple columns support was added to <code class="language-plaintext highlighter-rouge">Binarizer</code> (<a href="https://issues.apache.org/jira/browse/SPARK-23578">SPARK-23578</a>), <code class="language-plaintext highlighter-rouge">StringIndexer</code> (<a href="https://issues.apache.org/jira/browse/SPARK-11215">SPARK-11215</a>), <code class="language-plaintext highlighter-rouge">StopWordsRemover</code> (<a href="https://issues.apache.org/jira/browse/SPARK-29808">SPARK-29808</a>) and PySpark <code class="language-plaintext highlighter-rouge">QuantileDiscretizer</code> (<a href="https://issues.apache.org/jira/browse/SPARK-22796">SPARK-22796</a>).</li> <li>Tree-Based Feature Transformation was added (<a href="https://issues.apache.org/jira/browse/SPARK-13677">SPARK-13677</a>).</li> <li>Two new evaluators <code class="language-plaintext highlighter-rouge">MultilabelClassificationEvaluator</code> (<a href="https://issues.apache.org/jira/browse/SPARK-16692">SPARK-16692</a>) and <code class="language-plaintext highlighter-rouge">RankingEvaluator</code> (<a href="https://issues.apache.org/jira/browse/SPARK-28045">SPARK-28045</a>) were added.</li> <li>Sample weights support was added in <code class="language-plaintext highlighter-rouge">DecisionTreeClassifier/Regressor</code> (<a href="https://issues.apache.org/jira/browse/SPARK-19591">SPARK-19591</a>), <code class="language-plaintext highlighter-rouge">RandomForestClassifier/Regressor</code> (<a href="https://issues.apache.org/jira/browse/SPARK-9478">SPARK-9478</a>), <code class="language-plaintext highlighter-rouge">GBTClassifier/Regressor</code> (<a href="https://issues.apache.org/jira/browse/SPARK-9612">SPARK-9612</a>), <code class="language-plaintext highlighter-rouge">MulticlassClassificationEvaluator</code> (<a href="https://issues.apache.org/jira/browse/SPARK-24101">SPARK-24101</a>), <code class="language-plaintext highlighter-rouge">RegressionEvaluator</code> (<a href="https://issues.apache.org/jira/browse/SPARK-24102">SPARK-24102</a>), <code class="language-plaintext highlighter-rouge">BinaryClassificationEvaluator</code> (<a href="https://issues.apache.org/jira/browse/SPARK-24103">SPARK-24103</a>), <code class="language-plaintext highlighter-rouge">BisectingKMeans</code> (<a href="https://issues.apache.org/jira/browse/SPARK-30351">SPARK-30351</a>), <code class="language-plaintext highlighter-rouge">KMeans</code> (<a href="https://issues.apache.org/jira/browse/SPARK-29967">SPARK-29967</a>) and <code class="language-plaintext highlighter-rouge">GaussianMixture</code> (<a href="https://issues.apache.org/jira/browse/SPARK-30102">SPARK-30102</a>).</li> <li>R API for <code class="language-plaintext highlighter-rouge">PowerIterationClustering</code> was added (<a href="https://issues.apache.org/jira/browse/SPARK-19827">SPARK-19827</a>).</li> <li>Added Spark ML listener for tracking ML pipeline status (<a href="https://issues.apache.org/jira/browse/SPARK-23674">SPARK-23674</a>).</li> <li>Fit with validation set was added to Gradient Boosted Trees in Python (<a href="https://issues.apache.org/jira/browse/SPARK-24333">SPARK-24333</a>).</li> <li><a href="ml-features.html#robustscaler"><code class="language-plaintext highlighter-rouge">RobustScaler</code></a> transformer was added (<a href="https://issues.apache.org/jira/browse/SPARK-28399">SPARK-28399</a>).</li> <li><a href="ml-classification-regression.html#factorization-machines"><code class="language-plaintext highlighter-rouge">Factorization Machines</code></a> classifier and regressor were added (<a href="https://issues.apache.org/jira/browse/SPARK-29224">SPARK-29224</a>).</li> <li>Gaussian Naive Bayes Classifier (<a href="https://issues.apache.org/jira/browse/SPARK-16872">SPARK-16872</a>) and Complement Naive Bayes Classifier (<a href="https://issues.apache.org/jira/browse/SPARK-29942">SPARK-29942</a>) were added.</li> <li>ML function parity between Scala and Python (<a href="https://issues.apache.org/jira/browse/SPARK-28958">SPARK-28958</a>).</li> <li><code class="language-plaintext highlighter-rouge">predictRaw</code> is made public in all the Classification models. <code class="language-plaintext highlighter-rouge">predictProbability</code> is made public in all the Classification models except <code class="language-plaintext highlighter-rouge">LinearSVCModel</code> (<a href="https://issues.apache.org/jira/browse/SPARK-30358">SPARK-30358</a>).</li> </ul> <h1 id="migration-guide">Migration Guide</h1> <p>The migration guide is now archived <a href="ml-migration-guide.html">on this page</a>.</p> <div class="footnotes" role="doc-endnotes"> <ol> <li id="fn:1"> <p>To learn more about the benefits and background of system optimised natives, you may wish to watch Sam Halliday’s ScalaX talk on <a href="http://fommil.github.io/scalax14/#/">High Performance Linear Algebra in Scala</a>. <a href="#fnref:1" class="reversefootnote" role="doc-backlink">↩</a></p> </li> </ol> </div> </div> <!-- /container --> </div> <script src="js/vendor/jquery-3.5.1.min.js"></script> <script src="js/vendor/bootstrap.bundle.min.js"></script> <script src="js/vendor/anchor.min.js"></script> <script src="js/main.js"></script> <script type="text/javascript" src="js/vendor/docsearch.min.js"></script> <script type="text/javascript"> // DocSearch is entirely free and automated. DocSearch is built in two parts: // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link // in your website and extract content from every page it traverses. It then pushes this // content to an Algolia index. // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index // to your search input and display its results in a dropdown UI. If you want to find more // details on how works DocSearch, check the docs of DocSearch. docsearch({ apiKey: 'd62f962a82bc9abb53471cb7b89da35e', appId: 'RAI69RXRSK', indexName: 'apache_spark', inputSelector: '#docsearch-input', enhancedSearchInput: true, algoliaOptions: { 'facetFilters': ["version:3.5.4"] }, debug: false // Set debug to true if you want to inspect the dropdown }); </script> <!-- MathJax Section --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script> // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. // We could use "//cdn.mathjax...", but that won't support "file://". (function(d, script) { script = d.createElement('script'); script.type = 'text/javascript'; script.async = true; script.onload = function(){ MathJax.Hub.Config({ tex2jax: { inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], processEscapes: true, skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] } }); }; script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + '?config=TeX-AMS-MML_HTMLorMML'; d.getElementsByTagName('head')[0].appendChild(script); }(document)); </script> </body> </html>